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1. Introduction

Planck length is considered to be the length scale where quantum gravitational aspects become
evident [1]. While it is not certain whether this length scale should be associated to a discrete nature
of spacetime, discrete approaches to quantum gravity have some advantages, such as enabling us
to leave from continuum spacetime picture at the fundamental level, which usually requires some
predetermined assumptions such as smoothness and dimensions. On the other hand, from the
perspective of discrete spacetime, continuum picture of spacetime is an effective description which
emerges in the infrared, resulting from dynamics.

One of the discrete approaches to quantum gravity is given by the tensor model [2–5]. The
tensor model was introduced to generalize the matrix model, which is successful in describing
two-dimensional quantum gravity, to dimensions more than two. Unfortunately the tensor model
suffers from the dominance of singular spaces (like branched polymers [6, 7]) and has not been
successful in generating macroscopic spaces. An interesting possibility to improve the situation
would be to introduce a temporal direction to the tensor model. This is suggested by the following
fact which implies the importance of a temporal direction in quantum gravity: It has been shown
that the causal dynamical triangulation (CDT), which is a discrete model of quantum gravity with
a temporal direction, is successful in generating macroscopic spacetimes [8], while the dynamical
triangulation (DT), which is Euclidean, is not.

Generally, delicate treatment is necessary in introducing a temporal direction to a discrete
model of quantum gravity. The reason is that the expected infrared effective theory, namely general
relativity, is invariant under temporal diffeomorphism (more thoroughly, spacetime diffeomor-
phism), and therefore a fundamental discrete theory has to contain a mechanism which assures the
invariance in the infrared. To incorporate this requirement, the present author formulated a tensor
model, which we call the canonical tensor model (CTM) [9, 10], as a first-class constraints system
in the Hamiltonian formalism, mimicking the Hamiltonian formalism of general relativity (more
precisely, the ADM formalism [11]).

Though the dynamical variables are largely different between CTM and general relativity (GR),
the similarity between their formalisms leads to some explicit connections between them. The 𝑁 = 1
case1 of CTM has been shown to be equivalent to a mini-superspace treatment of GR [12]. In a
formal continuum limit2, the constraint algebra of CTM has been shown to agree with that of ADM
[13]. Also in the formal continuum limit, it has been shown that the equation of motion of CTM
agrees with a Hamilton-Jacobi equation of GR with a Hamilton’s principal function of a local form
containing also a scalar and higher spin fields [14].

The quantization of CTM can be carried out by simply applying the canonical quantization
[15]. A convenient fact is that the closure of the constraint algebra holds even after quantization,
namely, the first class nature is kept after quantization. Then the physical state condition can be
consistently imposed by requiring the quantized constraints to vanish on the physical states. The
condition is represented by a system of non-linear partial differential equations for the wave function.

1The dynamical variables of CTM are a canonically conjugate pair of real symmetric order-three tensors,
𝑄𝑎𝑏𝑐 , 𝑃𝑎𝑏𝑐 (𝑎, · · · = 1, 2, · · · , 𝑁).

2This is analogous to a vanishing limit of a lattice interval in a lattice theory without taking into account dynamics.
Dimension of spacetime is assumed as an input.
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A surprising fact is that, though the system of partial differential equations is complicated, there
exists an exact solution for general 𝑁 , which has the form of a multi-variable generalization of the
Airy function [16].

The study of the wave function will reveal the quantum nature of CTM, possibly leading to the
emergence of spacetime in CTM. An important previous result is that the wave function has peaks
at Lie-group invariant values of its tensor argument [17], the mechanism of which can be readily
understood as a quantum coherence phenomenon [18]. This fact physically means that Lie group
symmetries emerge in CTM. Considering that spacetime structure can be determined by some Lie
group symmetries, such as Poincare or de Sitter symmetries, it would be possible that emergence
of spacetime could be realized by the same mechanism as the emergence of Lie group symmetries.

This question was pursued in the last two works [19, 20]. It has been found that there exist two
phases, which we respectively call the quantum phase and the classical phase [20], depending on
the values of the argument of the wave function. While the configurations fluctuate largely in the
quantum phase, the fluctuation is suppressed in the classical phase and classical spacetimes emerge.
More precisely, we took 𝑆𝑂 (𝑛 + 1) (𝑛 = 1, 2, 3) symmetric values for the tensor argument of the
wave function and have found that there emerge discrete 𝑛-dimensional spheres. The main purpose
of this paper is to review this development in the previous paper [20].

In Section 2, we review the formulation of CTM. In Section 3, we explain the setup of our
Hamiltonian Monte Carlo simulation with the reweighting method. In Section 4, we show the
presence of two phases, the quantum and the classical phases. In Section 5, we show the emergence
of classical spacetimes in the classical phase. More precisely, we observe emergence of discrete
𝑛-dimensional spheres for 𝑆𝑂 (𝑛+1) (𝑛 = 1, 2, 3) invariant values of the argument. In Section 6, we
add perturbations to the symmetric values of the argument or change the representations, and show
that the classical phase becomes less likely under the perturbations or the changes. In Section 7,
we speculate the spacetime evolution in CTM. The last section is devoted to summary and future
prospects.

2. Canonical tensor model (CTM)

The canonical tensor model is a tensor model in the Hamiltonian formalism. This is formulated
as a first-class constraints system [9] mimicking the Hamiltonian formalism of general relativity,
more precisely, the ADM formalism [11]. In the classical case, the dynamical variables are
a canonically conjugate pair of real symmetric order-three tensors, 𝑄𝑎𝑏𝑐 and 𝑃𝑎𝑏𝑐 (𝑎, 𝑏, 𝑐 =

1, 2, . . . , 𝑁), which satisfy the fundamental Poisson brackets,

{𝑄𝑎𝑏𝑐, 𝑃𝑑𝑒 𝑓 } =
∑︁
𝜎

𝛿𝑎𝜎𝑑
𝛿𝑏𝜎𝑒

𝛿𝑎𝜎 𝑓
,

Others = 0, (1)

where the sum is over all the permutations of 𝑑, 𝑒, 𝑓 . The Hamiltonian is given by a linear
combination,

𝐻 = 𝑁𝑎H𝑎 + 𝑁[𝑎𝑏]J[𝑎𝑏] , (2)
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where 𝑁𝑎 and 𝑁[𝑎𝑏] are respectively the analogues of the lapse and the shift in ADM, and H𝑎 and
J[𝑎𝑏] are respectively the analogues of the Hamiltonian and the momentum constraints in ADM.
Here the bracket [·] in the indices represents the anti-symmetry, 𝑁[𝑎𝑏] = −𝑁[𝑏𝑎] , J[𝑎𝑏] = −J[𝑏𝑎] .

