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1. Introduction

One of the great questions of physics is: how did the Universe start? Or, at a more technical

level: what replaces the big bang singularity of the Friedmann cosmology [1]? The Friedmann

big bang singularity would have infinite energy density and curvature, but it is clear that Nature

somehow will prevent these infinities from occurring.

Recall that general relativity [2] and the standard model of elementary particle physics [3] are

the current underlying theories of the standard Friedmann cosmology [1]. Hence, the answer to

the second question above, most likely, requires an extended theory, which incorporates general

relativity and the standard model. In this article, we will consider superstrings [4] as such a

candidate theory. We will need, in fact, a nonperturbative formulation of superstring theory.

The final formulation of nonperturbative superstring theory, also known as "-theory [5, 6], is

still incomplete. The IKKT matrix model [7] is one suggestion. As that matrix model reproduces

the basic structure of the light-cone string field theory of type-IIB superstrings, the model is also

known as the IIB matrix model [8]. It may, therefore, be a worthwhile undertaking to investigate

the IIB matrix model thoroughly.

A few years ago, we started thinking about how the IIB matrix model could, in principle,

produce a new phase replacing the Friedmann big bang singularity, with an emerging classical

spacetime and emergent matter. But how the spacetime, in particular, emerged from the matrix

model was far from clear. We then realized that the large-# master field of Witten [9–12] could

play a crucial role and we showed that, in principle, the master field of the IIB matrix model could

give rise to the points and the metric of an emerging classical spacetime [13]. This discussion was,

however, based on assumed master-field matrices and we really need to calculate them. Our work

of the last year has focussed on that task.

For the first conceptual phase of our endeavours, with a main paper [13] and a cosmology

follow-up paper [14] available, we have already written a review [15]. For the second calculational

phase, with three technical papers [16–18] available, we now wish to present a corresponding review

that focuses on the main results, while leaving out the technicalities. We also take the opportunity

to present some new numerical results.

The outline of our paper is as follows. In Sec. 2, we review the main points of the IIB matrix

model. In Sec. 3, we introduce the bosonic master field and the equation which determines it.

In Sec. 4, we present numerical solutions for the (�, #) = (10, 4) case, both with and without

dynamical fermions (here, � is the number of bosonic matrices and # the matrix size). In Sec. 5,

we give some closing remarks, also about getting a “tamed” big bang from the IIB matrix model.

There are furthermore five appendices with technical details and additional results. In App. A, we

present a few new results in favor of the crucial property of large-# factorization in the IIB matrix

model. In App. B, we give the explicit choice for the (* (4) generators used in our calculations. In

App. C, we list one particular realization of pseudorandom numbers entering the (�, #) = (10, 4)
master-field equation, which is essentially an algebraic equation. In App. D, we give the obtained

coefficients of an approximate numerical solution of the full (�, #) = (10, 4) algebraic equation.

In App. E, we look for solutions of another algebraic equation, the stationarity equation from the

effective bosonic action, and present two nontrivial critical points for the case (�, #) = (3, 3).
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2. IIB matrix model

2.1 Partition function

Let us recall the definition of the IIB matrix model [7, 8]. We essentially take over the

conventions and notations of Ref. [19], except that we write �` for the bosonic matrices with a

directional index ` running over {1, . . . , �} for � = 10. These bosonic matrices �`, as well as

the fermionic matrices ΨU , are # × # traceless Hermitian matrices. The partition function of the

supersymmetric IIB matrix model (IIB-m-m) for # ≥ 2 is then defined as follows [7, 8, 19]:

/��, # =

∫ 6∏
2=1

�∏
`=1

3�2` 4
− (bos [�]

(∫ 6∏
2=1

N∏
U=1

3Ψ2U 4
− (ferm [�, Ψ]

)�
, (2.1a)

(bos [�] = −1

2
Tr

( [
�`, �a

] [
�`, �a

] )
, (2.1b)

(ferm [�, Ψ] = −Tr
(
ΨU (C Γ

`)UV
[
�`, ΨV

] )
, (2.1c)

�` = �2` C2 , ΨU = Ψ
2
U C2 , C2 ∈ su(#) , (2.1d)

Tr
(
C2 · C3

)
=

1

2
X23 , (2.1e)

6 ≡ #2 − 1 , (2.1f)

N = 2
(
� − 2

)
= 2, 4, 16 , for � = 3, 4, 10 , (2.1g)

� ∈
{
0, 1

}
, (2.1h)

{
�, �

}���(IIB-m-m)

=
{
10, 1

}
, (2.1i)

where repeated Greek indices are summed over (just as with an implicit Euclidean “metric”) and

� is an on/off parameter to include (� = 1) or exclude (� = 0) dynamic-fermion effects. The

commutators entering (2.1b) and (2.1c) are defined by [-, . ] ≡ - ·. −. · - for square matrices -

and . of equal dimension. The fermionic action (2.1c) contains also the charge conjugation matrix

C and the Γ` for � = 10 are Weyl-projected “gamma” matrices, Γ` = Σ`. These 16 × 16 matrices

Σ` have been given explicitly in Refs. [18, 20] and their notation recalls the 2 × 2 Pauli matrices

f` of the four-dimensional case with 4 × 4 Dirac matrices W` in the chiral representation.

The expansions (2.1d), with real coefficients �2` and real Grassmannian coefficients Ψ2U, use the

# × # traceless Hermitian (* (#) generators C2 with normalization (2.1e) and structure constants

5 012 as given by (A.7b) in App. A.3. (The matrix model for � = 6 has Weyl spinors without

Majorana condition, while the model has Majorana spinors for � = 3, 4 and Majorana–Weyl

spinors for � = 10; see App. 4. A of Ref. [4] for a brief review of supersymmetric Yang–Mills

gauge theory in � = 3, 4, 6, 10 spacetime dimensions.) Equation (2.1g) corrects the corresponding

equation in Ref. [17].

The action of the model (2.1) is invariant under the following global gauge transformation:

� ` → Ω � ` Ω† , ΨU → ΩΨUΩ
† , Ω ∈ (* (#) . (2.2)

In addition, there is an ($ (�) rotation invariance and supersymmetry [7, 8]. Note that, as it stands,

the model variables �2` and Ψ2U in (2.1) are dimensionless (see Sec. 3.3 for further remarks).

4
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The Gaussian-type integrals over the Grassmann variables Ψ2U in (2.1a) can be performed

analytically, so that the partition function reduces to a purely bosonic integral,

/��, # =

∫ 6∏
2=1

�∏
`=1

3�2` 4
− (bos [�]

(
P�, # [�]

)�
=

∫ 6∏
2=1

�∏
`=1

3�2` 4
− (�eff, �, # [�] , (2.3a)

(�eff, �, # [�] = (bos [�] − � log P�, # [�] . (2.3b)

The obtained quantity P�, # [�] corresponds, in fact, to the following Pfaffian [19, 20]:

P�, # [�] = Pf [M (�)] , (2.4a)

M0U , 1V = −8 5012
(
C Γ`

)
UV

� 2` ≡ M�, � , (2.4b)

with Lie-algebra indices 0, 1, 2 running over {1, . . . , 6}, spinorial indices U, V running over

{1, . . . , N}, and the directional index ` being summed over {1, . . . , �}, where the pair of

indices 0U gives a combined index � and the pair 1V a combined index �. Note that the matrix

M� , � is antisymmetric, because 5012 is antisymmetric in the indices 0, 1 and
(
C Γ`

)
UV

symmetric

in the indices U, V. Recall that the Pfaffian can be defined as a sum over permutations [19] or as a

sum involving the completely antisymmetric Levi–Civita symbol n normalized to unity [18]. This

last definition of the Pfaffian of a (2=) × (2=) skew-symmetric matrix ( = (B8 9 ) reads

Pf[(] ≡ 1

2= =!
n81 9182 92 · · ·8= 9= B81 91 B82 92 · · · B8= 9= , (2.5)

with implicit summations over repeated indices. An example is given by the 2 × 2 skew-symmetric

matrix ) = 0 8 f2 =
{
{0, 0}, {−0, 0}

}
, which has the Pfaffian Pf[) ] = 0.

From (2.4) and (2.5), it is clear that the Pfaffian P�, # [�] is a homogenous polynomial in the

bosonic coefficients �2`, where the order  is given by the following expression:

 =
1

2
N 6 =

(
� − 2

) (
#2 − 1

)
, for � = 3, 4, 10 . (2.6)

Further discussion of the Pfaffian appears in, e.g., Refs. [19–21] and the � = 10 Pfaffian has been

detailed in App. A of Ref. [18].

As mentioned above, the partition function of the genuine IIB matrix model [7, 8] has the

following parameters in (2.1):

� = 10 , � = 1 , # ≫ 1 , (2.7)

and there are now two supersymmetry transformations (see Sec. 3.3 below). The large-# limit

may require further discussion, but, at this moment, we just consider # to be large and finite (for

exploratory numerical results, see, e.g., Refs. [22–24] and references therein).

2.2 Bosonic observables and expectation values

As our main interest is in the possible recovery of an emerging classical spacetime, we primarily

consider the bosonic observable

F`1 ... `< ≡ 1

#
Tr

(
�`1 · · · �`<

)
, (2.8)

5
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which is invariant under (2.2) and where the 1/# prefactor on the right-hand side is solely for

convenience. Now, arbitrary strings of these bosonic observables have expectation values

〈F`1 ... `< Fa1 ... a= · · · Fl1 ... lI 〉��, #

=
1

/�
�, #

∫
3�

(
F`1 ... `< Fa1 ... a= · · · Fl1 ... lI

)
4
− (�eff, �, # , (2.9)

where “3�” is a short-hand notation of the measure appearing in (2.1a) and /�
�, #

is defined by the

integral (2.3a).

In closing, we emphasize that the IIB matrix model is relatively straightforward to formulate,

having only a finite number of matrices, but hard to evaluate and interpret.

