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1. Introduction and motivation

Twisted and bi-twisted R-Poisson sigma models [1] are topological field theories in diverse
dimensions that constitute a natural extension of the two-dimensional Poisson [3, 4] and 3-form-
twisted (or Wess-Zumino-Witten) Poisson sigma models [5]. Their underlying geometrical structure
encompasses and extends Poisson geometry to the so-called R-Poisson geometry and its twisted
versions.1 R-Poisson geometry comprises a manifold 𝑀 equipped with a Poisson structure Π (an
antisymmetric bivector) and an additional 𝑅-structure (an antisymmetric multivector of order 𝑝+1),
such that the antisymmetric multivector of order 𝑝+2 obtained from the natural Schouten-Nijenhuis
bracket of multivector fields [Π, 𝑅]SN vanishes. If 𝑀 is additionally endowed with a closed 𝑝 + 2
form 𝐻, then this Schouten-Nijenhuis bracket can be nonvanishing, instead being controlled by the
contraction of 𝐻 with the Poisson bivector 𝑝+2 times. This (𝑀,Π, 𝑅, 𝐻) geometry is called twisted
R-Poisson. At the field theory level of twisted R-Poisson sigma models, it governs the invariance
of the sigma model action functional under gauge transformations and the on-shell closure of the
gauge algebra. More generally, it is the main consistency condition for the classical master equation
to hold, when one performs the Batalin-Vilkovisky (BV) quantization of the topological field theory.

Why, however, should we be interested in structures such as the one described in the previous
paragraph? The main motivation to introduce twisted R-Poisson sigma models was the work of
Ikeda and Strobl [6], who demonstrated that the AKSZ construction of topological field theories
does not work for the WZW-Poisson sigma model in two dimensions and moreover they found the
solution to the classical master equation beyond AKSZ. The AKSZ construction [7] was developed
as a general geometrical method to find the solution to the classical master equation in the BV
quantization of topological strings and higher branes. Its backbone is a QP structure, a differential
graded (namely, one equipped with a cohomological vector field 𝑄) symplectic supermanifold,
which once identified it can serve as the target space in a sigma model with a differential graded or
Q-manifold as source spacetime.

Prototypically, one considers a Poisson manifold (𝑀,Π) and its cotangent bundle 𝑇∗𝑀 with a
Lie algebra structure on its sections given by the Koszul-Schouten bracket of differential 1-forms.
Anchoring this structure to the tangent bundle 𝑇𝑀 by means of a smooth map Π♯ : 𝑇∗𝑀 → 𝑇𝑀

induced by the bivector Π, assigns a so-called Lie algebroid structure to the cotangent bundle.
Furthermore, using Vaintrob’s isomorphism between Lie algebroids on a vector bundle 𝐸 and Q-
manifolds on the degree shifted vector bundle 𝐸 [1] [8], where the fiber coordinates are assigned
degree 1 as appears in the brackets, one considers the Q-manifold 𝑇∗ [1]𝑀 with its accompanying
cohomological vector field of degree 1 and its natural odd symplectic P-structure as a cotangent
bundle. Realizing that the symplectic form of the P-structure is invariant along the flow of the
cohomological vector field Q, there exists a QP structure on 𝑇∗ [1]𝑀 and the AKSZ construction
may be applied. The result is the BV action of the Poisson sigma model, i.e. the solution to its
classical master equation, and of the topological A-model after gauge fixing.

However, in the presence of a 3-form 𝐻 on 𝑀 , although both Q and P structures continue to
co-exist on 𝑇∗ [1]𝑀 , nevertheless the strict compatibility of the two is lost. Indeed the change in the
symplectic form along the flow of the cohomological vector field ceases to be zero and it becomes
an exact 2-form controlled by the contraction of 𝐻 with the 𝐻-twisted Poisson bivector Π two times.

1Further details on the geometry and the extension to Dirac structures may be found in Ref. [2].
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Thus the QP structure is obstructed and this is the basic reason that the AKSZ construction does
not apply—and even a naive generalization of it does not yield a correct result, as discussed in [6].

Clearly, the reason for the above conundrum is the presence of a Wess-Zumino term in the
two-dimensional WZW-Poisson sigma model. One may then ask how special is this situation. In
other words, are there any other examples of topological field theories where the AKSZ construction
does not apply and nevertheless the classical master equation can be solved and be given a geometric
interpretation? Twisted R-Poisson sigma models are a large class of such examples. For instance,
the AKSZ construction in three dimensions leads to an extension of Chern-Simons theory known
as the Courant sigma model [9–12]. Suppose that we consider this theory on a membrane without
boundary and turn on a Wess-Zumino term, which in the present case it would be a 4-form supported
on a three-brane with boundary this membrane. Such 4-form-twisted Courant sigma models were
considered before in [13], but their BV action has not been studied. In our approach, this is fully
addressed and the BV action can be found, at least in the twisted R-Poisson subclass of twisted
Courant sigma models [14].