As in ADM, the H𝑎 and J[𝑎𝑏] are required to form a closed Poisson algebra, namely, they are
required to be first-class constraints. This requirement of the Poisson algebraic closure is so strong
that, with some additional physically reasonable conditions, the constraints are uniquely determined
[10] to be

H𝑎 =
1
2
(𝑃𝑎𝑏𝑐𝑃𝑏𝑑𝑒𝑄𝑐𝑑𝑒 − Λ𝑄𝑎𝑏𝑏) ,

J[𝑎𝑏] =
1
4
(𝑃𝑎𝑐𝑑𝑄𝑏𝑐𝑑 − 𝑃𝑏𝑐𝑑𝑄𝑎𝑐𝑑) , (3)

where Λ is a real constant.
In the 𝑁 = 1 case, CTM agrees with a mini-superspace treatment of GR [12], in which Λ

corresponds to the cosmological constant. Therefore we call Λ the cosmological constant of CTM.
Since the Poisson algebraic structure does not change under the rescaling 𝑄 → 𝑠𝑄, 𝑃 → 𝑃/𝑠 with
an arbitrary real 𝑠 and Λ is effectively changed by 𝑠2Λ under the rescaling, Λ can be normalized
to be, for instance, Λ = 0,±1. In this paper, we consider only the case of a positive cosmological
constant, and normalize it as Λ = 4/9 for later convenience of our Monte Carlo simulation.

Let us explain the reason why we consider only the case of a positive cosmological constant. In
Section 1, we explained that the wave function (in (13) below) of CTM has the property that peaks
appear at Lie-group symmetric values of the tensor argument [17]. This phenomenon is actually
evident only for the case of a positive cosmological constant. This means that the emergence of Lie
group symmetries in CTM appears only for a positive cosmological constant. Therefore, considering
the expected link between the emergence of Lie group symmetries and that of spacetimes, it would
be reasonable to restrict our interest to the case of a positive cosmological constant. In fact, in
[22, 23], the negative case was studied by approximating the Airy function part (discussed later) of
the wave function by a Gaussian function, and emergence of spacetimes was not found.

From (3) the Poisson algebra of H𝑎 and J[𝑎𝑏] is given by

{H𝜉1,H𝜉2} = J ([𝑃𝜉1, 𝑃𝜉2] + 2Λ[𝜉1, 𝜉2]),
{J𝜂, H𝜉} = H(𝜂𝜉),
{J𝜂1, J𝜂2} = J ([𝜂1, 𝜂2]), (4)

where we have introduced auxiliary c-number variables 𝜉𝑎, 𝜂[𝑎𝑏] ,

H𝜉 := H𝑎𝜉𝑎, J𝜂 := J[𝑎𝑏]𝜂[𝑎𝑏] , (𝑃𝜉)𝑎𝑏 := 𝑃𝑎𝑏𝑐𝜉𝑐,

[𝜉1, 𝜉2]𝑎𝑏 := 𝜉1
𝑎𝜉

2
𝑏 − 𝜉

1
𝑏𝜉

2
𝑎, (𝜂𝜉)𝑎 := 𝜂[𝑎𝑏]𝜉𝑏, (5)

for simplicity of expressions, and [𝑃𝜉1, 𝑃𝜉2] in the first line represents the matrix commutator.
The quantization of CTM can be carried out by the canonical quantization. The dynamical

variables are now promoted to the quantum ones with

[�̂�𝑎𝑏𝑐, �̂�𝑑𝑒 𝑓 ] = 𝑖
∑︁
𝜎

𝛿𝑎𝜎𝑑
𝛿𝑏𝜎𝑒

𝛿𝑎𝜎 𝑓
,

Others = 0, (6)
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where �̂�𝑎𝑏𝑐, �̂�𝑑𝑒 𝑓 are again symmetric tensors and assumed to be hermite. The quantized con-
straints are given by

Ĥ𝑎 =
1
2

(
�̂�𝑎𝑏𝑐 �̂�𝑏𝑑𝑒�̂�𝑐𝑑𝑒 + 2𝑖𝑅�̂�𝑎𝑏𝑏 − Λ�̂�𝑎𝑏𝑏

)
,

Ĵ[𝑎𝑏] =
1
4

(
�̂�𝑎𝑐𝑑�̂�𝑏𝑐𝑑 − �̂�𝑏𝑐𝑑�̂�𝑎𝑐𝑑

)
. (7)

Here the only difference from the classical ones (3) is the presence of the middle term in Ĥ , which
realizes the hermiticity of Ĥ by taking

𝑅 =
(𝑁 + 2) (𝑁 + 3)

4
. (8)

A convenient fact is that, by explicit computation, the commutation algebra of the quantized
constraints closes as

[Ĥ𝜉1, Ĥ𝜉2] = 𝑖Ĵ ([�̂�𝜉1, �̂�𝜉2] + 2Λ[𝜉1, 𝜉2]),
[Ĵ𝜂, Ĥ𝜉] = 𝑖Ĥ (𝜂𝜉),
[Ĵ𝜂1, Ĵ𝜂2] = 𝑖Ĵ ([𝜂1, 𝜂2]), (9)

where3

Ĥ𝜉 := Ĥ𝑎𝜉𝑎, Ĵ𝜂 := Ĵ[𝑎𝑏]𝜂[𝑎𝑏] , (�̂�𝜉)𝑎𝑏 := �̂�𝑎𝑏𝑐𝜉𝑐,

[𝜉1, 𝜉2]𝑎𝑏 := 𝜉1
𝑎𝜉

2
𝑏 − 𝜉

1
𝑏𝜉

2
𝑎, (𝜂𝜉)𝑎 := 𝜂[𝑎𝑏]𝜉𝑏 . (10)