3. Bosonic master field and master field equation

3.1 Bosonic master field

The expectation values (2.9), at large values of # , have a remarkable factorization property:

〈F`1 ... `< Fa1 ... a= · · · Fl1 ... lI 〉��, #
#
= 〈F `1 ... `<〉��, # 〈F a1 ... a=〉��, # · · · 〈F l1 ... lI 〉��, # ,

(3.1)

where the equality holds to leading order in # . Evidence for the factorization property (3.1) in the

context of the IIB matrix model has been presented in Ref. [25]. See also App. A here for further

results in support of large-# factorization.

According to Witten [9], the factorization (3.1) implies that the path integrals (2.9) are saturated

by a single configuration, which has been called the “master field” [10] and whose matrices will be

denoted by �̂ `. To leading order in # , the expectation values (2.9) are then given by the bosonic

master-field matrices �̂ ` in the following way:

〈F`1 ... `< Fa1 ... a= · · · Fl1 ... lI 〉��, #
#
= F̂ `1 ... `< F̂ a1 ... a= · · · F̂ l1 ... lI , (3.2a)

F̂ `1 ... `< ≡ 1

#
Tr

(
�̂ `1 · · · �̂ `<

)
, (3.2b)

where the master-field matrices �̂ ` have an implicit dependence on the model parameters �, # ,

and �. Note that, for simplicity, we speak about a single master field but there can be many [12].

The task at hand is to obtain an equation which governs these master-field matrices �̂ ` and to

find solutions of that equation.

3.2 Bosonic master-field equation

Introducing # random constants ?̂: and the # × # diagonal matrix

� ( ?̂) (g) ≡ diag
(
48 ?̂1 g, . . . , 48 ?̂# g

)
, (3.3)

the bosonic master-field matrices take the following “quenched” form [26]:

�̂ `
= � ( ?̂ ) (geq) · 0̂ ` · �−1

( ?̂ ) (geq) , (3.4a)

6
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for a sufficiently large value of geq (see below for further explanations). The g-independent matrix

0̂ ` in (3.4a) is determined by the equation [11, 13]

3

3g

[
� ( ?̂ ) (g) · 0̂ ` · �−1

( ?̂ ) (g)
]
g=0

= −
X(�

eff, �, #

[
0̂
]

X 0̂`
+ [̂ ` . (3.4b)

All matrix indices have been suppressed in the three equations above and (�
eff, �, #

[ 0̂ ] is given by

(2.3b).

It is instructive to write out (3.4b) explicitly and to add matrix indices {:, ;} running over

{1, . . . , #}. It is then clear that the equation is algebraic. In fact, this algebraic equation for �

traceless Hermitian matrices 0̂ ` of dimension # × # reads

8
(
?̂: − ?̂;

)
0̂
`

:;
+ X_a

[
0̂ _,

[
0̂ a , 0̂ `

] ]
:;
− � 1

P�, # (0̂ )
m P�, # (0̂ )

m
(
X`a 0̂

a
;:

) − [̂ `
:;
= 0 , (3.5)

where the Pfaffian P�, # (0̂ ) is a homogeneous polynomial of order  from (2.6) and directional

indices `, a run over {1, . . . , �}, with the repeated indices _, a implicitly summed over. The

# × # matrices [̂ ` are also traceless and Hermitian.

The algebraic equation (3.5) has two types of constants: the master momenta ?̂: (fixed random

numbers from a uniform distribution with a cutoff) and the master noise matrices [̂
`

:;
(fixed random

numbers from a Gaussian distribution). Very briefly, the meaning of these two types of random

numbers can be explained as follows.

The dimensionless time g is the fictitious Langevin time of stochastic quantization, with a

Gaussian noise term [ in the differential equation,

3�` (g)
3g

= − X(eff (g)
X�` (g)

+ [` (g) . (3.6)

The g evolution drives the system to equilibrium at g = geq and the resulting configuration �` (geq)
corresponds to the master field �̂ `. For large # , the g-dependence of the Langevin noise matrices

[
`

: ;
(g) can be quenched [26] by use of the master momenta ?̂: and the same holds for the

corresponding bosonic variables �
`

: ;
(g). We then have at g ≥ geq :

[
`

: ;
(g) = 48 ?̂: g [̂

`

: ;
4−8 ?̂; g , (3.7a)

�
`

: ;
(g) = 48 ?̂: g 0̂

`

: ;
4−8 ?̂; g , (3.7b)

where the matrices [̂ ` and 0̂ ` on the right-hand sides have no dependence on g. Using the

quenched behavior (3.7) with master momenta ?̂: , the Langevin differential equation (3.6) reduces

to the algebraic equation (3.5). Most importantly, the random constants ?̂: and [̂
`

: ;
in (3.5) can be

fixed once and for all, provided # is large enough. See Refs. [11, 13] for further discussion and

references.

Incidentally, we have also considered a simplified version of the algebraic equation (3.5), with

all constants ?̂: and [̂
`

:;
set to zero. This simplified equation corresponds, in fact, to the stationarity

equation of the effective bosonic action. Some of its solutions, critical points, will be presented in

App. E (related critical points have been used in a recent paper [27]).

7
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Remark that, as the Pfaffian (2.4) is a -th order homogeneous polynomial denoted symbolically

by % [�] with  given by (2.6), the basic structure of the algebraic equation (3.5) is as follows:

%
( ?̂ )
1

[0̂ ] + %3 [0̂ ] + �
% −1 [0̂ ]
% [0̂ ] + % ( [̂ )

0
[0̂ ] = 0 , (3.8)

where only the on/off constant � is shown explicitly and where the suffixes on %1 and %0 indicate

their respective dependence on the master momenta ?̂: and the master noise [̂
`

:;
. If we multiply

(3.8) by % [0̂ ], we get a homogeneous polynomial equation of order  + 3.

In order to obtain the component equations [labelled by an index 2 running over 1, . . . , (#2−1)
and an index ` running over 1, . . . , �], we matrix multiply (3.5) by C2, take the trace, and multiply

the result by two. There are then � 6 = �
(
#2−1

)
coupled algebraic equations for an equal number

of unknowns {0̂ 1
1
, . . . , 0̂

6

�
}.

It appears impossible to obtain a general solution of these algebraic equations. We will look

for solutions of these coupled algebraic equations with a specific realization of the random constants

?̂: and [̂
`

:;
[this procedure suffices for large # , as mentioned a few lines below (3.7b)]. This is still

a formidable problem for large values of # . At this moment, we are able to get explicit results only

for very small values of # .

The solution of (3.5) is given by � traceless matrices 0̂ ` of dimension # × # and the number

of real variables reads

#real-var = �
(
#2 − 1

)
×




2 , for � = 1 and # ≥ 4 ,

1 , otherwise ,

(3.9)

where the extra factor of 2 comes from having a complex Pfaffian [20], so that the solution has

complex coefficients and non-Hermitian matrices (see Sec. 4.2 for further discussion). In case

complex coefficients are needed, we define

0̂ 2` = Â 2` + 8 B̂ 2` , (3.10)

with a Lie-algebra index 2 and real numbers Â 2` and B̂ 2` .

3.3 Conceptual and technical remarks

Before we set out on obtaining solutions of the algebraic equation (3.5), we have two conceptual

remarks and one technical remark:

• there are no ~’s and �# ’s in the IIB matrix model (2.1), which is just a “statistical” theory,

and we will have to identify the emerging quantum effects and gravity;

• there is a symmetry argument [8] for �` having the dimension of length (that is, not the

dimension of inverse length or “momentum”);

• in our subsequent calculations, the Pfaffian term in the algebraic equation (3.5) for � = 1 will

be obtained exactly (different from the calculations of, e.g., Ref. [24]).

8
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The meaning of the first and last remarks is clear, but let us expand on the second remark.

The action ( = (bos + (ferm from (2.1) has two fermionic symmetries (labeled by 8 = 1, 2),

which are given by Eqs. (1.2), (1.4), and (1.5) in Ref. [8]. (Incidentally, a useful discussion of the

invariance properties of supersymmetric Yang–Mills gauge theory in � = 3, 4, 6, 10 spacetime

dimensions can be found in App. 4. A of Ref. [4].) With two infinitesimal fermionic parameters n1

and n2, the two symmetry generators &̃ (8) have the following commutation relations [8]:[
n̄1 &̃

(8) , n̄2 &̃
( 9)

]
= −2 n̄1 W` n2 P` X8 9 , (3.11)

where P` is the generator of the following bosonic transformation (similar to a translation):

X�` = b` 1# , (3.12)

for � infinitesimal constants b` and the # ×# unit matrix 1# . The transformation (3.12) obviously

leaves the action ( = (bos + (ferm from (2.1) invariant, as 1# trivially commutes with the matrices

�` and ΨU.

The structure of the commutation relations (3.11) is precisely that of a ten-dimensional N = 2

spacetime supersymmetry and we may interpret P` as a “momentum” with the dimension of an

inverse length. In turn, this implies that the �` matrices (and, a fortiori, their eigenvalues) have the

dimension of length. [Let us clarify the reason for calling P` a “momentum”: freely introducing

~’s and 2’s, the Hamiltonian of a supersymmetric theory is the anticommutator of two supercharges

& (cf. Sec. 5.2.2 of Ref. [4]) and the energy corresponds to the 0-component of the momentum

vector (� = 2 ?0), so that the identification of P` in (3.11) with a momentum vector makes sense.]

It is, in principle, easy to give the bosonic matrices �` of the IIB matrix model the dimension

of length. For this, we replace the actions (bos and (ferm in the exponentials of (2.1a) by (bos/ℓ4 and

(ferm/ℓ4, for a model length scale ℓ. But it is very well possible that the correct version of the IIB

matrix model has no such ad hoc length scale. Then, the matrices �` and ΨU are dimensionless and

the theory has, most likely, conformal symmetry. In this case, we only notice the structure of the

commutation relations (3.11), with all quantities being dimensionless (the matrices �` must later

get their dimension of length dynamically). See Sec. 5 for further comments relating to a “tamed”

big bang [28] and subsequent conformal symmetry breaking [29–31].

