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1. Quantization of some non–compact polynomial minimal surfaces

Non–commutative analogues of a class of infinitely extended 2 dimensional time–dependent sur-
faces that sweep out in space time 3–manifolds of vanishing mean curvature described by polynomial
equations are constructed.

As found in [1]

𝑥 =

√
2
𝜏

√︃
𝜇2 + 𝜀 cos 𝜑 =

√
2
𝜏
𝑥(𝜇, 𝜑) = 𝑅(𝜏, 𝜇) cos 𝜑

𝑦 =

√
2
𝜏

√︃
𝜇2 + 𝜀 sin 𝜑 =

√
2
𝜏
𝑦̄(𝜇, 𝜑) = 𝑅(𝜏, 𝜇) sin 𝜑

𝜁 := 𝑡 − 𝑧 =
−𝜇2 − 𝜀

3
𝜏3 =

−1
𝜏3 𝜁, 𝜏 =

𝑡 + 𝑧
2
,

(1)

satisfying

¥𝑥 = {{𝑥, 𝑦}, 𝑦}, ¥𝑦 = {{𝑦, 𝑥}, 𝑥}
¥𝜁 = {{𝜁, 𝑥}, 𝑥} + {{𝜁, 𝑦}, 𝑦} (=: Δ𝜁)
¥𝜏 = Δ𝜏(= 0)

(2)

(where { 𝑓 , 𝑔} := 𝜕 𝑓

𝜕𝜇

𝜕𝑔

𝜕𝜑
− 𝜕𝑔

𝜕𝜇

𝜕 𝑓

𝜕𝜑
and · = 𝜕

𝜕𝜏
), and resulting from a separation Ansatz for

¥𝑅 = 𝑅(𝑅𝑅′) ′, (3)

and solving
{{𝑥, 𝑦̄}, 𝑦̄} = 𝑥, {{𝑦̄, 𝑥}, 𝑥} = 𝑦̄ (4)

and
𝜁 ′ = ¤𝑅𝑅′, 2 ¤𝜁 = ¤𝑅2 + 𝑅2𝑅′2, (5)

as well as parametrizing

(𝑡2 + 𝑥2 + 𝑦2 − 𝑧2) (𝑡 + 𝑧)2 =
16
3
𝜀 ∈ R, (6)

describe 3 manifolds Σ3 of vanishing mean curvature in R1,3 (see [5], [6] for other polynomial
ones). As (4) may be written as

{𝑥, 𝑦̄} = 𝜇̄, {𝑦̄, 𝜇̄} = −𝑥, {𝜇̄, 𝑥} = −𝑦̄ (7)

it is easy to see that hermitean operators 𝑋,𝑌, 𝐻 satisfying

[𝑋,𝑌 ] = 𝑖𝐻, [𝑌, 𝐻] = −𝑖𝑋, [𝐻, 𝑋] = −𝑖𝑌 (8)

(i.e. representations of 𝑠𝑜(1, 2); note that these do not necessarily have to give rise to group–
representations, in contrast to (5.29) of [4]; so, e.g., 𝑘 in (**) on p.27 of [3] need not be restricted
to half–integers; any 𝑘 > 0 would do) via 𝑋1 :=

√
2
𝜏
𝑋 , 𝑋2 :=

√
2
𝜏
𝑌 will then solve the ‘membrane–

matrix–model’ [2] equations

¥𝑋𝑖 = −
[
[𝑋𝑖 , 𝑋 𝑗], 𝑋 𝑗

]
,

2∑︁
𝑖=1

[𝑋𝑖 , ¤𝑋𝑖] = 0. (9)
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Just as
𝜇̄2 − 𝑥2 − 𝑦̄2 = −𝜀, (10)

the left hand side being a Casimir function of (7), 𝐻2 − 𝑋2 − 𝑌2 = −𝑄 = −𝐶2 will be the standard
Casimir operator, i.e. for irreducible representations of (8) (cp. [4], [3]) be proportional to the
identity. Note that 𝜀 < 0, 𝜇 >

√
−𝜀 will correspond to Σ3 being time–like. Interestingly 𝜁 , which

in the classical theory is needed to (re)construct Σ3 (once 𝑥 and 𝑦 are known) and usually difficult
to ‘quantize’ (leading to the non–commutative ‘membrane–matrix–model’ often believed to not be
Lorentz–invariant), in the above example does satisfy

¥̂𝜁 = −
[
[𝜁, 𝑋], 𝑋

]
−

[
[𝜁,𝑌 ], 𝑌

]
=: Δ̂𝜁 (11)

for the obvious choice
𝜁 :=

−1
𝜏3 (𝐻

2 + 𝜀
3
) = −1

𝜏3 (𝑋
2 + 𝑌2 − 2

3
𝜀), (12)

just as 𝑋 and 𝑌 (and 𝜏) do, so that one may think of

𝑋0 = 𝑇 = 𝜏 + 𝜁
2

and 𝑋3 = 𝑍 = 𝜏 − 𝜁

2

(13)

as the quantizations of 𝑡 and 𝑧 in this model (and could try to let Lorentz–transformations act on
𝑋𝜇 = (𝑋0, 𝑋1, 𝑋2, 𝑋3)).