Namely, the first-class nature of CTM does not change after quantization. Therefore, one can
consistently impose

Ĥ𝑎 |Ψ⟩ = Ĵ[𝑎𝑏] |Ψ⟩ = 0, (11)

as the physical state condition.
From the form (7), the physical state condition (11) for the wave function corresponding to |Ψ⟩

becomes a system of partial differential equations non-linear in 𝑄, 𝑃. A surprising fact is that, in
spite of the non-linear structure, there exits an exact solution valid for general 𝑁 . This is given in
𝑃-representation by

Ψ(𝑃) := ⟨𝑃 |Ψ⟩ = 𝜑(𝑃)𝑅, (12)

where

𝜑(𝑃) :=
∫ 𝑁∏

𝑎=1
d𝜙𝑎 d𝜙 e𝑖(𝑃𝜙3−𝜙2 �̃�+ 4

27Λ �̃�3) (13)

with

𝑃𝜙3 := 𝑃𝑎𝑏𝑐𝜙𝑎𝜙𝑏𝜙𝑐,

3The algebra (9) consistently holds also for Ĥ𝜉 := 𝜉𝑎Ĥ𝑎 , etc., in which the auxiliary parameters appear in the
opposite side. This can be shown by taking the hermitian conjugate of the algebra. This reordering is relevant on the
righthand side of the first equation, in which the argument contains the operator �̂�. With this reordered expression, the
physical state condition (11) can be more directly derived.
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𝜙2 := 𝜙𝑎𝜙𝑎 . (14)

If 𝑅 is an integer, the expression (12) with the power 𝑅 can be equivalently rewritten by introducing
𝑅 replicas of variables as

Ψ(𝑃) =
∫
C

d𝜙 d𝜙 e𝑖
∑𝑅

𝑗=1(𝑃𝜙 𝑗3−𝜙 𝑗2 �̃� 𝑗+ 4
27Λ �̃� 𝑗3) , (15)

where the integration variables are 𝜙 𝑗
𝑎, 𝜙

𝑗 (𝑎 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑅), and

d𝜙 d𝜙 :=
𝑅∏
𝑗=1

d𝜙 𝑗

𝑁∏
𝑎=1

d𝜙 𝑗
𝑎 . (16)

Here 𝑅 plays the role of a replica number. The integration contour C in (15) should be chosen
so that the integration converge. The most rigorous way to define such a contour is to consider a
Lefschetz thimble [24]. It is, however, also possible to take it as C = (R𝑁 × C̃)𝑅, where R𝑁 is for
each 𝜙 𝑗 and C̃ for each 𝜙 𝑗 , by additionally introducing an infinitesimal regularization term for the
convergence [17]. C̃ will be specified in Section 3.

3. Hamiltonian Monte Carlo setup

The wave functionΨ(𝑃) in (15) shows the phenomenon that it has peaks at Lie group symmetric
values of 𝑃. It is plausible that this symmetry emergence phenomenon also triggers the emergence
of spacetimes, since they are characterized by de Sitter or Poincare symmetries. What has been
found in the previous work [20] is that emergence of spacetimes can indeed be found for the wave
function Ψ(𝑄) in the 𝑄-representation of the state |Ψ⟩ rather than in Ψ(𝑃) above.

Let us define Ψ(𝑄) by the Fourier transform of Ψ(𝑃) as4

Ψ(𝑄) :=
∫
R#𝑃

𝑁∏
𝑑≤𝑒≤ 𝑓 =1

d𝑃𝑑𝑒 𝑓 e𝑖𝑄𝑎𝑏𝑐𝑃𝑎𝑏𝑐 Ψ(𝑃), (17)

where #𝑃 = 𝑁 (𝑁+1) (𝑁+2)/6, the number of independent components of 𝑃. Since the exponent in
(15) is linear in 𝑃, the Fourier transform (17) results in a product of a number of Dirac 𝛿-functions,
which is difficult to be treated by Monte Carlo simulations. Therefore we consider a smeared wave
function,

Ψ(𝑄, 𝜆) := const.
∫
R#𝑄

𝑁∏
𝑎≤𝑏≤𝑐=1

d�̃�𝑎𝑏𝑐 e−𝜆(𝑄−�̃�)2
Ψ(�̃�)

= const.
∫
C

d𝜙 d𝜙 e−𝜆(𝑄−𝜙𝜙𝜙)2+𝑖∑𝑅
𝑗=1(−𝜙 𝑗2 �̃� 𝑗+ 4

27Λ �̃� 𝑗3) , (18)

where 𝜆 is positive real, 𝑄2 = 𝑄𝑎𝑏𝑐𝑄𝑎𝑏𝑐, #𝑄 = #𝑃, and (𝜙𝜙𝜙)𝑎𝑏𝑐 :=
∑𝑅

𝑗=1 𝜙
𝑗
𝑎𝜙

𝑗

𝑏
𝜙
𝑗
𝑐. Here we

have performed 𝜙 → −𝜙 for convenience. The original wave function can be recovered in the zero
smearing limit, 𝜆 → ∞. In our Monte Carlo simulation, we take it as large as 𝜆 ≤ 107.

4To obtain the 𝑄-representation exactly consistent with the normalization employed in (6), the Fourier transform
should be taken with a kernel e𝑖𝑄𝑎𝑏𝑐𝑃𝑎𝑏𝑐/6 rather than (17). However, this numerical difference does not change the
essentials, and we take (17) for the simplicity of the expression. The actual 𝑄-representation can be recovered by
𝑄 → 𝑄/6.
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Figure 1: Left: Real and imaginary parts of (22) plotted against 𝑧 > 0. It is oscillatory. Right: The contour
�̃� for (22).