As a last preliminary remark, it may be helpful to recall the heuristics [15] for obtaining an

emerging classical spacetime from the bosonic master-field matrices:

• the expectation values 〈F`1 ... `< · · · Fl1 ... lI 〉 from (2.9), infinitely many numbers, corre-

spond to a large part of the information content of the IIB matrix model (but, of course, not

all the information);

• that very same information is contained in the master-field matrices �̂ `, as these matrices

give, to leading order in # , identical numbers from the products F̂ `1 ... `< . . . F̂ l1 ... lI ,

where F̂ is the observable F evaluated for the �̂ `, according to (3.2b);

• from these master-field matrices �̂ `, it then appears possible to extract the points and the

metric of an emergent classical spacetime with a dimensionality less than or equal to � (recall

that the original matrices � ` were merely integration variables).

One suggestion for an extraction procedure of points and metric has been presented in Ref. [13] and

was reviewed in the appendices of Ref. [15].

9
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4. Numerical solutions for (D, N) = (10, 4)

4.1 Diagnostic quantities

Approximate numerical solutions of the full (�, #) = (10, 4) bosonic master-field equation

(3.5) with � = 1 have been obtained and will be discussed shortly. With these approximate

numerical solutions, the complex residues of the 150 component equations eq-0̂ 2` are computed

(they all vanish for a perfect solution). The quantity MaxAbsRes is the maximum of the absolute

values of these residues and the function 5penalty is the sum of their squared absolute values.

Explicitly, these quantities are defined by

5penalty ≡
10∑
`=1

15∑
2=1

��eq-0̂ 2`
��2 , (4.1a)

MaxAbsRes ≡ max
{��eq-0̂ 1

1

�� , . . . , ��eq-0̂ 15
10

��} . (4.1b)

We get the expression eq-0̂ 2` from (3.5) by performing a matrix multiplication with C2, taking the

trace, and multiplying the result by two [here, the C2 are the (* (4) generators given in App. B].

Following the discussion of a previous paper [16], we will first consider the absolute values of

the entries in the 4 × 4 matrix 0̂ 1, calculate the average band-diagonal value from 3+4+3 entries

and the average off-band-diagonal value from 3+3 entries, and get the ratio '1 of the average band-

diagonal value over the average off-band-diagonal value. For the ` = 2, . . . , 10 matrices 0̂ `, we

then follow the same procedure and get the ratios '2, . . . , '10.

In order to avoid any confusion, we give the general definition of the ratio ' for an arbitrary

symmetric 4 × 4 matrix " with nonnegative entries < [8, 9]:

' ≡

(∑4
8=1 < [8, 8] + 2

∑3
9=1 < [ 9 , 9 + 1]

) /
10(

2< [1, 3] + 2< [1, 4] + 2< [2, 4]
) /

6
, (4.2)

where the symmetry of " has been used to simplify the expression.

4.2 Numerical results from the full algebraic equation

In Ref. [18], we obtained approximate numerical solutions of the full (�, #) = (10, 4)
bosonic master-field equation (3.5) with � = 1 and the particular realization (the “^-realization”)

of the pseudorandom numbers as given in App. C. In that paper, we used a self-made Random-Step

(RS) routine for Mathematica 12.1 (cf. Ref. [32]), which could be partially parallelized.

A short description of this RS routine is as follows. Given the function value 5penalty at a

starting point in the 300-dimensional configuration space (with a trivial Euclidean metric), the

routine calculates the 5penalty values at #r-p random points on a sphere centered at this starting point

with radius Ar-p and moves to the point on the sphere with the lowest 5penalty value if that value is

better than the starting-point value, otherwise the routine takes #r-p other random points, etc., etc.

Choosing #r-p as an integer multiple of the number of kernels available, the random points can be

calculated in parallel (we have used, for example, #r-p = 12 for the 6 kernels of our processor). The

10
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Table 1: Approximate numerical solutions of the full (�, #) = (10, 4) bosonic master-field equation (3.5)

with � = 1 and pseudorandom constants given by (C.1) and (C.2). Shown are the values of the penalty

function (4.1a), the maximum of the absolute values of the residues (4.1b), and 4 out of 300 coefficients

defined by (4.3). The numerical calculations used a self-made Random-Step (RS) routine, which could be

partially parallelized. The results of the first five rows have already been reported in Ref. [18] and the result

of the last row is new. The calculations for these results took about 6 months, using a Lenovo T15p notebook

with an Intel Core i7-10750H processor running Mathematica 12.1.

5penalty MaxAbsRes {Â 1
1
, B̂ 1

1
, Â 15

10
, B̂ 15

10
} method

1375.200 6.81 {−0.219000, −0.279000, −0.434500, −0.175000} RS

422.468 4.56 {0.0294495, −0.395907, −0.371477, 0.0285794} RS

310.932 3.46 {0.0299337, −0.378790, −0.368679, 0.00749545} RS

209.330 2.83 {0.0124611, −0.388325, −0.366319, 0.0159236} RS

108.094 1.83 {−0.0255319, −0.470109, −0.338870, 0.0613333} RS

33.8776 0.957 {−0.0692546, −0.586430, −0.350589, −0.0458760} RS

Table 2: Ratios '`, as defined by (4.2), calculated with the absolute values of the entries in the transformed

matrices (4.6) from the approximate numerical solutions of Table 1. The ` = 1 matrix has been diagonalized

and the corresponding ratio '1 is trivially infinite, as the off-diagonal matrix elements are zero. The ten

ratios are presented in two batches of five, in order to facilitate comparison with Fig. 2.

5penalty {'1, '2, '3, '4, '5} {'6, '7, '8, '9, '10}

1375.200 {∞, 0.786, 1.10, 2.01, 0.915} {0.460, 0.919, 1.10, 0.781, 0.590}
422.468 {∞, 0.933, 0.637, 1.67, 0.398} {0.466, 2.31, 2.59, 0.757, 0.648}
310.932 {∞, 0.971, 0.631, 1.28, 0.506} {1.11, 1.81, 1.08, 0.552, 0.668}
209.330 {∞, 1.12, 0.651, 1.15, 0.495} {1.11, 1.22, 0.885, 0.626, 0.727}
108.094 {∞, 1.26, 0.780, 1.13, 0.522} {1.10, 1.20, 0.934, 0.590, 0.697}
33.8776 {∞, 1.22, 0.822, 1.17, 0.540} {0.913, 1.31, 1.07, 0.589, 0.617}

RS routine is robust, but requires fine-tuning of the radius of the sphere and number of random

points.

With these approximate numerical solutions, we compute the complex residues of the 150

component equations eq-0̂ 2` (they all vanish for a perfect solution) and calculate the two diagnostics

as defined by (4.1). An approximate numerical solution is determined by 300 real numbers and

characterized by the corresponding real number 5penalty. These ten 4 × 4 matrices are

0̂`
��
^-num-sol

=

(
Â 2` + 8 B̂ 2`

)
C2 , (4.3)

11
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Figure 1: Results from the full (�, #) = (10, 4) bosonic master-field equation (3.5) with � = 1 and

pseudorandom constants given by (C.1) and (C.2). Shown are the density plots of Abs
[
0̂
`

^-num-sol-HERM

]
from

the approximate solution with 5penalty = 33.8776, as given in Table 1. These matrices are defined by (4.5).

The panels on the top row are for ` = 1, . . . , 5 and those on the bottom row for ` = 6, . . . , 10.
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Figure 2: Density plots of Abs
[
0̂

′ `
^-num-sol-HERM

]
from the matrices of Fig. 1 with a change of basis to

diagonalize and order one of them (` = 1).

with an implicit sum over the Lie-algebra index 2 and real numbers Â 2` and B̂ 2` . A selection of

approximate numerical solutions is shown in Table 1. Specifically, we will discuss the approximate

numerical solution from the last row of Table 1 with 5penalty = 33.8776 and denote this particular

solution by “^-num-sol”. We, then, have 300 real numbers defining the following matrices:

0̂
`

^-num-sol
, for ` = 1, . . . , 10 . (4.4)

Specifically, the 300 real numbers for (4.4) are listed in App. D.

With complex coefficients 0̂ 2` , these (approximate) master-field matrices are no longer Hermi-

tian. The situation is perhaps analogous to that of pairs of complex saddle-points appearing for a

real problem. Our interpretation is that these (approximate) master-field matrices carry information

12
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both in their Hermitian and anti-Hermitian parts. In fact, we conjecture that the Hermitian parts

of the master-field matrices (with real eigenvalues) contain information about the emerging space-

time [13]. But what the information in the anti-Hermitian parts corresponds to is not clear for the

moment (one suggestion has been put forward in Ref. [18]).

Consider, therefore, the Hermitian parts

0̂
`

^-num-sol-HERM
≡ 1

2

[
0̂
`

^-num-sol
+

(
0̂
`

^-num-sol

)†]
. (4.5)

Calculating the absolute values of these matrix entries for the 5penalty = 33.8776 approximate

solution (denoted “^-num-sol-HERM”), we observe no obvious band-diagonal structure in Fig. 1.

Now, change the basis, in order to diagonalize and order the ` = 1 matrix. This gives the

following transformed matrices denoted by a prime:

0̂
′ `
^-num-sol-HERM

, for ` = 1, . . . , 10 . (4.6)

Considering the absolute values of these matrix entries, there is not yet a strong signal for a

diagonal/band-diagonal structure (density plots are given in Fig. 2 for the 5penalty = 33.8776

approximate solution). But let us take a closer look anyway.

Using the ratio ' defined in (4.2), we obtain the values given in Table 2. On the last row of

this table with 5penalty = 33.8776, we see '` values scattered around unity but no clear pattern of

band-diagonality. It may, however, be that this numerical solution is simply not yet good enough

and that the 5penalty value needs to be reduced significantly. At this moment, we are not able to do

that for the full (�, #) = (10, 4) bosonic master-field equation (3.5) with � = 1. But the simplified

equation with � = 0 does allow us to push 5penalty further down, as will be discussed in Sec. 4.3 .

4.3 Numerical results from the simplified algebraic equation

Here, we report on approximate numerical solutions of the simplified (� = 0) bosonic master-

field equation (3.5), where we start with the same procedure and self-made Random-Step (RS)

routine as has been used for the full bosonic master-field equation in Sec. 4.2. The random-step

calculations for the simplified bosonic master-field equation are much simpler because there are

fewer real variables (now 150 instead of 300) and because the difficult Pfaffian term is altogether

absent in the simplified equation.