2. Composite dynamical symmetry of M–branes

It is shown that the previously noticed internal dynamical 𝑆𝑂 (𝐷 − 1) symmetry [7] for relativistic
M–branes moving in 𝐷–dimensional space–time is naturally realized in the (extended by powers of
1
𝑝+

) enveloping algebra of the Poincaré algebra.

In the common light–cone derivation of the critical dimension for bosonic strings it is hidden in the
calculation that the identification of terms in 𝑀𝑖− not involving zero–modes does not only require
subtracting 𝑋𝑖𝑃−−𝑃𝑖𝑋− but also terms that are linear (!) in the transverse total momenta, implicit in
the longitudinal oscillators (see e.g. [8][9]). The purely internal parts of (𝑃+times) the longitudinal
Lorentz–generators 𝑀𝑖−, and the 𝑀𝑖 𝑗 (generators of 𝑆𝑂 (𝐷 − 2)), satisfy

{M 𝑗𝑘 ,M𝑖−} = −𝛿𝑖𝑘M 𝑗− + 𝛿𝑖 𝑗M𝑘−

{M𝑖−,M 𝑗−} = M2 ·M𝑖 𝑗

{M𝑖 𝑗 ,M𝑘𝑙} = −𝛿 𝑗𝑘M𝑖𝑙 ± 3 more
(14)

withM2 = 2𝑃+𝑃− − ®𝑃2 the internal (Mass)2, very similar to the dynamical symmetry of the hydro-
gen atom – which gives hope [7] that it may be possible to obtain purely algebraically the spectrum

3
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ofM2 (when quantized), with the dimension and the topology of the extended object being encoded
in the dimensions and multiplicities of the occurring irreducible finite dimensional representations
of 𝑆𝑂 (𝐷 − 1) given by (14) via L𝑖− := M𝑖−√

M2 and L𝑖 𝑗 := M𝑖 𝑗 .
Attempts to quantize (14), using the constrained phase–space of transverse internal degrees of
freedom are hindered by the constraints (that are reflecting residual invariance of the theory under
volume–preserving diffeomorphismus, resp. solvability for the longitudinal degrees of freedom in
terms of the transverse ones) – making even classical calculations, like the proof [10] of Poisson
commutativity of the 𝑀𝑖− formidable. In [11], on the other hand, it was noticed that in the codi-
mension one case (to which we intermediately restrict) relativistic M(em)–branes can be described
as an isentropic inviscid irrotational gas. Taking proper care of (cp.[13])

𝑃+ :=
∫ √︂

𝑔

2 ¤𝜁 − ¤®𝑥 2
𝑑𝑀𝜑 = 𝜂

∫
𝜌 𝑑𝑀𝜑 = 𝜂 =

∫
𝑞 𝑑𝑀𝑥 (15)

when performing the hodograph–transformation

𝜑𝛼 = (𝜏, 𝜑1, . . . , 𝜑𝑀 ) → 𝑥𝛼 = (𝜏, 𝑥1(𝜏, 𝜑), . . . , 𝑥𝑀 (𝜏, 𝜑))

| 𝜕𝑥
𝛼

𝜕𝜑𝛽
| = | 𝜕𝑥

𝑖

𝜕𝜑𝑏
| = 𝜌{𝑥1, . . . , 𝑥𝑀 } =:

𝜂𝜌

𝑞(®𝑥, 𝜏)

1 =

∫
𝜌 𝑑𝑀𝜑 =

∫
𝜌

| 𝜕𝑥
𝜕𝜑

|
𝑑𝑀𝑥 =

1
𝜂

∫
𝑞 𝑑𝑀𝑥∫

𝑓 (𝜑𝛼)𝜌 𝑑𝑀𝜑 =
1
𝜂

∫
𝑓 (𝑥𝛼)𝑞 𝑑𝑀𝑥

®𝑝
𝜂𝜌

(𝜑𝛼) = ( ®∇𝑝) (𝑥 (𝜑)) ,

𝑋− = 𝜁0 =

∫
𝜁 𝜌 𝑑𝑀𝜑

!
=

1
𝜂

∫
𝑝𝑞 𝑑𝑀𝑥 = −𝐿+−

𝑃+
+ 𝜏 𝑃−

𝑃+

𝑋𝑖 =

∫
𝑥𝑖𝜌 𝑑

𝑀𝜑 =
1
𝜂

∫
𝑥𝑖𝑞 =

𝐿𝑖+
𝑃+

+ 𝜏 𝑃𝑖
𝑃+

𝑃− =
1
2𝜂

∫ ( ®𝑃2

𝜌2 + { , . . . , }2)𝜌 𝑑𝑀𝜑 =
1
2

∫ (
( ®∇𝑝)2 + 1

𝑞2
)
𝑞 𝑑𝑀𝑥

(16)

one obtains the hydrodynamic M–brane Poincaré–generators ([11][12][13])

𝑃− =
1
2

∫ (
𝑞(∇𝑝)2 + 1

𝑞

)
, 𝑃+ =

∫
𝑞, ®𝑃 =

∫
𝑞 ®∇𝑝

𝐿𝑎𝑏 =

∫
𝑞(𝑥𝑎𝜕𝑏𝑝 − 𝑥𝑏𝜕𝑎𝑝), 𝐿𝑎+ =

∫
𝑞𝑥𝑎 − 𝜏𝑃𝑎

𝐿𝑎− =
1
2

∫ (
𝑥𝑎 (𝑞(∇𝑝)2 + 1

𝑞
) − 𝑞𝜕𝑎 (𝑝2)