The integrand in (18) is complex and therefore suffers from the notorious sign problem [25].
To deal with this issue, we apply the so-called reweighting method. With this method, the real
part defines the system for the Monte Carlo simulation, while the complex part is computed as an
expectation value of an observable in the system. In our case, the wave function is expressed as

Ψ(𝑄, 𝜆) = const. 𝑍𝑄,𝜆

〈
𝑅∏
𝑗=1

Airy(−𝜙 𝑗2)
〉
𝑄,𝜆

, (19)

where we have taken Λ = 4/9 for convenience (without losing generality for the positive case, as
explained in Section 2), have used the integral expression of the Airy function,

Airy(−𝑧) = const.
∫
�̃�

d𝜙 e𝑖(−𝑧 �̃�+ 1
3 �̃�

3) , (20)

and

𝑍𝑄,𝜆 :=
∫
R𝑁𝑅

d𝜙 e−𝜆(𝑄−𝜙𝜙𝜙)2
. (21)

In (19), ⟨·⟩𝑄,𝜆 represents an expectation value in the system defined by the partition function (21).
As for the integration contour �̃�, which stretches to infinity, there are two independent choices

of �̃�, which generate the two independent Airy functions, Ai(−𝑧) and Bi(−𝑧), respectively. We
take �̃� so that the Airy function in (19) be

Airy(−𝑧) = Ai(−𝑧) + 𝑖 Bi(−𝑧), (22)

up to an overall factor. This choice of Airy function has the form of a propagating wave ∼ e−2𝑖𝑧3/2/3

in the asymptotic limit 𝑧 → ∞ (See Figure 1). This choice would be a natural one in the sense that
it would represent a spacetime evolving in one direction; an expanding (or contracting) spacetime5.

In fact, whether the partition function (21) converges or not is a non-trivial question, because
there exist flat directions extending to infinity of 𝜙. A simple example of a flat direction is the
one which has a pair of 𝜙𝑖 = −𝜙 𝑗 . In this case, the summation 𝜙𝜙𝜙 in (21) contains a part,
𝜙𝑖𝑎𝜙

𝑖
𝑏
𝜙𝑖𝑐 + 𝜙

𝑗
𝑎𝜙

𝑗

𝑏
𝜙
𝑗
𝑐 = 0, whatever the size of 𝜙𝑖 and 𝜙 𝑗 is, and therefore the flat direction extends

to infinity. This means that the integrand does not damp exponentially toward infinity in such

5It is also possible to chose for instance Ai or Bi instead, which are real. In this case, the wave function will represent
a standing wave, which can be thought to be a superposition of an expanding and a contracting spacetime.

7
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directions, and the convergence can be guaranteed only by the property of the integration volume.
The question of the convergence of (21) was studied systematically in [26] with assistance of
numerics. The conclusion/conjecture is that the integral converges for 𝑅 < (𝑁 + 1) (𝑁 + 2)/2. For
𝑁 > 1, this condition is satisfied for (8), and the MC simulation should have no problems. Indeed
we did not encounter any divergent behavior in our simulation.

The expression (15) is valid only for integer 𝑅, meaning that 𝑁 is restricted due to (8). This
restriction of 𝑁 is inconvenient, so we take

𝑅 =

⌊
(𝑁 + 2) (𝑁 + 3)

4

⌋
(23)

instead, where ⌊·⌋ is the floor function, to allow us to take 𝑁 freely in our Monte Carlo simulation.
This is based on the assumption that the small change of the value of 𝑅 does not affect the dynamics
of the system (21) in an essential manner.

We performed Hamiltonian Monte Carlo simulation [27] to study the system (21). The leapfrog
numbers were typically taken with a few hundreds depending on the sizes of 𝑁, 𝑅. The total numbers
of the samples in each sequence were typically around 104 ∼ 106, and one data per ∼ 102 raw data
was used for computations of observables to remove correlations. The machine had Xeon W2295
(3.0GHz, 18 cores), 128GB DDR4 memory, and Ubuntu 20 as OS. The program was written in
C++ with pthread for parallelization. As for the Airy function, the boost library [28] was used.
Every run typically took several hours with active use of parallelization.

4. Quantum and classical phases

The properties of the wave function in (19) will depend on the dynamics of the system defined
by (21), which will non-trivially depend on the values of 𝑄. Since 𝑄 has so many components of
order ∼ 𝑁3/6, it is currently not possible to state the dynamics for general values of 𝑄. Rather,
to be concrete in this paper, we will restrict ourselves to considering only specific values of 𝑄
invariant under 𝑆𝑂 (𝑛 + 1) (𝑛 = 1, 2, 3), and some perturbations from these values, with specific
physically natural choices of representations. As we will see in due course, these limited cases
are still very interesting: There exist two phases, the quantum and the classical, and there emerge
discrete 𝑛-dimensional spheres in the classical phase.

Let us show the construction of 𝑄. Consider an 𝑛-dimensional sphere 𝑆𝑛, and the harmonic
functions on it. For 𝑛 = 1 case, a set of normalized harmonic functions { 𝑓𝑎 | 𝑎 = 1, 2, . . . , 𝑁 (=
2𝑀 + 1)} are given by

{ 𝑓𝑎} =
{

1
√

2

}
∪ {cos(𝑚𝜃), sin(𝑚𝜃) | 𝑚 = 1, 2, . . . , 𝑀} , (24)

where 𝜃 ∈ [0, 2𝜋) is the coordinate on 𝑆1. 𝑀 is physically a momentum cutoff, and the total number
of the harmonic functions is 𝑁 = 2𝑀 + 1. Then an 𝑆𝑂 (2)-invariant tensor can be obtained by

𝑄
𝑆𝑂 (2)
𝑎𝑏𝑐

= const. 𝑒−𝛼(𝑚2
𝑎+𝑚2

𝑏
+𝑚2

𝑐 )/𝑀2
∫ 2𝜋

0
d𝜃 𝑓𝑎 𝑓𝑏 𝑓𝑐, (25)

where 𝛼 is a positive number and 𝑚𝑎 are the momentums associated to 𝑓𝑎 (for instance, 𝑚𝑎 = 𝑚

for 𝑓𝑎 = cos(𝑚𝜃)). The role of this dumping factor is to moderate the momentum cutoff 𝑀 . If this