Random-step results are presented in Table 3 for penalty-function values of order 103, 102,

101, and 1. With the computer as described in the caption of Table 1, these results for the simplified

equation have taken about 30 hours, which may be compared with the approximately 6 months for

the full-algebraic-equation results of Table 1.

But the simplified algebraic equation also allows for the implementation of the NMinimize

routine of Mathematica 12.1 (cf. Ref. [32]) with the downhill-simplex method of Nelder and

Mead [33, 34]. (It is important to use a trick to force the routine NMinimize to be purely numerical;

see App. A.1 for details.) These NMinimize results are also shown in Table 3 for penalty-function

values of order 10−1 and down to 10−9. A priori, there is the worry that changing the numerical

method gives solutions belonging to different valleys. But this does not appear to be the case here,

as shown by the two configurations with 5penalty ∼ 0.6 obtained in the different runs (this will be

especially clear in the later Table 4).

13
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Table 3: Approximate numerical solutions of the simplified (�, #) = (10, 4) bosonic master-field equation

(3.5) with � = 0 and pseudorandom constants given by (C.1) and (C.2). Two numerical routines have been

used: a self-made Random-Step (RS) routine, which could be partially parallelized, and the NMinimize

(NM) routine of Mathematica 12.1 [32] with the downhill-simplex method of Nelder and Mead [33, 34],

which was not parallelized. The combined numerical calculations took a few days.

5penalty MaxAbsRes {Â 1
1
, B̂ 1

1
, Â 15

10
, B̂ 15

10
} method

996.965 7.15 {−0.0678381, 0,−0.350114, 0} RS

100.480 2.38 {0.161385, 0,−0.340025, 0} RS

10.1415 0.916 {−0.124413, 0, 0.15631, 0} RS

1.21690 0.255 {0.0904698, 0, 0.233820, 0} RS

0.590364 0.189 {0.0183176, 0, 0.265982, 0} RS

0.599656 0.175 {−0.00264037, 0, 0.266334, 0} NM

0.149264 0.0879 {−0.075562, 0, 0.247046, 0} NM

1.12955 × 10−2 3.28 × 10−2 {−0.139296, 0, 0.128158, 0} NM

2.85246 × 10−3 1.40 × 10−2 {−0.195029, 0, 0.111522, 0} NM

9.51062 × 10−5 2.77 × 10−3 {−0.216581, 0, 0.122857, 0} NM

4.12196 × 10−5 1.28 × 10−3 {−0.218765, 0, 0.121856, 0} NM

2.32875 × 10−6 3.75 × 10−4 {−0.223436, 0, 0.121505, 0} NM

1.33301 × 10−7 7.66 × 10−5 {−0.223504, 0, 0.121471, 0} NM

1.14189 × 10−8 2.57 × 10−5 {−0.223699, 0, 0.121473, 0} NM

2.78202 × 10−9 1.40 × 10−5 {−0.223690, 0, 0.121466, 0} NM

The solution on the last row of Table 3 with 5penalty = 2.78202 × 10−9 will be denoted

“^-num-sol-simpl”. We, then, have 150 real numbers defining the following Hermitian matrices:

0̂
`

^-num-sol-simpl
, for ` = 1, . . . , 10 . (4.7)

A density plot of this solution is shown in Fig. 3 and a density plot of the transformed matrices in

Fig. 4.

As to the apparent band-diagonality in the density plots of Fig. 4, we can again quantify the

analysis by considering the ratio ' defined in (4.2). The obtained values are given in Table 4.

Apparently, the '` values have stabilized for 5penalty . 10−4. A clear change is observed between

the '` values for 5penalty & 1, with an approximately equal number of values above 1 as below 1,

and the '` values for 5penalty . 1/100, with all or nearly all values above 1. This issue will be

discussed further in Sec. 4.4.
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Table 4: Ratios '`, as defined by (4.2), calculated with the absolute values of the entries in the transformed

matrices 0̂
′ `
^-num-sol-simpl

from the approximate numerical solutions of Table 3. The ten ratios are presented in

two batches of five, so that the ratios on the last row can be easily compared with Fig. 4.

5penalty {'1, '2, '3, '4, '5} {'6, '7, '8, '9, '10}

996.965 {∞, 1.22, 0.825, 1.17, 0.540} {0.915, 1.31, 1.07, 0.592, 0.618}
100.480 {∞, 1.74, 1.36, 1.08, 0.631} {0.720, 0.936, 1.42, 0.667, 0.617}
10.1415 {∞, 1.10, 1.09, 0.718, 1.11} {0.704, 0.932, 1.21, 1.53, 0.541}
1.21690 {∞, 0.527, 1.76, 1.22, 0.652} {0.641, 1.00, 0.657, 1.21, 0.350}
0.590364 {∞, 0.627, 3.13, 1.19, 0.793} {1.01, 0.900, 0.927, 1.09, 0.480}
0.599656 {∞, 0.767, 2.65, 1.38, 0.900} {1.14, 0.876, 0.964, 1.12, 0.497}
0.149264 {∞, 1.16, 2.49, 1.36, 1.28} {0.949, 1.10, 1.45, 1.44, 0.762}

1.12955 × 10−2 {∞, 1.81, 5.27, 1.63, 1.07} {1.97, 0.92, 1.98, 3.29, 1.09}
2.85246 × 10−3 {∞, 4.00, 3.81, 1.95, 1.14} {2.59, 1.67, 1.90, 3.49, 1.36}
9.51062 × 10−5 {∞, 6.07, 2.94, 2.47, 1.70} {3.12, 2.86, 1.95, 3.87, 1.63}
4.12196 × 10−5 {∞, 6.08, 2.91, 2.47, 1.72} {3.10, 2.95, 1.94, 3.89, 1.61}
2.32875 × 10−6 {∞, 6.06, 2.87, 2.49, 1.75} {3.11, 3.07, 1.93, 3.91, 1.60}
1.33301 × 10−7 {∞, 6.06, 2.86, 2.48, 1.75} {3.10, 3.08, 1.93, 3.90, 1.60}
1.14189 × 10−8 {∞, 6.06, 2.86, 2.49, 1.75} {3.10, 3.09, 1.93, 3.90, 1.60}
2.78202 × 10−9 {∞, 6.06, 2.86, 2.49, 1.75} {3.10, 3.09, 1.93, 3.90, 1.60}

4.4 Discussion of the numerical results

In Table 5, we summarize the presently available numerical results for # = 3 and # = 4 at

different values of �. There are two tentative conclusions from the results collected in Table 5: the

strength of the band-diagonality structure appears to be diminished by the increase of the number

of dimensions [for the # = 4 and � = 0 results, from � = 2 to � = 10] and that strength also

appears to be diminished by the inclusion of dynamic fermions [for the � = 3 and # = 3 results,

from � = 0 (without dynamic fermions) to � = 1 (with dynamic fermions)].

Note that 5penalty values of order 10−36 for the (�, #) = (2, 4) simplified algebraic equation

relied on the use of the routine FindMinimum of Mathematica 12.1 [32], which is partially

algebraic. That same routine was also used for the (�, #) = (3, 3) results mentioned in Table 5.

It will be hard to achieve these kind of accuracies with purely numerical methods, but perhaps less

radical values of 5penalty suffice, as shown in Table 4 for the simplified (�, #) = (10, 4) bosonic

master-field equation.

For the (�, #) = (10, 4) case, let us now discuss the possible appearance of a band-diagonal

structure, after one of the master-field matrices has been diagonalized and ordered. First, we

consider the results of the simplified (�, #) = (10, 4) bosonic master-field equation in Table 4.
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Figure 3: Results from the simplified (�, #) = (10, 4) bosonic master-field equation (3.5) with � = 0 and

the pseudorandom constants given by (C.1) and (C.2). Shown are the density plots of Abs
[
0̂
`

^-num-sol-simpl

]
from the approximate solution having 5penalty = 2.78202 × 10−9, as given by Table 3. The panels on the top

row are for ` = 1, . . . , 5 and those on the bottom row for ` = 6, . . . , 10.
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Figure 4: Density plots of Abs
[
0̂

′ `
^-num-sol-simpl

]
from the matrices of Fig. 3 with a change of basis to

diagonalize and order one of them (` = 1).

Specifically, let us look for a diagonal/band-diagonal pattern in the density plots of Fig. 4 and count

how many have a band-diagonal pattern and how many not (having instead a “scattered” pattern, so

that these matrices perhaps do not contribute to an emerging classical spacetime):

10 = 1
[
diagonal

]
+ =b-d

[
band-diagonal

]
+ (9 − =b-d)

[
scattered

]
, (4.8a)

=b-d ∈
{
0, 1, 2, . . . , 9

}
. (4.8b)

Setting the band-diagonality criterium at 1.50, we obtain the following value for the number of

band-diagonal dimensions from the best approximate numerical solution of Table 4:

=b-d

��� 5penalty=3.02994×10−9 , '`>1.50

simpl-alg-eq
= 9 , for ` = 2, . . . , 9 . (4.9)
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Table 5: Numerical results from the bosonic master-field equation (3.5) for # = 3 and # = 4, at different

values of � and with (� = 1) or without (� = 0) dynamic fermions. The hash superscript on “max” indicates

the restriction to non-diagonalized directions (` ≠ 1 in the present paper). The ratio “'” is defined by (4.2)

for # = 4 and (E.10) for # = 3.

(�, #) algebraic eq. (3.5) 5penalty max#
(
'`

)
source

(3, 3) simplified (� = 0) O
(
10−69

)
O (10) Sec. 4.2 of Ref. [17]

(3, 3) full (� = 1) O
(
10−64

)
O (5) Sec. 4.3 of Ref. [17]

(2, 4) simplified (� = 0) O
(
10−36

)
O (10) Sec. 4.1 of Ref. [16]

(10, 4) simplified (� = 0) O
(
10−9

)
O (6) Sec. 4.3 here

(10, 4) full (� = 1) O (10) O (1) Sec. 4.2 here

A first conjecture is that, without dynamical fermions, all nine non-diagonalized matrices obtain

some form of band-diagonal structure.