)
𝐿+− = −

∫
𝑞𝑝 𝑑𝑀𝑥 + 𝜏𝑃−

(17)

4
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satisfying

{𝐿𝑎±, 𝐿+−} = ∓𝐿𝑎±, {𝐿𝑎−, 𝐿𝑏−} = 0
{𝐿𝑎±, 𝑃∓} = 𝑃𝑎, {𝐿+−, 𝑃±} = ±𝑃±
{𝐿𝑎𝑏, 𝐿𝑐𝑑} = −𝛿𝑏𝑐𝐿𝑎𝑑 ± 3 more
{𝐿𝑎+, 𝐿𝑏−} = 𝛿𝑎𝑏𝐿+− − 𝐿𝑎𝑏 .

(18)

Due to the zero–modes being ratios1 of 𝑆𝑂 (𝐷 − 1, 1) generators,

𝑋𝑖 =
𝐿𝑖+
𝑃+

+ 𝜏 𝑃𝑖
𝑃+
,

𝑋− = 𝜁0 = −𝐿+−
𝑃+

+ 𝜏 𝑃−
𝑃+

(19)

one may write the internal (‘𝑆𝑂 (𝐷 − 1)’) generators occurring in (14) as composite operators,
solely as rational2 expression in the generators of the original Poincaré algebra:

M𝑖 𝑗 = 𝐿𝑖 𝑗 −
1
𝑃+

(𝐿𝑖+𝑃 𝑗 − 𝐿 𝑗+𝑃𝑖) = 𝐿𝑖 𝑗 − 𝐿 ′
𝑖 𝑗

M𝑖− = 𝑃+𝐿𝑖− − (𝐿𝑖+𝑃− + 𝐿+−𝑃𝑖︸             ︷︷             ︸
=𝑃+𝐿′

𝑖−

+M𝑖𝑘𝑃𝑘︸ ︷︷ ︸
=𝑃+ 𝐿̃′

𝑖−

)

=: 𝑃+𝐿𝑖− − 𝑃+ 𝐿̃𝑖−;

(20)

and a tedious, but straightforward calculation, resp.

{𝐿 ′
𝑖 𝑗 , 𝐿

′
𝑘𝑙} = −𝛿 𝑗𝑘𝐿 ′

𝑖𝑙 ± 3 more, {𝐿𝑖 𝑗 , 𝐿 ′
𝑘𝑙} = −𝛿 𝑗𝑘𝐿 ′

𝑖𝑙 ± 3 more,

{𝐿 ′
𝑖−, 𝐿

′
𝑗−} = 0,

{𝐿̃ ′
𝑖−, 𝐿̃

′
𝑗−} =

1
𝑃2
+
( ®𝑃2M𝑖 𝑗 + 𝑃𝑖M 𝑗𝑘𝑃𝑘 − 𝑃 𝑗M𝑖𝑙𝑃𝑙)

{𝐿 ′
𝑖−, 𝐿̃

′
𝑗−} − (𝑖 ↔ 𝑗) = −2

𝑃−
𝑃+
M𝑖 𝑗 −

1
𝑃2
+
(𝑃𝑖M 𝑗𝑘𝑃𝑘 − 𝑃 𝑗M𝑖𝑙𝑃𝑙)

{𝐿̃𝑖−, 𝐿̃ 𝑗−} = −M
2

𝑃2
+
M𝑖 𝑗 , {M𝑖−

𝑃+
, 𝐿̃ 𝑗−} − (𝑖 ↔ 𝑗) = 0,

(21)

note also

{M𝑖𝑘 , 𝑃 𝑗} = 0, {M𝑖𝑘 , 𝐿+−} = 0, {𝑃+,M𝑖−} = 0, (22)

gives that (20) indeed satisfies (14).

1up to terms proportional to 𝜏 (which drop out in (20))
2were it not for the 1

𝑃+
in the subtraction to 𝑀𝑖 𝑗 , and eventual appearance of (commuting) factors of 1√

M2
, polynomial,

i.e. elements of the enveloping algebra

5
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3. On the r–matrix of M(embrane)–theory

Supersymmetrizable theories, such as M(em)branes and associated matrix–models related to Yang–
Mills theory, possess r–matrices

While the Lax–pairs found in [14, 15], in contrast to standard integrable systems (see e.g. [16]),
naively do not seem to provide any non–trivial conserved quantity, it is also unlikely that they
will not be useful. As a start I would like to point out that Lax–pairs arising from supersym-
metrizability generically do have an r–matrix associated with them (which in principle is not even
particularly difficult to explicitly calculate), including the infinite–dimensional case of relativistic
higher dimensional extended objects (see e.g. [13] for a review) such as Membrane theory, whose
discretized version, a SU(N)–invariant matrix–model [2], is known to be subtle in several ways
(e.g. possessing classical solutions extending to infinity, but quantum–mechanically purely discrete
spectrum [17, 18], while when supersymmetrized [19] changing “again” to continuous3 [20, 21]);
in this sense making the existence of a rather special Lax–pair for them not too surprising.