8
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Figure 2: The histograms of 𝜙 𝑗2 for 𝑄 = 𝑄𝑆𝑂 (2) with 𝑁 = 15 (𝑀 = 7), 𝑅 = 76, and 𝛼 = 0.5. The values
of 𝜆 are 10, 103, 105, and 107, respectively from the left to the right. There is a transition of the topology of
the distribution.

moderation is not taken, 𝑀 becomes a sharp cutoff and will generate non-local behavior in 𝜃, which
would be physically unwelcome6. The overall constant in (25) is taken so that 𝑄 is normalized7 by
|𝑄 | = 1. It is elementary to understand that 𝑄𝑎𝑏𝑐 is invariant under 𝑆𝑂 (2) transformation, which
rotates 𝜃, generating the charge-𝑚 representation on the space spanned by cos(𝑚𝜃) and sin(𝑚𝜃).

The above procedure can be extended to any 𝑛. For 𝑆2, we take

{ 𝑓𝑎} = {Re𝑌𝑚
𝑙 (Ω), Im𝑌𝑚

𝑙 (Ω) | 𝑚 = −𝑙,−𝑙 + 1, . . . , 𝑙, 𝑙 = 0, 1, . . . , 𝐿}, (26)

where Ω is a coordinate on 𝑆2, and 𝑌𝑚
𝑙

are the spherical harmonics. Here, it is implicitly assumed
that only independent ones are included (For instance, Im𝑌0

𝐿
= 0 is discarded). The total number

of the functions is 𝑁 = (𝐿 + 1)2. An 𝑆𝑂 (3)-invariant tensor is given by

𝑄
𝑆𝑂 (3)
𝑎𝑏𝑐

= const. 𝑒−𝛼(𝑙2𝑎+𝑙2𝑏+𝑙
2
𝑐 )/𝐿2

∫
𝑆2

dΩ 𝑓𝑎 𝑓𝑏 𝑓𝑐, (27)

which is invariant under the 𝑆𝑂 (3) rotation on 𝑆2, generating the spin 𝑙 representation on 𝑌𝑚
𝑙

(𝑚 =

−𝑙,−𝑙 + 1, . . . , 𝑙). The construction for any 𝑆𝑛 (𝑛 > 2) is basically the same with the generalized
spherical harmonics [20].

In Figure 2, we show the results of the Monte Carlo simulation of the system (21). The value
of 𝑄 is taken to be 𝑄 = 𝑄𝑆𝑂 (2) with 𝑁 = 15 (𝑀 = 7), 𝑅 = 76 (See (23)), and 𝛼 = 0.5. Each
panel shows the histogram of 𝜙 𝑗2 (no sum over 𝑗) for different values of 𝜆 = 10, 103, 105, and 107,
respectively from the left to the right. One can find the presence of a transition of the topology
of the distribution: When 𝜆 is small, the distribution forms one connected component, but, as 𝜆
becomes larger, the distribution is deformed, and eventually splits into two connected components.
This transition is very similar to a matrix counter part, namely, the Gross-Witten-Wadia transition
[29, 30] and the transition between the one-cut and two-cut solutions in the matrix model [31]. The
same transition can be found for 𝑄 = 𝑄𝑆𝑂 (3) shown in Figure 3, and also for 𝑄 = 𝑄𝑆𝑂 (4) [20].

Characteristics of the two phases divided by the transition can be stated as follows. In the
phase which appears for smaller 𝜆 can be called the quantum phase. There the fluctuation of 𝜙 𝑗2

is large. On the other hand, the phase which appears for larger 𝜆 can be called the classical phase.
In this phase, the distribution of 𝜙 𝑗2 splits into two bunches, an inner bunch and an outer one. The
fluctuation of 𝜙 𝑗2 is suppressed, because 𝜙 𝑗2s are concentrated around one of the bunches. The

6This very common aspect can be explicitly seen by comparing, for example,
∑𝑀

𝑚=−𝑀 e𝑖𝑚𝜃 and
∑𝑀

𝑚=−𝑀 e−𝛼𝑚2+𝑖𝑚𝜃 .
The former function is a non-local oscillating function, while the latter moderated one has a peak concentrated around
𝜃 ∼ 0.

7The norm of a tensor is defined by |𝑄 | =
√︁
𝑄𝑎𝑏𝑐𝑄𝑎𝑏𝑐 .
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Figure 3: The histograms of 𝜙 𝑗2 for 𝑄 = 𝑄𝑆𝑂 (3) with 𝑁 = 16 (𝐿 = 3), 𝑅 = 85, and 𝛼 = 0.5. The values of
𝜆 are 10, 103, 105, and 107, respectively from the left to the right.

Figure 4: The parameter regions of the quantum and the classical phases.
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Figure 5: The histograms of 𝜙 𝑗
𝑎𝜙

𝑘
𝑎 for 𝑄 = 𝑄𝑆𝑂 (2) with 𝑁 = 15 (𝑀 = 7), 𝑅 = 76, and 𝛼 = 0.5. A cut,

𝜙
𝑗
𝑎𝜙

𝑘
𝑎 > 0.1, is set for the histograms for convenience to ignore large accumulations around 𝜙 𝑗

𝑎𝜙
𝑘
𝑎 ∼ 0. The

values of 𝜆 are 10, 103, 105, and 107, respectively from the left to the right.

concentration becomes stronger as 𝜆 becomes larger. In Figure 4, the parameter regions of the
quantum and the classical phases are shown. It shows that the classical phase appears when 𝜆 and
𝑁 are large.