Second, we turn to the results of the full (�, #) = (10, 4) bosonic master-field equation in

Table 2. Taking the results on the last row at face value, we set the criterium for band-diagonality

at an ad hoc value of 1.10 and get

=b-d

��� 5penalty=33.8776, '`>1.10

full-alg-eq

?
= 3 , for ` = 2, 4, 7 . (4.10)

Remark that the same three directions are singled out by the numerical solution with 5penalty =

108.094 in Table 2. In order to confirm or disprove the tentative result from (4.10), we need to

improve the numerical solution by reducing 5penalty significantly (i.e., 5penalty values far below 10).

Recall that we needed 5penalty values of order 10−4 or better for the (�, #) = (10, 4) simplified-

algebraic-equation results in Table 4, but perhaps the full-algebraic-equation results stabilize for

somewhat larger 5penalty values.

A second conjecture is that a 3+6 split of the non-diagonalized matrices (with =b-d = 3) requires

nontrivial fermionic dynamics and possibly supersymmetry.

5. Conclusion

In this article, we have explored the hypothesis that a new phase replaces the Friedmann big

bang singularity resulting from our current theories, general relativity and the standard model of

elementary particle physics. For such a new phase, we need a new theory which extends general

relativity and the standard model, and we have used nonperturbative superstring theory in the guise

of the IIB matrix model [7, 8]. The model consists of # × # traceless Hermitian matrices, with 10

bosonic matrices and 16 fermionic matrices.

The first task at hand is to determine how the IIB matrix model gives rise to a classical

spacetime. It appears that the required information is encoded in the master-field matrices of the

model [13]. The next task is to calculate these master-field matrices and to determine what type of

spacetime they give. This is, of course, extremely difficult. Still, we have been able to determine the

needed master-field equation and to show the existence of nontrivial solutions for relatively small
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values of the matrix size # . However, further progress at large values of # appears to be hard and

perhaps new (analytic) insights may be called for.

If the IIB matrix model indeed gives a new phase replacing the big bang, then we not only

need to get an emerging spacetime but also emergent matter. It may be that matter fields appear

as appropriate perturbations of the master field. These perturbations must have a very special

structure, so that genuine fields appear in the infrared [for example, a scalar field q(G) with the

proper spacetime dependence]. This special structure is clarified by the toy-model calculation of

App. A in Ref. [13].

Let us now return to an issue briefly mentioned in Sec. 3.3, namely that of a length scale. In

fact, it may be that the proper IIB matrix model has only dimensionless matrices �` and ΨU without

length scale whatsoever and that the IIB matrix model produces a phase with conformal symmetry.

This would fit in nicely with the recent suggestion [28] of a “tamed” big bang as a topological

quantum phase transition. Then, the Friedmann big bang singularity would be replaced by a gapless

phase which evolves into a gapped state corresponding to our present Universe. The dimensionless

IIB matrix model could give rise to such a gapless phase and perhaps also to those “matter” fields

(e.g., a 3-form gauge field) that produce the @-type vacuum variable. The initial evolution of the

universe would then be driven by the motion of @(C) away from the starting configuration @ = 0,

with normal matter (e.g., the quarks and leptons of the standard model) created from later @(C)
oscillations [28]. The subsequent dynamics should also provide a length scale, an energy scale, and

a mass scale by breaking the conformal symmetry [29–31].
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A. Large-N factorization

A.1 Setup: Two expectation values

We consider the following two bosonic observables:

F11 ≡ 1

#
Tr

(
�1 �1

)
, (A.1a)

F11+11 ≡
[

1

#
Tr

(
�1 �1

) ] [
1

#
Tr

(
�1 �1

) ]
, (A.1b)

and wish to calculate their expectation values (with short-hand notations ,11 and ,11+11),

,11 ≡ 〈F11〉 =
1

/

∫
[��] F11 , (A.2a)

,11+11 ≡ 〈F11+11〉 =
1

/

∫
[��] F11+11 , (A.2b)

/ =

∫
3�

(
P�, #

)�
4− (bos ≡

∫
[��] , (A.2c)
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Table 6: Numerical results from the bosonic (� = 0) and supersymmetric (� = 1) models for � = 4. The

relevant quantities have been defined in (A.1) and (A.2). All numerical results are only approximative, the

least reliable being those of the fourth column with � = 1.

{�, #, �} = {4, 4, 0} {�, #, �} = {4, 6, 0} {�, #, �} = {4, 4, 1}

/ 4.70 × 1012 6.07 × 1021 5.47 × 1018∫
[��] F11 2.71 × 1012 4.43 × 1021 4.19 × 1018∫

[��] F11+11 1.62 × 1012 3.28 × 1021 2.89 × 1018

,11 0.577 0.730 0.767

,11+11 0.345 0.540 0.529

where the measure 3� is defined by (2.1a), the bosonic action (bos by (2.1b), and the Pfaffian P�, #
by (2.4). The discrete parameter � takes values in {0, 1}.

There are then three multi-dimensional integrals to perform in (A.2), each having � (#2 − 1)
dimensions. For these integrals (assumed to be convergent, see below), we use the NIntegrate

routine of Mathematica 12.1 (cf. Ref. [32]) with the Adapted-Monte-Carlo method and split the

calculation into many calculations by taking successive shells. It is important to use a trick to force

the routine NIntegrate to avoid any algebraic steps and to stay purely numerical. The trick can

be explained by a simple example:

f[y_] := NIntegrate[2*z, {z, 0, y}];

result = NIntegrate[If[x == 0 || x != 0, f[x]], {x, 0, 1}];

where the first line defines a quadratic function 5 that only works properly for a numerical variable

and where the “If” conditional on the second line forces the integration variable G to be numeric.

With the obtained expectation values ,11 and ,11+11, we determine the following quantity:

Δ,11+11 ≡ ,11+11 − (,11)2 , (A.3)

which tests for large-# factorization (3.1).

Our main results are for the (�, #) = (4, 4) bosonic model with � = 0. These results

have been extended in two “directions”: larger matrices (# = 6) and the inclusion of the fermion

dynamics (� = 1). For the two bosonic cases (� = 0 and # = 4, 6), the three integrals of (A.2)

have been proven to be convergent [21]. For the supersymmetric case (� = 1 and # = 4), the two

integrals (A.2a) and (A.2b) have not been proven to be convergent [21] but they may still be.

A.2 Bosonic model for (D, N) = (4, 4) and (D, N) = (4, 6)

The simplest model we have studied is the (�, #) = (4, 4) bosonic model, where the (* (4)
generators are given in App. B. Preliminary numerical results for the quantities defined in Sec. A.1

appear in the second column of Table 6. From these results, we get for the quantity defined by (A.3)

the following numerical value:

Δ,
(�=4, #=4, �=0)

11+11
≈ 0.0121 , (A.4)
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which shows the approximate equality of 〈F11+11〉 and 〈F11〉 〈F11〉 at the 4 % level.

We can extend the model by going to a larger matrix size, # = 6. The (* (6) generators

are then given by the 15 generators from App. B embedded in 6 × 6 matrices and 20 additional

generators. From the results given in the third column of Table 6, we get

Δ,
(�=4, #=6, �=0)

11+11
≈ 0.0071 , (A.5)

which shows a cancellation at the 1 % level.

A.3 Supersymmetric model for (D, N) = (4, 4)

For � = 4, the Pfaffian can be written as the determinant of a 2 (#2 − 1) × 2 (#2 − 1) complex

matrix [19]:

P4, # = det

(
X4 + 8X3 8X2 + X1

8X2 − X1 X4 − 8X3

)
, (A.6)

in terms of matrices X` in the adjoint representation of (* (#),
(
X`

)01
= 5 012 �2` , (A.7a)

5 012 = −2 8 Tr
(
�0

[
�1, �2

] )
, (A.7b)

where the 5 012 are the (* (#) structure constants. The Pfaffian for the (�, #) = (4, 4) case

is then given by the determinant of a 30 × 30 complex matrix. This determinant cannot be

calculated algebraically but can be evaluated numerically (for this reason, we must force the routine

NIntegrate to stay purely numerical, as discussed in App. A.1).

From the results given in the fourth column of Table 6, we get

Δ,
(�=4, #=4, �=1)

11+11
≈ −0.059 , (A.8)

which shows a cancellation at the 11 % level. Incidentally, there is no problem with obtaining a

negative number, which may anyway still change to a positive number with increasing accuracy.

A.4 Discussion of the factorization results

It is instructive to compare our results (A.4) and (A.5) for the � = 4 bosonic model and to

write them as follows:

Δ,
(�=4, #=4, �=0)

11+11
≈ 0.194

16
, (A.9a)

Δ,
(�=4, #=6, �=0)

11+11
≈ 0.256

36
. (A.9b)

This shows that we have mild evidence for an 1/#2 behavior of the remnant term, with an 1/#2

coefficient for # = 4 and # = 6 that has the same sign (plus) and is of the same order of magnitude

(one tenth). For the moment, we do not have similar results for the � = 4 supersymmetric model.

As mentioned in Sec. 3.1, Ref. [25] has already obtained extensive numerical results in support

of large-# factorization, also for the four-dimensional version of the IIB matrix model. These
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numerical results, which could even reach a matrix size of # = 48, considered Wilson-loop-type

and Polyakov-line-type observables,

>loop (:) ≡ 1

#
Tr

(
48 : �

1
48 : �

2
4−8 : �

1
4−8 : �

2
)
, (A.10a)

>line (:) ≡ 1

#
Tr

(
48 : �

1
)
, (A.10b)

for a real dimensionless parameter :. In the above observables, there appear the (* (#) group

elements 48 : �
`

, as may be appropriate for the study of a Yang–Mills gauge theory with, for

example, the “area-law” behavior of 〈>loop〉 as shown in Fig. 4 of Ref. [25]. We have, instead,

considered observables (A.1) directly made out products of the Lie-algebra elements �`, as may

be appropriate for the study of the emergence of spacetime. In any case, the results for both types

of observables, even with a smaller number of dimensions (� = 4) than needed (� = 10), confirm

the property of large-# factorization (3.1), which is crucial for the existence of a large-# bosonic

master field as discussed in Sec. 3.