Let me first illustrate the idea by considering4

¤𝐿1 = [𝐿1, 𝑀], ¤𝐿2 = [𝐿2, 𝑀]

𝐿1 =

𝑁∑︁
𝑎=1

(𝛾𝑎𝑝𝑎 − 𝛾𝑎+𝑁 𝜕𝑎𝑤), 𝐿2 =
∑︁
𝑎

(𝛾𝑎𝜕𝑎𝑤 + 𝛾𝑎+𝑁 𝑝𝑎)

𝑀 = −1
2

𝑁∑︁
𝑎,𝑏=1

𝛾𝑎𝛾𝑏+𝑁 𝜕
2
𝑎𝑏𝑤

(23)

where 𝑤 = 𝑤(𝑥1, 𝑥2, . . . , 𝑥𝑁 ) and the hermitean Clifford matrices 𝛾𝑖=1...2𝑁 , satisfying

𝛾𝑖𝛾 𝑗 + 𝛾 𝑗𝛾𝑖 = 2𝛿𝑖 𝑗 · 1, (24)

canonically realized as 2𝑁 × 2𝑁 dimensional tensorproducts of Pauli–matrices. While in that
canonical representation 𝐿1 and 𝐿2 anticommute and square to a multiple of the unit matrix,
𝛽, 𝛽′ = 1, 2,

𝐿𝛽𝐿𝛽′ + 𝐿𝛽′𝐿𝛽 = 2𝛿𝛽𝛽′ (2𝐻 := ®𝑝 2 + (∇𝑤)2)1 (25)

(23), due to the polynomials of degree ≤ 2 in the 𝛾𝑖 closing under commutation, forming a (spinor–)
representation of 𝑠𝑜(2𝑁 + 1), may also be considered in the defining, ‘vector’ representation of
𝑠𝑜(2𝑁 + 1), in which 𝐿̃ (𝜆) := 1

2 ( 𝐿̃1 +𝜆𝐿̃2) and 𝑀̃ , instead of having non–zero elements distributed
over many of the 2𝑁 × 2𝑁 entries, take the simple form

𝐿̃ (𝜆) = 𝑖
(

0 𝑣𝑇

−𝑣 02𝑁×2𝑁

)
=:

√
2𝐻

√︁
𝜆2 + 1𝐾 (𝜆)

𝑣 =

(
®𝑝 + 𝜆 ®∇𝑤
𝜆 ®𝑝 − ®∇𝑤

)
=:

√
2𝐻

√︁
𝜆2 + 1 𝑒(𝜆)

𝑀̃ =

(
0 0
0 𝐴

)
, 𝐴 =

(
0 −𝑤𝑎𝑏

𝑤𝑎𝑏 0

)
2𝑁×2𝑁

,

(26)

3by many first interpreted negatively, then [23, 24] positively
4cp.[14] (missing 1

2 in eq.(12), dWHN: 1988/305.)

6



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
5
8

Recent Progress On Membrane Theory

as when representing 1
2𝛾

𝑖 𝑗 = 1
4 (𝛾

𝑖𝛾 𝑗−𝛾 𝑗𝛾𝑖) by 𝑀𝑖 𝑗 := 𝐸𝑖 𝑗−𝐸 𝑗𝑖 (generating 𝑠𝑜(2𝑁) ⊂ 𝑠𝑜(2𝑁 +1))
𝑖𝛾𝑘
2 will correspond to the generators 𝑀0𝑘 = 𝐸0𝑘 − 𝐸𝑘0 of 𝑠𝑜(2𝑁 + 1),

[𝑀𝜇𝜈 , 𝑀𝜌𝜆] = 𝛿𝜈𝜌𝑀𝜇𝜆 ± 3more (27)

𝜇, 𝜈, 𝜌, 𝜆 = 0, 1, . . . , 2𝑁 .

It is trivial to check that
¤̃𝐿 (𝜆) = [𝐿̃ (𝜆), 𝑀̃] ⇔ ¤𝑒(𝜆) = 𝐴𝑒, 𝑒 ∈ 𝑆2𝑁−1 (28)

are equivalent to the equations of motion ¤𝑥𝑎 = 𝑝𝑎, ¤𝑝𝑎 = −𝑤𝑎𝑏𝜕𝑏𝑤, (𝑤𝑎𝑏 := 𝜕2
𝑎𝑏
𝑤) being the

Hessian of the ‘superpotential’ 𝑤. However, in contrast with 𝐿1 and 𝐿2 in the spinor representation
each having 𝑁 eigenvalues +

√
2𝐻 and 𝑁 eigenvalues −

√
2𝐻, the Lax–matrix 𝐿̃ (𝜆), as given in

(26), will have only two non–zero eigenvalues (which, diving by
√

2𝐻
√

1 + 𝜆2, i.e. considering the
normalized matrix 𝐾 (𝜆), may be taken to be ±1), with corresponding eigenvectors 𝑒±, i.e.

𝐾 (𝜆) = 𝑈 (𝜆)

©­­­­­­­«

1
−1

0
. . .