In fact, the semi-classical nature of the classical phase is not restricted to 𝜙 𝑗2, but is also
shared by the inner products, 𝜙 𝑗

𝑎𝜙
𝑘
𝑎, as shown in Figure 5. These observations lead to the following

picture of the classical phase. When 𝜆 becomes large, the dynamics of the system (21) requires
𝑄𝑎𝑏𝑐 ∼ ∑𝑅

𝑗=1 𝜙
𝑗
𝑎𝜙

𝑗

𝑏
𝜙
𝑗
𝑐. In the classical phase, however, what actually happens is that the sum is

dominated by the 𝜙 𝑗s belonging to the outer bunch,

𝑄𝑎𝑏𝑐 ∼
∑︁

𝜙 𝑗 ∈ Outer

𝜙
𝑗
𝑎𝜙

𝑗

𝑏
𝜙
𝑗
𝑐, (28)

while 𝜙 𝑗 ∈ Inner bunch can be ignored as small contributions. Moreover, the inner products
between 𝜙 𝑗 ∈ Outer bunch are semi-classical. Therefore the classical phase can be characterized
by the following set of semi-classical order parameters:

{𝜙𝑖𝑎𝜙
𝑗
𝑎 | 𝜙𝑖 , 𝜙 𝑗 ∈ Outer bunch}. (29)

10
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Because the pattern of (29) generally breaks the replica symmetry, which is the symmetry of
shuffling 𝜙 𝑗s, the classical phase can also be rephrased as the phase with a spontaneous replica
symmetry breaking. We will see in Section 5 that the pattern of the order parameter (29) can be
interpreted as emergence of discrete 𝑆𝑛 for 𝑄 = 𝑄𝑆𝑂 (𝑛+1) .

We would like to add that the appearance of (28) in the classicl phase would potentially be
very important in a completely different context. A tensor rank decomposition8 (often called CP
decomposition) of a tensor is a decomposition of a tensor into rank-one tensors [32–35],

𝑄𝑎𝑏𝑐 =

�̃�∑︁
𝑗=1

𝜙
𝑗
𝑎𝜙

𝑗

𝑏
𝜙
𝑗
𝑐, (30)

where �̃� is called the rank of 𝑄, if it is the minimum value which realizes a decomposition.
The tensor rank decomposition is known to be quite useful in analysis of tensors generated from
real-life data. However it is known that the tensor rank decomposition is often problematic, one
of the reasons of which comes from that there is no efficient way to determine the rank of a
tensor [36]. Since we cannot know the rank of a tensor beforehand, it is usually necessary to
repeat optimization processes, assuming different values of �̃� each time, to reach an appropriate
(approximate) decomposition. Moreover it is difficult to even know whether a decomposition is
appropriate or not, because we cannot well discriminate an over-optimized decomposition with a
wrong �̃�, which does not properly reflect the true nature of a tensor. On the other hand, what looks
remarkable in (28) is that a reasonable value of �̃�, namely, the number of 𝜙 𝑗 ∈ Outer bunch, is
determined automatically by the dynamics, even though 𝑅 is (quite) larger than the rank of𝑄. In fact
it can be checked that the numbers of 𝜙 𝑗 ∈ Outer bunch are the same as (or very near to) the ranks of
𝑄 in our cases9. Though Monte Carlo simulations are generally more costly than optimizations, it
would be interesting to pursue useful applications of this phenomenon of dynamical determination
of ranks.

5. Emergence of semi-classical spacetimes

In this section, we interpret the pattern of the order parameter (29) as emergence of a space.
To see this, let us first note that the fluctuation is suppressed in the classical phase. Therefore, if the
system is in the classical phase, it does not lose generality to just pick up one data as a representative
from a MC sequence (typically having size of 104 ∼ 106). Then we collect the 𝜙 𝑗s belonging to

the outer bunch and compute the distances between every pair, |𝜙𝑖 − 𝜙 𝑗 | =
√︃
(𝜙𝑖𝑎 − 𝜙 𝑗

𝑎) (𝜙𝑖𝑎 − 𝜙 𝑗
𝑎).

This process determines the nearest neighbor pairs among 𝜙 𝑗s, and topological relations can be
obtained by connecting them. In Figure 6, this is done for 𝑄 = 𝑄𝑆𝑂 (2) . One can find that the
topological relation clearly shows an emergence of 𝑆1. This is done for 𝑄 = 𝑄𝑆𝑂 (3) in Figure 7,
showing an emergence of 𝑆2. The 𝑄 = 𝑄𝑆𝑂 (4) case is not shown, because it is difficult to see 𝑆3 on
a two-dimensional sheet.

8A tensor rank decomposition depends generally on whether a tensor is decomposed into real or complex rank-one
tensors and also on whether rank-one tensors are symmetric or not. The present one in the text is a real symmetric tenor
rank decomposition.

9This can be checked by comparing with the decomposition by optimizations using for instance the program used in
[37].
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Figure 6: Left: The histogram of distances |𝜙 𝑗 − 𝜙𝑘 | for 𝑄 = 𝑄𝑆𝑂 (2) with 𝑁 = 15 (𝑀 = 7), 𝑅 = 76,
𝛼 = 0.5, and 𝜆 = 107. The nearest neighbor pairs have distances ∼ 0.55. Right: The nearest neighbor pairs
are connected, where each point represents each 𝜙 𝑗 in the outer bunch.
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Figure 7: Left: The histogram of distances |𝜙 𝑗 − 𝜙𝑘 | for 𝑄 = 𝑄𝑆𝑂 (3) with 𝑁 = 16 (𝐿 = 3), 𝑅 = 85,
𝛼 = 0.5, and 𝜆 = 107. The nearest neighbor pairs have distances ∼ 0.52. Right: The nearest neighbor pairs
are connected by lines, where each point represents each 𝜙 𝑗 in the outer bunch.

The above procedure reveals the topological aspects of the emergent spaces. We can also study
geometric aspects by defining a matrix, which has similarity with the Laplacian on an emergent
space. Let us again take one data, and take the 𝜙 𝑗s in the outer bunch. Then let us define a matrix
from the inner products,

𝐴 𝑗𝑘 := 𝜙 𝑗
𝑎𝜙

𝑘
𝑎, ( 𝑗 , 𝑘 = 1, 2, . . . , �̃�), (31)

where �̃� is the total number of the 𝜙 𝑗s in the outer bunch, and we have relabeled them by 𝜙 𝑗 ( 𝑗 =
1, 2, . . . , �̃�) without loss of generality.