B. SU(4) generators

We now give the explicit realization used for the (* (4) generators:

C1 =
1

2

©
«

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

ª®®®®
¬
, C2 =

1

2

©
«

0 8 0 0

−8 0 0 0

0 0 0 0

0 0 0 0

ª®®®®
¬
, C3 =

1

2

©
«

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

ª®®®®
¬
,

C4 =
1

2

©«

0 0 8 0

0 0 0 0

−8 0 0 0

0 0 0 0

ª®®®®¬
, C5 =

1

2

©«

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

ª®®®®¬
, C6 =

1

2

©«

0 0 0 8

0 0 0 0

0 0 0 0

−8 0 0 0

ª®®®®¬
,

C7 =
1

2

©«

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

ª®®®®¬
, C8 =

1

2

©«

0 0 0 0

0 0 8 0

0 −8 0 0

0 0 0 0

ª®®®®¬
, C9 =

©«

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

ª®®®®¬
,

C10 =
1

2

©«

0 0 0 0

0 0 0 8

0 0 0 0

0 −8 0 0

ª®®®®¬
, C11 =

1

2

©«

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

ª®®®®¬
, C12 =

1

2

©«

0 0 0 0

0 0 0 0

0 0 0 8

0 0 −8 0

ª®®®®¬
,

C13 =
1

2

©«

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

ª®®®®¬
, C14 =

1

2

©«

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

ª®®®®¬
, C15 =

1

2
√

2

©«

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

ª®®®®¬
.

(B.1)

These generators obey the trace condition (2.1e).
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C. Pseudorandom numbers for (D, N) = (10, 4)

In this appendix, we give the particular realization (the “^-realization”) of the pseudorandom

numbers used for the approximate numerical solutions of Sec. 4.

Specifically, we take the following 4 real pseudorandom numbers ?̂` for the master momenta:

?̂^-realization =

{
−111

250
,

19

200
, − 63

200
,

189

1000

}
, (C.1)

and the following 150 real pseudorandom numbers [̂
`
2 entering the Hermitian master-noise matrices:{

[̂ 1
1 , . . . , [̂

1
15

}��
^-realization

=

{ 1

1000
, − 9

20
,

353

1000
,

12

25
, − 987

1000
, − 51

200
,

1

4
, − 63

1000
,

−131

200
, − 367

1000
, −169

200
,

171

250
, −151

250
, −369

500
,

593

1000

}
, (C.2a)

{
[̂ 2

1 , . . . , [̂
2
15

}��
^-realization

=

{
− 153

250
, − 47

250
,

897

1000
, − 61

500
,

269

1000
, − 237

1000
,

1

125
, − 13

100
,

−103

200
,

367

500
,

1

10
, − 71

1000
,

69

1000
, −123

125
, −17

25

}
, (C.2b)

{
[̂ 3

1 , . . . , [̂
3
15

}��
^-realization

=

{ 7

100
,

431

1000
,

17

20
, − 59

125
, − 437

1000
,

69

500
, − 991

1000
, − 49

125
,

83

500
, − 279

1000
,

49

125
,

121

250
,

313

500
,

871

1000
,

7

125

}
, (C.2c)

{
[̂ 4

1 , . . . , [̂
4
15

}��
^-realization

=

{
− 11

125
, − 469

1000
, −439

500
, − 483

1000
, −11

25
,

41

200
,

409

500
, − 343

1000
,

3

8
, −407

500
, −141

250
, − 31

1000
,

293

500
, − 12

125
,

429

1000

}
, (C.2d)

{
[̂ 5

1 , . . . , [̂
5
15

}��
^-realization

=

{ 74

125
,

249

500
, − 511

1000
, − 43

250
, − 129

1000
,

19

100
,

49

200
, −463

500
,

23

100
,

433

1000
,

821

1000
,

199

1000
, − 96

125
, − 92

125
,

183

250

}
, (C.2e)

{
[̂ 6

1 , . . . , [̂
6
15

}��
^-realization

=

{
− 143

250
,

2

5
,

921

1000
, −313

500
, − 603

1000
, − 449

1000
,

609

1000
, − 39

1000
,

443

1000
,

383

500
, − 17

500
,

27

1000
,

181

500
,

941

1000
, − 181

1000

}
, (C.2f)

{
[̂ 7

1 , . . . , [̂
7
15

}��
^-realization

=

{
− 129

250
, − 147

1000
,

387

1000
, − 611

1000
,

313

1000
,

191

200
, − 61

250
, −11

25
,

− 969

1000
,

927

1000
,

489

500
,

361

500
,

57

1000
, − 4

125
,

83

100

}
, (C.2g)

{
[̂ 8

1 , . . . , [̂
8
15

}��
^-realization

=

{
− 273

1000
, − 441

1000
,

427

500
, − 317

1000
, − 407

1000
, − 57

200
,

23

1000
,

93

200
,

163

250
,

36

125
,

333

1000
, −18

25
,

321

1000
,

307

500
, − 193

1000

}
, (C.2h)
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{
[̂ 9

1 , . . . , [̂
9
15

}��
^-realization

=

{ 1

250
, − 2

125
, − 981

1000
,

112

125
, −137

500
,

547

1000
, −201

500
,

101

500
,

− 63

250
,

62

125
,

597

1000
, −114

125
, − 39

200
,

197

200
, − 7

100

}
, (C.2i)

{
[̂ 10

1 , . . . , [̂ 10
15

}��
^-realization

=

{ 969

1000
,

4

5
, − 243

1000
,

29

250
, − 38

125
, −151

500
,

17

25
,

119

1000
,

463

1000
, − 33

200
,

257

500
,

219

250
, − 319

1000
,

119

500
,

577

1000

}
. (C.2j)

The corresponding matrices [̂
`

^-realization
have been given in App. B of Ref. [18].

Remark that, following Ref. [16], we have chosen rational numbers for the random constants

in (C.1) and (C.2). The reason is that we can then easily write down their exact values, whereas

arbitrary real numbers would require an infinite number of digits (or implicit defining relations,

such as for the irrational numbers
√

3 and c ).

D. Coefficients from the full algebraic equation for (D, N) = (10, 4)

Denoting the approximate numerical solution from the last row of Table 1 by “^-num-sol”, the

300 real numbers defining the matrices (4.3) are [displaying ten batches of 30 numbers each]:

{
Â 1

1 , B̂
1

1 , . . . , Â
15

1 , B̂ 15
1 , Â 1

2 , B̂
1

2 , . . . , Â
15

10 , B̂
15

10

}��( 5penalty=33.8776)
^-num-sol

=

{
− 0.0692546, −0.58643, −1.05642, −0.601179, −0.148017, 0.607459,

−0.295285, −0.140475, −0.59204, 0.274455, −0.508568, 0.309931,

−0.0620355, 0.381277, 0.211426, 0.178033, −0.112937, −0.138966,

0.469841, 0.463514, −0.00762073, −0.155881, 0.0143421, 0.466782,

0.580538, 0.439774, 0.0995092, −0.622271, −0.68924, −0.437244,

0.426018, −0.509828, −0.439085, 0.293402, 0.486298, −0.658821,

−0.219118, 0.0364208, 0.824188, 0.429625, 0.276073, 0.179746,

−0.068707, 0.0925217, −0.118121, −0.186855, −0.00933079, 0.219118,

0.520674, 0.762843, 0.0327783, 0.240407, −0.730098, −0.499508,

−0.0487667, 0.269917, 0.328138, 0.133357, −0.226639, −0.21064,

0.266147, 0.0693405, −0.0752673, 0.324464, −0.468063, −0.537566,

−0.522858, −0.719695, −0.0162757, −0.289673, 0.0600267, −0.473248,

0.565031, 0.0352853, 0.609935, 0.341532, 0.251534, −0.141831,

−0.145027, −0.146535, 0.020147, 0.0975357, 0.143888, −0.389464,

0.00800391, −0.44477, −0.491185, −0.120212, −0.521562, 0.0655693,
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−0.769702, 0.393627, 0.0849714, −0.57002, −0.00425748, 0.154496,

0.487595, −0.0372879, −0.342562, 0.289481, −0.0750309, 0.611541,

0.163813, −0.17035, −0.0421598, 0.165941, 0.451901, −0.353845,

−0.065826, 0.708222, 0.294372, 0.425108, 0.384654, 0.0226756,

0.570911, −0.324845, −0.261706, 0.035435, −0.483642, 0.251261,

−0.342193, −0.50229, 0.125031, −0.64019, −0.466247, 0.53052,

0.275081, −0.730265, 0.853657, −0.121877, −0.85128, −0.246815,

0.0756539, 0.120902, 0.268202, 0.403389, −0.685643, 0.503552,

0.0864294, −0.224326, 0.352859, −0.248242, −0.0473426, 0.0953277,

0.23623, 0.39878, 0.407025, 0.376143, 0.0485194, 0.0974565,

−0.241239, 0.0523708, −0.0378564, 0.394186, −0.0230116, 0.285019,

0.376322, −0.14455, 0.141922, 0.284971, 0.214979, −0.650774,

0.160804, −0.0462938, 0.325296, 0.337869, −0.0518918, −0.273317,

−0.44725, −0.187702, −0.452864, −0.00378001, −0.388691, 0.358931,

0.382993, −0.866705, 0.255596, 0.631997, 0.013364, −0.311463,

−0.457347, 0.289158, −0.344167, 0.0958883, 0.246078, −0.254109,

−0.68349, 0.111889, 0.391893, −0.360248, −0.0215233, −0.259903,

0.543266, 0.0653004, −0.653161, 0.270118, −0.436127, 0.19117,

−0.588626, 0.188583, 0.684876, −0.0178182, 0.323925, −0.412551,

0.255511, −0.197965, −0.25607, 0.110931, 0.192163, −0.111291,

−0.141328, 0.270626, −0.417135, 0.0142941, −0.524982, −0.269947,

−0.636919, −0.237791, 0.367274, 0.809111, 0.202189, 0.314854,

−0.237622, 0.229124, −0.472898, 0.190654, −0.216502, 0.559077,

0.18242, 0.657434, 0.719802, −0.307403, −0.0636525, −0.511735,

0.43477, 0.231476, 0.832258, 0.131869, 0.436263, 0.666609,

−0.1219,−0.0734223, 0.29402, 0.248577, −0.101651, −0.0870295,

−0.315557, 0.292283, −0.347289, −0.0371514, −0.265792, 0.290594,

0.140305, 0.45099, 0.296089, 0.392803, −0.0969607, −0.0578319,

0.62338, 0.361966, 0.422547, 0.570988, −0.588562, 0.41253,

0.0313179, 0.0259956, −0.361538, −0.730508, −0.43556, 0.133992,
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−0.494957, −0.389868, −0.953034, −0.177046, −0.358249, 0.186803,