0

ª®®®®®®®¬
𝑈†(𝜆),

𝑈 (𝜆) = 1
√

2

(
+𝑖 −𝑖 0 . . . 0
𝑒 𝑒

√
2𝑛1 . . .

√
2𝑛2𝑁−1

)
= (𝑢0𝑢1 . . . 𝑢2𝑁−1)

(29)

with (𝑒, 𝑛1, . . . , 𝑛2𝑁−1) forming an orthonormal basis of R2𝑁 .

As the eigenvalues of 𝐾 (𝜆) are numerical constants (= +1,−1, 0 . . . 0),hence Poisson–commuting
with everything, it easily follows, with

{𝑋1, 𝑌2} := {𝑋 ⊗ 1, 1 ⊗ 𝑌 } := {𝑋𝑖 𝑗 , 𝑌𝑘𝑙}𝐸𝑖 𝑗 ⊗ 𝐸𝑘𝑙 (30)

that 𝐾1 := 𝐾 ⊗ 1 and 𝐾2 := 1 × 𝐾 satisfy

{𝐾1(𝜆), 𝐾2(𝜆)} =
[
[𝑈12(𝜆), 𝐾1], 𝐾2

]
=

[
[𝑈12(𝜆), 𝐾2], 𝐾1

]
= [𝑟12, 𝐾1] − [𝑟21, 𝐾2]

𝑈12 := {𝑈1,𝑈2}𝑈−1
1 𝑈−1

2

𝑟12 =
1
2
[𝑈12, 𝐾2], 𝑟21 =

1
2
[𝑈21, 𝐾1] = −1

2
[𝑈12, 𝐾1];

(31)

and 𝐽 (𝜆) :=
√
𝐻𝐾 (𝜆) will therefore satisfy

{𝐽1, 𝐽2} = 𝐻{𝐾1, 𝐾2} +
1
2
( ¤𝐾1𝐾2 − ¤𝐾2𝐾1)

= [𝐻𝑟12 −
1
2
𝑀̃1𝐾2, 𝐾1] − (1 ↔ 2)

(32)

so that the 𝑟–matrix for the Lax–pair (𝐽 (𝜆), 𝑀̃ =
( 0 0

0 𝐴

)
) with equations of motion ¤𝑒 = 𝐴𝑒,

𝑒(𝜆) ∈ 𝑆2𝑁−1 is
𝑟12(𝜆) =

√
𝐻𝑟12(𝜆) −

1
2
𝑀̃1𝐾2(𝜆)

1
√
𝐻
. (33)
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Having gone through this simple example it is almost correct to say that one has understood all
supersymmetrizable systems (from this perspective) whose supercharges are linear in the Clifford
generators, resp. ‘fermions’ (and at this stage it would be tempting to see a relation to other, old
and new - see e.g. [22], and references therein - statements about supersymmetric systems); one
‘only’ gets different (for field–theories: infinite dimensional) unit vectors 𝑒 and different (‘more
complicated’) antisymmetric matrices 𝐴 (cp. (28)) satisfying ¤𝑒(𝜆) = 𝐴𝑒(𝜆).
Consider now the membrane–matrix model (cp.(24)𝐽𝑎=0 of [14]), i.e.

𝑣 =

(∑
𝛽 𝜆𝛽𝑃

𝛽
𝛼𝑎∑

𝛽 𝜆𝛽𝑄
𝛽
𝛼𝑎

)
=

(∑
𝛽 𝜆𝛽 ®𝑝 𝛽∑
𝛽 𝜆𝛽 ®𝑞 𝛽

)
=

(
®𝑝(𝜆)
®𝑞(𝜆)

)
=

(
®𝑝
®𝑞

)
(34)

𝑃
𝛽
𝛼𝑎 =

𝑑∑︁
𝑡=1

𝑝𝑡𝑎𝛾
𝑡
𝛽𝛼, 𝑄

𝛽
𝛼𝑎 =

1
2
(𝛾𝑠𝑡 )𝛽𝛼 𝑓𝑎𝑏𝑐𝑥𝑠𝑏𝑥𝑡𝑐 ,

where the 𝑓𝑎𝑏𝑐 are totally antisymmetric (real) structure constants of 𝑠𝑢(𝑁), 𝑎, 𝑏, 𝑐 = 1 . . . 𝑁2 − 1,
the 𝑥𝑠𝑏 and 𝑝𝑡𝑐 are canonically conjugate variables, the 𝛾𝑡 are real symmetric 𝜎 × 𝜎 matrices
satisfying 𝛾𝑠𝛾𝑡 + 𝛾𝑡𝛾𝑠 = 𝛿𝑠𝑡1, the time–evolution is given by

𝐻 =
1
2
(𝑃𝛽

𝛼𝑎𝑃
𝛽
𝛼𝑎 +𝑄𝛽

𝛼𝑎𝑄
𝛽
𝛼𝑎) =

1
2
( ®𝑝 𝛽 ®𝑝 𝛽 + ®𝑞 𝛽 ®𝑞 𝛽), (35)

which is independent of 𝛽, sum over (𝛼𝑎) = (11) . . . (𝜎, 𝑁2 − 1) and

𝐽𝑎 = 𝑓𝑎𝑏𝑐𝑥𝑠𝑏𝑝𝑠𝑐
!
= 0, (36)

which also implies 𝑣𝑇 𝑣 = (2𝐻) ( ®𝜆 2); the equations of motion can be written in the form (cp.(6) of
[14])