This matrix (31) has zero or positive eigenvalues in general. In our cases treated below, 𝑁 < �̃�

holds and 𝐴 has a number of zero eigenvalues. Therefore, it would be more natural to consider the
following matrix,

𝐵𝑎𝑏 :=
�̃�∑︁
𝑗=1

𝜙
𝑗
𝑎𝜙

𝑗

𝑏
, (32)

which has the same positive eigenvalues as 𝐴. In our cases, the eigenvalues of 𝐵 are all positive,
and it is possible to consider a matrix,

𝐾 = − log(𝐵). (33)
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Figure 8: Left: Spectra of 𝐾 −min(𝐾) for𝑄 = 𝑄𝑆𝑂 (2) with 𝑁 = 15 (𝑀 = 7), 𝑅 = 76, 𝛼 = 0.5, and 𝜆 = 107.
�̃� = 22 in this case. Middle: The same for 𝑄 = 𝑄𝑆𝑂 (3) with 𝑁 = 16 (𝐿 = 3), 𝑅 = 85, 𝛼 = 0.5, and 𝜆 = 107.
�̃� = 32. Right: The same for 𝑄 = 𝑄𝑆𝑂 (4) with 𝑁 = 30, 𝑅 = 264, 𝛼 = 0.5, and 𝜆 = 107. �̃� = 78.
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Figure 9: The histograms of |𝜙 𝑗 |2 for 𝑧 = −3/17, 0, 3/17 from the left panel to the right, respectively. The
parameters are 𝑄𝑆𝑂 (2) with 𝑁 = 15 (Λ = 7), 𝜆 = 107, and 𝛼 = 0.5.

In Figure 8, the eigenvalues of 𝐾 − min(𝐾) are shown for 𝑄 = 𝑄𝑆𝑂 (𝑛+1) (𝑛 = 1, 2, 3). The
eigenvalues look very much like those of Laplacians on 𝑆𝑛. This supports that the emergent spaces
are not only topologically but also geometrically 𝑆𝑛.

6. Different values of 𝑄

In the previous sections, we only considered 𝑆𝑂 (𝑛 + 1) symmetric values of 𝑄 with the
particular representations on 𝑄, as in Section 4. In this section, we consider perturbations of the
values or change the representations to see what happens.

The perturbations we consider have the form,

𝑄 =
𝑄𝑆𝑂 (𝑛+1) + 𝑧 𝑄𝐵

√
1 + 𝑧2

, (34)

where 𝑧 is a deformation parameter, and 𝑄𝐵 ( |𝑄𝐵 | = 1) is a tensor which breaks 𝑆𝑂 (𝑛 + 1)
symmetry. Of course it is not possible to consider all the possibilities of𝑄𝐵, and hence we consider
a perturbation given by

𝑄𝐵
𝑎𝑏𝑐 = const. ·

{
cos [0.1(𝑎 + 𝑏 + 𝑐)] if 𝑄𝑆𝑂 (𝑛+1)

𝑎𝑏𝑐
= 0

0 otherwise
, (35)

where const. is taken so that |𝑄𝐵 | = 1. This perturbation is so meaningless that this could represent
a general aspect under perturbations. Figure 9 shows the result for 𝑄𝑆𝑂 (2) . The perturbations turn
the classical phase into the quantum.

One can also change the representations. In Section 4, the representations of the 𝑆𝑂 (𝑛 + 1)
symmetries on 𝑄 are taken successively from the trivial representation to a representation labeled

13
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Figure 10: Dependence of phases on representations. Left two panels: 𝑄𝑆𝑂 (2) with 𝑀 = 7, 𝜆 = 107, and
𝛼 = 0.5. Here 𝑝 = 0 and 𝑝 = 0, 1 are dropped respectively in the left and the right. Right two panels: 𝑄𝑆𝑂 (3)

with 𝐿 = 3, 𝜆 = 107, and 𝛼 = 0.5. 𝑙 = 0 and 𝑙 = 0, 1 are dropped respectively in the left and the right.

by a cutoff parameter. This is physically a natural choice, because the cutoff can be naturally
associated to a small scale cutoff of a space. However, if we do not care this physical interpretation,
it is free to consider any other representations. An option is dropping part of the irreducible
representations taken in Section 4. Figure 10 shows some results when this is carried out. Dropping
some representations tend to make the classical phase less likely to appear.

As a summary, the study of this section shows that the Lie-group symmetric values of 𝑄 with
the physically natural choices of representations taken in Section 4 make the classical phase likely
to appear, which emergence of spacetimes occurs, compared to the cases with perturbed 𝑄 or with
other representations.

7. Speculations on the evolution of spacetimes in CTM

By performing a rescaling 𝜙 → |𝑄 | 1
3 𝜙 in (18), one can obtain the following expression which

can be used in place of (19):

Ψ(𝑄, 𝜆) = const. |𝑄 | 𝑁𝑅
3 𝑍�̃�,𝜆 |𝑄 |2

〈
𝑅∏
𝑗=1

Airy(−|𝑄 | 2
3 𝜙 𝑗2)

〉
�̃�,𝜆 |𝑄 |2

, (36)

where we have introduced a normalized tensor, �̃� = 𝑄/|𝑄 |, satisfying |�̃� | = 1. With this expression
we will speculatively discuss “time evolution" in CTM.

The first thing we must assume is what should be taken as time in CTM. This is a non-trivial
question which commonly appears in quantizing spacetime diffeomorphism invariant (or analogous)
theories [38]. From a rigid point of view, one must introduce a clock system which counts time. In
this paper, however, we would rather like to leave this interesting subject for future work, and just
assume time is positively correlated with |𝑄 |. This assumption comes from the agreement between
CTM for 𝑁 = 1 and the mini-superspace treatment of GR, in which 𝑄 is indeed proportional to the
spatial volume 𝑎𝑑 of GR, where 𝑎 is the spatial scale factor and 𝑑 is the spatial dimension. Though
we do not know whether |𝑄 | is proportional to the spatial volume for the 𝑁 > 1 case as well, we
would be able to assume that time is roughly positively correlated with |𝑄 | also for 𝑁 > 1.