−0.522166, 0.0464763, 0.355931, −0.048642, −0.105042, −0.283861,

−0.216209, −0.0980749, 0.622007, 0.707796, 0.204977, −0.505334,

−0.233755, 0.7281, 0.372945, 0.588971, −0.176769, 0.422182,

−0.102989, 0.366496, −0.743647, 0.526077, −0.350589, −0.045876
}
, (D.1)

where up to 6 significant digits are shown. The superscript with the 5penalty value has been omitted

in the main text.

Just in order to avoid any misunderstanding: the above 300 numbers are only given for

illustrative purposes, because they are, most likely, different from the correct values (as mentioned

in the last paragraph of Sec. 4.2).

E. Nontrivial critical points for the case (D, N) = (3, 3)

E.1 Critical-point setup: General case

This appendix aims at being more or less self-contained. Consider a generalized version of the

IIB matrix model [7, 8] with a different number of bosonic matrices (� = 3, 4, 6, 10) and different

matrix sizes (# ≥ 2), whereas the genuine model has � = 10 and # ≫ 1. After the fermionic

matrices have been integrated out, the partition function reads [7, 8, 19]

/�, # =

∫ 6∏
2=1

�∏
`=1

3�2` 4
− (eff, �, # [�] , (E.1a)

(eff, �, # [�] = (bos, �, # [�] − log P�, # [�] , (E.1b)

(bos, �, # [�] = −1

2
Tr

( [
�`, �a

] [
�`, �a

] )
, (E.1c)

�` = �2` C2 , �2` ∈ R , C2 ∈ su(#) , (E.1d)

Tr
(
C2 · C3

)
=

1

2
X23 , (E.1e)

6 ≡ #2 − 1 , (E.1f)

where repeated Greek indices are summed over (just as having an implicit Euclidean “metric”)

and the quantity P�, # in (E.1b) will be discussed shortly. The commutators entering the bosonic

action term (E.1c) are defined by [-, . ] ≡ - · . − . · - for square matrices - and . of equal

dimension. The expansion (E.1d), for real coefficients �2`, uses the # × # traceless Hermitian

(* (#) generators C2 with normalization (E.1e).

The Gaussian-type integration of the fermionic matrices, for � = 3, 4, 10, produces the

Pfaffian P�, # [�], which is given explicitly by a sum over permutations or by a sum involving the

Levi–Civita symbol. Including the � = 6 case, the quantity P�, # [�] is a homogenous polynomial

in the bosonic coefficients �2`, where the order  , for values � ∈ {3, 4, 6, 10} with supersymmetry,

is given by

 =
(
� − 2

) (
#2 − 1

)
. (E.2)
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Further discussion of the polynomial P�, # [�] appears in Sec. 2.1 and Refs. [19, 20].

The issue of the convergence of the integrals in (E.1a) has been studied by the authors of

Ref. [21], with the conclusion that there is absolute convergence for � = 4, 6, 10. In any case, it

may be of mathematical interest to look for the critical points (even for � = 3) and, more precisely,

to establish their existence. Incidentally, critical points of the matrix model have also been discussed

in a recent paper [27], which, however, appears to consider only critical points of the bosonic action

(E.1c).

Here, we present results for the existence of nontrivial critical points of the effective bosonic

action (E.1b). Specifically, we get explicit solutions for a special case with low values of � and # .

Remark that this effective action incorporates the fermionic “quantum fluctuations” exactly.

E.2 Critical-point setup: Special case with (D, N) = (3, 3)

Consider the matrix model (E.1) with the following parameters:

{
�, #

}
=

{
3, 3

}
. (E.3)

The eight generators C2 are proportional to the 3×3 Gell-Mann matrices _2 from the “eightfold-way”

(1961) and we take explicitly

Ĉ1 =
1

2

©
«

0 1 0

1 0 0

0 0 0

ª®®
¬
, Ĉ2 =

1

2

©
«

0 8 0

−8 0 0

0 0 0

ª®®
¬
, Ĉ3 =

1

2

©
«

0 0 1

0 0 0

1 0 0

ª®®
¬
,

Ĉ4 =
1

2

©«
0 0 8

0 0 0

−8 0 0

ª®®¬
, Ĉ5 =

1

2

©«
0 0 0

0 0 1

0 1 0

ª®®¬
, Ĉ6 =

1

2

©«
0 0 0

0 0 8

0 −8 0

ª®®¬
,

Ĉ7 =
1

2

©«
1 0 0

0 −1 0

0 0 0

ª®®¬
, Ĉ8 =

1

2
√

3

©«
1 0 0

0 1 0

0 0 −2

ª®®¬
, (E.4)

where the hat distinguishes these generators from those in App. B.

The main reason for considering this special case is that there is now an explicit compact result

for the Pfaffian [19]:

P3, 3[�] = −3

4
Tr

( [
�`, �a

] {
�d, �f

} )
Tr

( [
�`, �a

] {
�d, �f

} )

+6

5
Tr

(
�`

[
�a, �d

] )
Tr

(
�`

[{
�a , �f

}
,
{
�d, �f

}] )
, (E.5)

which corresponds to a homogenous eighth-order polynomial in the bosonic coefficients �2`. This

expression also contains anticommutators, defined by {-, . } ≡ - ·. +. · - for square matrices -

and . of equal dimension.

The critical points are then obtained from the following algebraic equation:

X(eff, 3, 3

[
�

]
X �

`

;:

=

[
� a,

[
� a , � `

] ]
:;
− 1

P3, 3 (�)
m P3, 3 (�)
m �

`

;:

= 0 , (E.6)
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with expression (E.5) for the Pfaffian. Multiplying (E.6) by P3, 3 (�) gives an 11-th order homoge-

neous polynomial.

Explicit solutions of (E.6) can be obtained from the procedure of Ref. [17] (see, in particular,

the last paragraph of Sec. 4.1 in that reference) by setting the master momenta and the master noise

there to zero, ?̂: = 0 and [̂
`

:;
= 0. Very briefly, the procedure is to build a penalty function as the

sum of the squares of the 24 component equations (without further overall numerical factors) and

to use the numerical minimization routine FindMinimum from Mathematica 12.1 (cf. Ref. [32]).

Typically, we use a 36-digit working precision (see Sec. E.3.3 for further comments).

E.3 Critical-point results for (D, N) = (3, 3)

E.3.1 First critical-point solution

The coefficients of a first nontrivial solution (denoted by an overbar) of the algebraic equation

(E.6) are:




�
1

1 , �
2

1

�
3

1 , �
4

1

�
5

1 , �
6

1

�
7

1 , �
8

1




=




0.570574083490128575476108 , 0.658442593948256740170834

0.591172615092998049901068 , 0.459965150810118963329943

0.0276034295370299604330960 ,−0.662039140319935188116796

−0.151421059211537951401624 , 1.03331137617662167921442



, (E.7a)




�
1

2 , �
2

2

�
3

2 , �
4

2

�
5

2 , �
6

2

�
7

2 , �
8

2




=




0.809211845911449987314691 , 0.833691639722612054210554

0.617000774572453785555974 ,−0.164275893241917159317804

0.830645113307734538465843 ,−0.340131664055950118091891

0.644115685767825480672465 , 1.54439672938962116994917



, (E.7b)




�
1

3 , �
2

3

�
3

3 , �
4

3

�
5

3 , �
6

3

�
7

3 , �
8

3




=




0.504330365038665104746314 , 1.18338120963105512893747

0.0879652655029969016881395 , 0.416121944105811292070174

0.614213738185278850877443 , −0.945948255419088870571396

0.811508170531654323184674 , 0.926928461994400651864667



, (E.7c)

where only 24 significant digits have been shown. All information of this particular solution is

contained in the 24 real numbers �
2

` . Let us now have a closer look at what the nature of this

solution is, while showing less digits than above.
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From (E.7), we have the following three matrices:

�1 =

©«

0.223 0.285 + 0.329 8 0.296 + 0.230 8

0.285 − 0.329 8 0.374 0.014 − 0.331 8

0.296 − 0.230 8 0.014 + 0.331 8 −0.597

ª®®®®®¬
, (E.8a)

�2 =

©
«

0.768 0.405 + 0.417 8 0.309 − 0.082 8

0.405 − 0.417 8 0.124 0.415 − 0.170 8

0.309 + 0.082 8 0.415 + 0.170 8 −0.892

ª®®®®®
¬
, (E.8b)

�3 =

©«

0.673 0.252 + 0.592 8 0.044 + 0.208 8

0.252 − 0.592 8 −0.138 0.307 − 0.473 8

0.044 − 0.208 8 0.307 + 0.473 8 −0.535

ª®®®®®¬
, (E.8c)

and the corresponding matrices with absolute values of the entries (in a short-hand notation):

Abs
[
�1

]
=

©«

0.223 0.436 0.375

0.436 0.374 0.331

0.375 0.331 0.597

ª®®®®®¬
, (E.9a)

Abs
[
�2

]
=

©
«

0.768 0.581 0.319

0.581 0.124 0.449

0.319 0.449 0.892

ª®®®®®
¬
, (E.9b)

Abs
[
�3

]
=

©«

0.673 0.643 0.213

0.643 0.138 0.564

0.213 0.564 0.535

ª®®®®®¬
. (E.9c)

Inspection of the matrices (E.9), in particular, shows that the far-off-diagonal entries at positions

[1, 3] and [3, 1] are not especially small.