¤®𝑞 = Ω ®𝑝, ¤®𝑝 = Ω®𝑞, (37)

and the Lax–pair [14], when going to the defining vector representation of 𝑠𝑜(2𝑛 + 1), 𝑛 =

𝜎(𝑁2 − 1) ∈ N, becomes –as explained above–

𝐽 (𝜆) = 𝑖
(

0 𝑣𝑇

−𝑣 0

)
1√︁
2®𝜆 2

𝑀̃ =

(
0 0
0 𝐴

)
𝐴2𝑛×2𝑛 =

(
0 Ω

Ω 0

)
= −𝐴𝑇

Ω𝛼𝑎,𝛼′𝑎′ = 𝑓𝑎𝑎′𝑐𝑥𝑡𝑐𝛾
𝑡
𝛼𝛼′

(38)
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with

𝐽 = 𝑈

©­­­­­­­«

√
𝐻

−
√
𝐻

0
. . .

0

ª®®®®®®®¬
𝑈†

𝑈 =

(
𝑖√
2

− 𝑖√
2

0 . . . 0
𝑒√
2

𝑒√
2

𝑛1 . . . 𝑛∗

) (39)

and the 2𝑛 unit vectors (𝑒, 𝑛1 . . . 𝑛∗) being orthonormal, and

¤𝐽 (𝜆) = [𝐽 (𝜆), 𝑀̃] ⇔ ¤𝑒 = 𝐴𝑒 (40)

being equivalent to the matrix–model equations of motion.

As shown above, the 𝑠𝑢(𝑁)–invariant membrane matrix model of [2] therefore possesses an r–
matrix,

{𝐽1(𝜆), 𝐽2(𝜆)} = [𝑟12(𝜆), 𝐽1] − (1 ↔ 2)

𝑟12 =
(1
2
[𝑈12, 𝐽2] −

1
2
𝑀̃1𝐽2
𝐻

)
;

(41)

note that the normalisation of 𝐽 is chosen such that 1
2 tr𝐽2 = 𝐻 (as a consistency check, one can

calculate −Tr2(𝑟12𝐽2) = 1
2 𝑀̃

tr𝐽 2
2

𝐻
+ 1

4 tr2 [𝑈12, 𝐽
2
2 ] which indeed gives 𝑀̃; that 𝑟12 does not give

any contribution means that it is in some sense ‘trivial’, i.e. not influencing the time–evolution;
dimensionally [𝑥] ∼ 𝐸 1

4 , [𝑝] ∼ 𝐸 1
2 so [ 𝜕

𝜕𝑥
𝜕
𝜕𝑝

] = 𝐸− 3
4 = [ 𝑀̃

𝐻
] = 𝐸

1
4

𝐸
).

What about the infinite–dimensional case of membrane–theory?

𝑣
𝛽
𝛼𝑎 =

∫
𝑌𝑎 (𝜑)

( 𝑝𝑖
𝜌
𝛾𝑖𝛽𝛼 + 1

2
{𝑥𝑖 , 𝑥 𝑗}𝛾𝑖 𝑗𝛽𝛼

)
𝜌 𝑑2𝜑 𝑎 ∈ N0

{𝑥𝑖 , 𝑥 𝑗}(𝜑) :=
𝜀𝑟𝑠

𝜌
𝜕𝑟𝑥𝑖𝜕𝑠𝑥 𝑗∫

𝑌𝑎𝑌𝑏𝜌 𝑑
2𝜑 = 𝛿𝑎𝑏,

∞∑︁
𝑎=0

𝑌𝑎 (𝜑)𝑌𝑎 (𝜑̃) =
𝛿2(𝜑, 𝜑̃)

𝜌
,

(42)

¤𝐽 (𝜆) = [𝐽 (𝜆), 𝑀̃],

Ω𝛼𝑎,𝛼′𝑎′ = 𝑔𝑎𝑎′𝑐𝑥𝑖𝑐𝛾
𝑖
𝛼𝛼′, 𝑔𝑎𝑏𝑐 =

∫
𝑌𝑎{𝑌𝑏, 𝑌𝑐}𝜌 𝑑2𝜑

𝐽 = 𝑖

(
0 𝑣†

−𝑣 0

)
1

√
2𝜆†𝜆

,

𝑀̃ =

(
0 0
0 𝐴

)
, 𝐴 =

(
0 Ω

Ω 0

)
.