To discuss time evolution under this assumption, let us study the |𝑄 | dependence of the wave
function (36) with fixed �̃�. There are two effects: One is the increase of the effective coupling
𝜆 |𝑄 |2, and the other is the increase of the coefficients in the argument of the Airy functions in (36).

Let us first discuss the former effect. It is obvious that, when |𝑄 | = 0, the system is in
the quantum phase. As |𝑄 | increases, the effective coupling becomes larger, and the system may
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Figure 11: The illustration of the “time evolution" in CTM. Only �̃�s in the classical phase remain, as |𝑄 |
becomes larger. The values of |𝑄 | in the figures are taken arbitrary for illustration.

eventually encounter a transition to the classical phase. As suggested in some examples in Section 6,
it would also be possible that there are no transitions however large |𝑄 | becomes. The results there
also suggest that the transition occurs at relatively smaller values of |𝑄 | for Lie-group symmetric
�̃�.

Let us next discuss the latter effect. In fact the latter effect is more interesting, reflecting a
quantum aspect of CTM. Let us consider the quantum phase, where the fluctuations of 𝜙 𝑗2s are large,
as shown in Section 4. When |𝑄 | becomes larger, the fluctuations are enhanced in the argument of
the Airy functions in (36). This means that, when |𝑄 | becomes larger, the wave function is more
suppressed because the cancellations dominate more (Recall that the Airy function is oscillatory as
in Figure 1). Therefore, the wave function will be more suppressed as |𝑄 | becomes larger in the
quantum phase than in the classical phase. Some explicit cases of the suppression can be found in
the previous paper [20], where one can find a rather strong suppression of the expectation value,
⟨∏ 𝑗 Airy⟩, in (36).

The above consideration leads to the following speculative picture about the “time evolution"
in CTM, as illustrated in Figure 11. When |𝑄 | = 0, the system is in the quantum phase whatever
values �̃� takes. Then, as |𝑄 | develops, the systems at some �̃�s encounter transitions to the classical
phase. Since the wave function in the quantum phase is more suppressed as |𝑄 | increases, the
wave function gradually develop a structure in which only �̃�s in the classical phase remain (See
the rightmost panel). The amplitudes of the wave function at such �̃�s will be larger, as the system
encounters the transition at smaller values of |𝑄 | (Compare the right three panels).

8. Summary and future prospects

In this paper, we have reviewed some preliminary results of the study of the wave function of
CTM [9] in 𝑄-representation, which was performed by the Hamiltonian Monte Carlo simulation
with the reweighting method [19, 20]. The most important result was the discovery of the classical
phase, in which classical spacetimes emerge. More concretely, we have demonstrated the emergence
of discrete 𝑛-dimensional spheres for 𝑆𝑂 (𝑛+1)-invariant values of𝑄 with physically natural choices
of representations. Based on the results, we have speculated how spacetimes evolve in CTM: Initially
the system is totally in the quantum phase with no classical structures, but, as time develops (namely,
|𝑄 | becomes larger), some configurations (described by �̃�) encounter the transition to the classical
phase to generate classical spaces, and only these configurations eventually remain, since all the
other configurations in the quantum phase are eventually suppressed to vanish.
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A next physically important question arising from this paper will be whether the classical
spacetimes which emerge in CTM follow the equation of motion of GR. Since CTM enjoys similar
structure as the Hamiltonian formalism of GR (namely, the ADM formalism), this is highly expected.
In fact, a few connections between CTM and GR have already been known [12–14]: In particular
in [14], it has been shown that the classical equation of motion of CTM in a formal continuum limit
agrees with a Hamilton-Jacobi equation of GR with a Hamilton’s principal function of a local form.
It would be interesting to perform similar analysis for the configurations at wave function peaks
with emergence of classical spacetimes.

Another interesting question would be to more thoroughly study the transition between the
quantum and the classical phases. The transition has the form of a topological change of distribu-
tions, which has some similarity with the matrix counter parts, the transition between the one-cut
and two-cut solutions in the matrix model [31] or the Gross-Witten-Wadia transition [29, 30]. How-
ever, we do not currently know how sensible the similarity is, since properties of the transition are
largely unknown, such as the thermodynamic limit to make it a sharp phase transition, the order of
the transition, and so on. Moreover the transition was found for the system defined by the real part
of the wave function (in the reweighting method), but, from the point of view of CTM, the transition
should be studied for the full system including the complex part. It would also be exciting to explore
the analogy between spacetimes and glasses, since the expression of the wave function has good
similarities with the spherical 𝑝-spin model for spin glasses [39, 40]. In fact, the transition to the
glassy phase is described by the replica symmetry breaking, which is nothing but what characterizes
the classical phase, in which spacetimes emerge in CTM.

Another more ambitious direction of study is to reveal phenomenological aspects of CTM. It
would be highly interesting if one can mange to make precise the time evolution of the emergent
spacetimes, and compute some observables which can be compared with astrophysical observations,
such as primordial fluctuations. This would approve/disapprove CTM as a model of the Universe.

Last but not least, we would like to point out a potential importance of the classical phase
in terms of tensor rank decomposition. Tensor rank decomposition [32–35] is known to be an
effective method to extract information from tensors generated from real-life data, but there are
some technical issues. One is that, since there is no efficient way to know the rank of a tensor
beforehand [36], one usually has to repeat the optimization process of tensor rank decomposition,
changing trial values of ranks each time, until one gets a satisfactory decomposition. This is not
only time-consuming but also means that there are ambiguities of extracted information, since the
condition of a satisfactory tensor rank decomposition is ambiguous. On the other hand, what is
interesting in the classical phase is that a tensor rank decomposition is automatically performed
with a dynamically determined rank. Moreover the number is exactly or very near to the rank of a
tensor, at least in our cases. Though Monte Carlo simulations are generally much costly compared
to optimizations, it would be interesting to pursue applications of this dynamical method of tensor
rank decomposition to tensors from real-life.
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