We can quantify this conclusion by calculating the average band-diagonal value from 2+3+2

entries in (E.9) and the average off-band-diagonal value from 1+1 entries. Then, determine the ratio

'̂` of the average band-diagonal value over the average off-band-diagonal value. Summarizing this

procedure by an equation, we have the following definition of the ratio '̂ for a symmetric 3 × 3

matrix "̂ with nonnegative entries <̂[8, 9]:

'̂ ≡ 1

7

©«
3∑
8=1

<̂[8, 8] + 2

2∑
9=1

<̂[ 9 , 9 + 1]ª®¬
1

<̂[1, 3] , (E.10)
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where we have used the symmetry of " to simplify the expression. In this way, we get, from the

three matrices (E.9), the following three ratios:{
'̂1, '̂2, '̂3

}
Abs

[
�`

] = {1.04, 1.72, 2.53} , (E.11)

which are all of order unity.

Following earlier work [16], we diagonalize and order �1 (the transformed matrices are denoted

by a prime) and get

�
′
1 =

©«

−0.835 0 0

0 −0.0169 0

0 0 0.852

ª®®®®®¬
, (E.12a)

�
′
2 =

©«

−0.719 −0.097 + 0.481 8 −0.0586 + 0.0059 8

−0.097 − 0.481 8 −0.356 0.362 + 0.256 8

−0.0586 − 0.0059 8 0.362 − 0.256 8 1.08

ª®®®®®¬
, (E.12b)

�
′
3 =

©«

−0.658 −0.466 + 0.088 8 −0.0484 − 0.0255 8

−0.466 − 0.088 8 −0.326 0.060 + 0.413 8

−0.0484 + 0.0255 8 0.060 − 0.413 8 0.984

ª®®®®®¬
. (E.12c)

It is now clear that, for �
′
2 and �

′
3, the far-off-diagonal entries at positions [1, 3] and [3, 1] have

rather small absolute values. The corresponding ratios are:{
'̂1, '̂2, '̂3

}
Abs

[
�

′
`

] = {∞, 9.76, 9.81} , (E.13)

where the last two ratios are of order ten.

Similarly, we can diagonalize and order �2 (the transformed matrices are denoted by a double

prime) and we get the following ratios:{
'̂1, '̂2, '̂3

}
Abs

[
�

′′
`

] = {12.2, ∞, 13.1} , (E.14)

where both nontrivial ratios are again of order ten. The same result is also obtained if we diagonalize

and order �3 (the transformed matrices are denoted by a triple prime), with the following ratios:{
'̂1, '̂2, '̂3

}
Abs

[
�

′′′
`

] = {11.3, 12.1, ∞} . (E.15)

The conclusion is that the matrix solution of (E.6) with coefficients (E.7) has, upon diago-

nalization and ordering of one matrix, a clear diagonal/band-diagonal structure, even for the small

matrix size considered, # = 3.
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E.3.2 Second critical-point solution

The coefficients of a second nontrivial solution (denoted by a tilde) of the algebraic equation

(E.6) are:




�̃ 1
1
, �̃ 2

1

�̃ 3
1
, �̃ 4

1

�̃ 5
1
, �̃ 6

1

�̃7
1
, �̃ 8

1




=




−0.0486118439919790675351903 , 0.786258758852912152288640

0.0529067158425608509722208 , 0.405878380158241357550552

0.0894325197805553299305947 , −0.958079473974395296656234

0.0123068275644060562414431 , 0.590582765278256159281746



, (E.16a)




�̃ 1
2
, �̃ 2

2

�̃ 3
2
, �̃ 4

2

�̃ 5
2
, �̃ 6

2

�̃ 7
2
, �̃ 8

2




=




0.529762679031679212023180 , 0.769580268233783935440839

−0.233354688796790875044128 ,−0.541601511215317101360294

0.331576461482468810651328 , −0.779354061134799362179733

0.531179126831174470587476 , 0.652651364568218169075602



, (E.16b)




�̃ 1
3
, �̃ 2

3

�̃ 3
3
, �̃ 4

3

�̃ 5
3
, �̃ 6

3

�̃ 7
3
, �̃ 8

3




=




0.0360931848378888826301440 , 1.62034088330609352509732

−1.02598168958966357957916 , 0.286848079464457062317327

0.379578994127041469609087 , −1.37050518862587829073235

1.42746943415983021599759 , 0.554733364863768377772749



, (E.16c)

where, again, only 24 significant digits have been shown. This second solution leads to the same

conclusions as the first solution. Very briefly, the ratios (E.10) from the original matrices are:

{
'̂1, '̂2, '̂3

}
Abs

[
�̃`

] = {1.70, 1.30, 1.28} , (E.17)

and those of the transformed matrices:

{
'̂1, '̂2, '̂3

}
Abs

[
�̃ ′
`

] = {∞, 10.4, 9.04} , (E.18a)

{
'̂1, '̂2, '̂3

}
Abs

[
�̃ ′′
`

] = {10.2, ∞, 9.41} , (E.18b)

{
'̂1, '̂2, '̂3

}
Abs

[
�̃ ′′′
`

] = {16.8, 18.0, ∞} . (E.18c)
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Figure 5: Density plots of Abs
[
�̃ ′′′
`

]
from the matrices (E.19). Shown are ` = 1, 2 , 3 from left to right.

Purely for illustrative purposes, we give the matrices with the strongest band-diagonal structure:

�̃ ′′′
1 =

©
«

−0.603 −0.083 − 0.250 8 −0.0029 + 0.0213 8

−0.083 + 0.250 8 0.178 0.369 − 0.147 8

−0.0029 − 0.0213 8 0.369 + 0.147 8 0.425

ª®®®®®
¬
, (E.19a)

�̃ ′′′
2 =

©«

−0.730 0.239 − 0.130 8 −0.0223 + 0.0013 8

0.239 + 0.130 8 0.215 0.189 + 0.359 8

−0.0223 − 0.0013 8 0.189 − 0.359 8 0.515

ª®®®®®¬
, (E.19b)

�̃ ′′′
3 =

©«

−1.53 0 0

0 0.228 0

0 0 1.30

ª®®®®®¬
, (E.19c)

where the off-band-diagonal entries in �̃ ′′′
1

and �̃ ′′′
2

are indeed rather small (cf. Fig. 5).

E.3.3 Technical remarks

The results presented here have been obtained from the numerical minimization routine

FindMinimum of Mathematica 12.1 (cf. Ref. [32]) with a 36-digit working precision, but,

for comparison, we have also used a 24-digit working precision and a 48-digit working precision.

The maximum absolute value of the equation residues drops with increasing working precision,

as well as the value of the penalty function 5penalty; see Table 7 for details. Most importantly, the

24-digit numbers in (E.7) are reproduced by the 48-digit-working-precision calculation.

Following Ref. [17], we will call the solutions (E.7) and (E.16) “quasi-exact,” as their number

of digits can, in principle, be increased arbitrarily.

E.4 Discussion of critical-point solutions

The main results from the present appendix are two-fold: the existence of nontrivial solutions

of the stationarity equation (E.6) for (�, #) = (3, 3) and a clear diagonal/band-diagonal structure

in these solutions. The chosen values of � and # are obviously far below the values (2.7) needed

for the genuine IIB matrix model [7, 8]. But it is an important point of principle to have established

the existence of these critical-point solutions, even for small values of � and # . We can reverse
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Table 7: First solution of the (�, #) = (3, 3) extremal equation (E.6) as presented in Sec. E.3.1. The

residues of the 24 component equations eq-�̂ 2` are computed (they all vanish for a perfect solution). The

quantity MaxAbsRes is the maximum of the absolute values of these residues and the function 5penalty is

the sum of their squared absolute values. The expression eq-� 2` follows from the left-hand side of (E.6) by

performing a matrix multiplication with Ĉ2 , taking the trace, and multiplying the result by two [here, the Ĉ2 are

the (* (3) generators from App. E.2]. The calculations use the FindMinimum routine from Mathematica

12.1 [32] with working precision (WP), accuracy goal (AG), and precision goal (PG) as shown.

{WP, AG, PG} 5penalty ≡ ∑ ��eq-� 2`
��2 MaxAbsRes ≡ max

{��eq-� 2`
��}

{24, 12, 12} O
(
10−28

)
O

(
10−14

)
{36, 24, 24} O

(
10−55

)
O

(
10−28

)
{48, 36, 36} O

(
10−91

)
O

(
10−46

)

the argument: assume that there were no such critical-point solutions for � = 3 and # = 3, then it

would be difficult to imagine that there could be critical-point solutions for � = 10 and # ≫ 1, as

needed for the IIB matrix model.

A few follow-up remarks about our critical-point calculation are as follows. First, we were

not able to obtain a nontrivial critical-point solution of (E.6) if the sign of the Pfaffian term was

reversed (thereby removing the supersymmetry of the model).

Second, without a Pfaffian term in (E.6), there is obviously an infinity of diagonal solutions.

Third, comparing the � = # = 3 critical solutions obtained in the present appendix with the

master-field solutions from Ref. [17], we see that the randomness of the master momenta ?̂: and the

master-noise matrices [̂
`

:;
appears to have reduced somewhat the strength of the band-diagonality

in the master-field solutions [compare the O(5) ratio value on the second row of Table 5 with the

larger nontrivial values in (E.18), for example].

Fourth, it is possible to interpret the bosonic critical-point solution as “classical” (cf. Refs.

[7, 27]) and the { ?̂: , [̂ `:;} randomness entering the master-field equation as “bosonic quantum

fluctuations” (the “fermionic quantum fluctuations” have already been included in the effective

bosonic action). But this is only a qualitative interpretation, as there is no small dimensionless

coupling constant in the IIB matrix model (see our previous remarks in Sec. 3.3).
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