(43)

While in principle having to worry about potentially diverging infinite sums, and Lie–algebraically
one would have to identify a well–defined algebra, I think that (43), and the infinite–dimensional
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analogue of (41), should be fine, for various reasons: 𝑣†𝑣 = 2𝜆†𝜆𝐻 implies that for fixed (trivially
conserved) energy all components of 𝑣 are finite, and 𝑣√

2𝜆†𝜆𝐻
=: 𝑒 will be a unit vector; the norm

of each row of Ω (or column, given by (𝛼𝑎)) is
∫
{𝑌𝑎, 𝑥𝑖}2𝜌 𝑑2𝜑, which is clearly finite, as one

integrates over a compact manifold, and if {𝑌𝑎, 𝑥𝑖} was infinite for some 𝑎, the potential term of
𝐻 could not be finite; the arising scalar products of infinite–dimensional vectors (corresponding to∫
𝜌 𝑑2𝜑 of the product of corresponding square–integrable functions) therefore involve only vectors

of finite norm. One may also write (43), resp. the equations of motion, in the following compact
suggestive forms:

¤𝑞𝛽𝛼 = 𝛾𝑖𝛼𝛼′{𝑝𝛽𝛼′, 𝑥𝑖}, ¤𝑝𝛽𝛼 = 𝛾𝑖𝛼𝛼′{𝑞𝛽𝛼′, 𝑥𝑖}, or as
¤𝑉 = {𝑉, 𝑋} := {𝑉𝛽𝛼, 𝑋𝛿𝜀}𝐸𝛽𝛼𝐸𝛿𝜀 = −{𝑋,𝑉𝑇 }𝑇

resp.

¤𝑄𝛽𝛼 = {𝑃𝛽𝛼′, 𝑋𝛼′𝛼} = −{𝑋𝛼𝛼′, 𝑃𝛼′𝛽} = − ¤𝑄𝛼𝛽

¤𝑃𝛽𝛼 = {𝑄𝛽𝛼′, 𝑋𝛼′𝛼} = +{𝑋𝛼𝛼′, 𝑄𝛼′𝛽} = + ¤𝑃𝛼𝛽

(44)

(using that, as finite matrices, 𝑃 is symmetric, 𝑄 = 1
2 {𝑋, 𝑋} antisymmetric and 𝑋𝛼𝛼′ := 𝛾𝑖

𝛼𝛼′𝑥𝑖 =

𝑋𝛼′𝛼, ¤𝑋 = 𝑃, ¥𝑋 = 1
2 {𝑋, {𝑋, 𝑋}}).

Finally, note [25] and that 𝐿 = 𝑃 + 𝑖𝑄, respectively ¤𝐿 = 𝑖{𝐿∗, 𝑋} could be considered a gener-
alization to arbitrary 𝑑 of (39) in the first reference of [11], turning into a real Lax–pair for the
Wick–rotated/Euclidean equation of motion (though care is needed for the definition of a Lie–
algebra involving matrix–valued functions on the membrane).

4. Commuting signs of infinity

Discrete minimal surface algebras and Yang Mills algebras may be related to (generalized) Kac
Moody algebras, just as Membrane (matrix) models and the IKKT model - including a novel con-
struction technique for minimal surfaces.

I would like to mention some aspects of two kinds of double commutator equations5[
[𝑋𝜇, 𝑋𝜈], 𝑋𝜈

]
= 0 (45)[

[𝑀𝑖 , 𝑀 𝑗], 𝑀 𝑗

]
= 𝜇𝑖𝑀𝑖 . (46)

(45) appears e.g. in [26][27][3][29][30][31][32] (and references therein), describing non–commutative
minimal surfaces, resp. a quantization of string theory (related to the Schild action [33]; stronger

5the bilinear antisymmetric bracket, assumed to satisfy the Jacobi identity, is not assumed to necessarily come from
an underlying associative multiplication, i.e. could also be a Poisson–bracket; repeated indices are summed over, unless
stated otherwise; the distinction between upper and lower indices could of course also be made in (46), and the distinction
between (45) and (46) is equally “pragmatical”
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conditions, including
[
[𝑋𝜇, 𝑋𝜈], 𝑋𝜌

]
= 0, implying basic uncertainty relations for a non–commutative

space–time, appear in [34]), resp. covariant derivatives of Yang-Mills connections (see e.g. [36]
[35]); (46) e.g. in [2][36][37][1][38] [39][40][41] (and references therein). [37] implies that the
maximal compact subalgebra of simply laced Kac Moody algebras (for GIM algebras, see [42];
note that [40] contains observations and ideas that may also be relevant for the general infinite
dimensional case) is isomorphic to the quotient of a free Lie algebra generated by 𝑌1 . . . 𝑌𝑛 subject
to the relations [

[𝑌𝑖 , 𝑌 𝑗], 𝑌 𝑗

]
= ±𝑌𝑖 (no sum) (47)

if the (𝑖 𝑗) entry of the generalized Cartan matrix 𝐴 is non–zero, while

[𝑌𝑖 , 𝑌 𝑗] = 0 if 𝐴𝑖 𝑗 = 0 (48)

(the sign in (47) is in principle fixed by the Cartan involution and reality properties; it would be
interesting to see whether vanishing ‘signs’ could arise after summing over 𝑗 , thus relating (47)
also to (45)). The relation to (46) is apparent, as for each generalized Cartan matrix 𝜇𝑖 simply
results from the number of non–zero elements 𝐴 𝑗≠𝑖 in the 𝑖–th column resp. row (which e.g. for
the affine Kac Moody algebra 𝐴̃𝑙 would be 2, independent of 𝑖). Note that in the relation of (46)
with the membrane (matrix) model in 𝐷–dimensional space–time [2][13], with classical equations
of motion

¥𝑋𝑖 = −
𝑑∑︁
𝑗=1

[
[𝑋𝑖 , 𝑋 𝑗], 𝑋 𝑗

]
, (49)

the 𝑋𝑖 being 𝑑 = 𝐷 − 2 time–dependent traceless hermitean 𝑁 × 𝑁 matrices, one would want the
non-zero 𝜇𝑖 (> 0) to appear in pairs – because of the Ansatz (cp. e.g. [40])

𝑋𝑖 (𝑡) =
(
𝑒𝐽 (𝑡−𝑡0)

)
𝑖 𝑗
𝑀 𝑗 (50)

with 𝐽𝑇 = −𝐽 real, 𝐽2 diagonal – and the hermitean 𝑀𝑖 to satisfy (46), as well as

𝐽𝑖 𝑗 [𝑀𝑖 , 𝑀 𝑗] = 0 (51)

(in order to satisfy the 𝑆𝑈 (𝑁)–‘Gauss–constraint’
∑[𝑋𝑖 , ¤𝑋𝑖] = 0, which is the discrete analogue

of the residual invariance under area–preserving diffeomorphisms [2], hence has to be satisfied for
(49) to include membranes as 𝑁 → ∞). One6 way to satisfy the constraint would be to choose half
of the 𝑀’s to be identically zero, while in view of the Berman–construction, (47)+(48), one could
simply pair each node with one to which it is not connected; or consider (51) an analogue of the
sum–condition in (6.3) of [31]. Of particular interest would be to identify the maximal compact
subalgebra of 𝐸10 (𝐸9) in (45) ((46)/(49)).

In the simplest example, 𝐴̃𝑙, one gets ∑︁
𝑗

[
[𝑌𝑖 , 𝑌 𝑗], 𝑌 𝑗

]
= 2𝑌𝑖 , (52)

6in the context of membrane (matrix) solutions ‘practised’ – though I always considered it as somewhat unnatural.
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each simple root having 2 neighbours; and the simplest finite–dimensional generalized spin rep-
resentation of (47)+(48), hence (52)/(46), in this case is (apparently [36] first noticed by A.Kent;
though the connection with infinite dimensional Lie–algebras was not realized at that time)

𝑀𝑘 := 𝑌𝑘 :=
𝑖

2
𝛾𝑘𝛾𝑘+1 =

𝑖

2
𝛾𝑘 𝑘+1

𝑀𝑘 = 𝑀
†
𝑘
, 𝑀2

𝑘 =
1
4
, 𝑘 = 1 . . . 𝐾 (𝐾 + 1 ≡ 1)

(53)

where the 𝛾𝑘 are traceless anti–commuting hermitean (Clifford) matrices squaring to 1. In the con-
text of the 𝑑 = 9 rotating membrane solutions example one could e.g. take 𝐾 = 8, 𝛾1 = 𝜎1×1×1×1,
𝛾2 = 𝜎2 ×1×1×1, 𝛾3 = 𝜎3 ×𝜎1 ×1×1, . . . , 𝛾8 = 𝜎3 ×𝜎3 ×𝜎3 ×𝜎2, 𝑁 = 16, resp. 8 (note that the
Clifford–solutions of (46) in [40] naively would need the doubling mechanism, i.e. 𝐾 = 4, 𝑁 = 4).
For the affine Kac–Moody algebra 𝐷̃𝑙 one would naturally get solutions of (46) where 𝜇 = 1 has
multiplicity 4, 𝜇 = 3 multiplicity 2, and 𝜇 = 2 multiplicity 𝑙 − 5.
While in the physics context the most important aspect of realizing (47)+(48) is that it signals po-
tential infinite symmetries for (46) (resp.(45); note the ‘reconstruction algebra’ [7][13]), including
a possible relation to the area–preserving diffeomorphism algebra for relativistic extended objects
[2] [13], there is another, equally interesting, aspect: (47) can (and does) describe discrete minimal
surfaces (hence the name DMSA in [40]) embedded in spheres (once in each connected component
the 𝜇𝑖 are equal and the constraint

∑
𝑀2

𝑖
∼ 1 is added); hence it is natural to conjecture that the

generalized higher spin representations of (47)+(48) (cp. [41], and references therein) include series
of finite dimensional representations (of increasing dimension) that for 𝑁 → ∞ converge to (new)
minimal surfaces in spheres.

5. Outlook

Possible Multi-Hamiltonian structures ( of hydrodynamic type ) describing Membrane Theory
should be investigated. In [43] new classes of exact M(em)brane solutions in M+2 dimensional
Minkowski space are presented ( some describing non-trivial topology changes, while others ex-
plicitly avoid finite-time singularity formation ). In [44] Baecklund-type transformations in four-
dimensional space-time and an intriguing reduced zero-curvature formulation for axially symmetric
membranes are found, with diffeomorphism- resp. Lorentz-symmetries reappearing after orthonor-
mal gauge-fixing.

Acknowledgement. I would like to thank J.Arnlind, V.Bach, J.Eggers, M.Hynek, A.Jevicki,
A.Kleinschmidt, I.Kostov, R.Lautenbacher, D.O’Connor, T.Ratiu, and T.Turgut for discussions,
as well as K.Anagnostopoulos, F.Lizzi and H.Steinacker for kind help related to my talk at the
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