Recalling that the BV formalism was developed to quantize gauge systems with so-called open
gauge algebras, i.e. gauge algebras that close only on-shell, and reducible systems where not all
gauge parameters are independent, it is useful to mention that twisted R-Poisson sigma models are
examples of such theories. They are multiple stages reducible, since they contain higher degree
differential forms in their field content and moreover the algebra of gauge transformations contains
terms proportional to the classical equations of motion. One unorthodox feature that is usually
absent in discussions of the BV formalism is that the gauge algebra is in fact proportional to
products of equations of motion, i.e. it is nonlinear in them. Apart from being rather unusual, there
is nothing wrong with this property, since the gauge algebra is still on-shell closed. However, its
treatment becomes more complicated.

From the perspective of differential graded manifolds, twisted R-Poisson geometry is realized
on the higher degree-shifted cotangent bundle M = 𝑇∗ [𝑝]𝑇∗ [1]𝑀 . This is a Q-manifold with four
types of coordinates of degrees 0, 1, 𝑝 − 1 and 𝑝 respectively. Indeed, suppose that the ordinary
manifold 𝑀 is equipped with (ordinary, bosonic, degree-0) coordinates 𝑥𝑖 . Then a coordinate
system on the degree-shifted cotangent bundle M0 = 𝑇∗ [1]𝑀 contains the coordinates 𝑥𝑖 together
with anticommuting, degree-1, fermionic coordinates 𝑎𝑖 . From another point of view, thinking
of the cotangent bundle as a phase space, 𝑎𝑖 are the graded momenta of the coordinates 𝑥𝑖 . In
a second step, one considers the higher phase space M = 𝑇∗ [𝑝]M0. A coordinate system on it
consists of the coordinates 𝑥𝑖 , 𝑎𝑖 on the base M0 along with the corresponding graded momenta
such that the symplectic form is of degree 𝑝. These are then the degree-𝑝 momenta 𝑧𝑖 of 𝑥𝑖 and the
degree-(𝑝 − 1) momenta 𝑦𝑖 of 𝑎𝑖 . As we will discuss below, this perspective is particularly useful
to understand the obstruction to QP-ness discussed above.

A further motivation to study twisted R-Poisson sigma models regards world volume per-
spectives to string theory backgrounds with general fluxes. Notably, it has been shown that in
a number of cases of interest, there exists “triple points” (see [15] and references therein for the
gradual development of this perspective), that is sets of algebraic and differential equations that
may be interpreted in three distinct ways: (i) as the equations governing the gauge structure and the
classical master equation of certain world volume topological quantum field theories (topological
brane sigma models), (ii) as consistency conditions (Bianchi identities) in flux compactifications
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Figure 1: Triple points

of certain target space theories (10 or 11-dimensional supergravities or double field theory), and
(iii) as the local coordinate form of the axioms of certain higher structures such as Courant or DFT
algebroids. This may be sketched as in Figure 1.

Apart from being motivated by this interrelation, the work reviewed in this contribution also
clarifies a further issue. In a number of works relating membrane and threebrane sigma models to
string and M-theory backgrounds [15–19], the action functionals, gauge or BRST transformations
and field equations are defined on a local patch only. Following the reasoning on target space
covariant formulations discussed in [6] for the WZW-Poisson sigma model, one can now express
such topological sigma models in a fully covariant form and only in terms of tensorial quantities that
are associated to the notion of “𝐸-geometry”, i.e. the study of 𝐸-connections together with their
𝐸-torsion and 𝐸-curvature. The latter constitutes the application of ordinary differential-geometric
concepts to algebroids 𝐸 (in the present context, Lie algebroids in particular.)

The rest of this contribution is structured as follows. Section 2 contains a brief discussion of
some essential features of the WZW-Poisson sigma model, in particular its description on a local
patch and its covariant formulation in terms of 𝐸-connections with 𝐸 = 𝑇∗𝑀 . The same features are
then discussed for the twisted R-Poisson sigma models that are introduced in the same section. We
complement this with a discussion about further deformations of twisted R-Poisson sigma models
in special dimensions and a clarification of their relation to Poisson and twisted Poisson sigma
models in two dimensions. Section 3 contains a discussion on the differential graded manifold
perspective to twisted R-Poisson structures and clarifies the lack of QP structure in the presence of
Wess-Zumino terms. Building on this, we then recall the main steps of the AKSZ construction in

4



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
7
1

Twisted R-Poisson Sigma Models Athanasios Chatzistavrakidis

the examples of the 2D Poisson and 3D Courant sigma model, as well as the main steps required to
find the solution to the classical master equation beyond AKSZ through the traditional BV approach.
We conclude in section 4 with a number of comments, take-home messages and an outlook.

2. Twisted R-Poisson sigma models & beyond

2.1 Twisted Poisson in 2D

A Poisson structure can be described in several equivalent ways. For our purposes it is
useful to think of it as the pair (𝑀,Π) of a smooth manifold 𝑀 and an antisymmetric 2-vector
Π ∈ Γ(∧2𝑇𝑀), the Poisson structure. That Π is a Poisson structure is expressed as the vanishing
of the Schouten-Nijenhuis bracket of Π with itself,

[Π,Π]SN = 0 . (1)

We recall that the Schouten-Nijenhuis bracket is the natural extension of the Lie bracket of vector
fields to multivector fields. For 𝑣’s and 𝑢’s being vector fields with Lie bracket [𝑣𝑖 , 𝑢 𝑗], it takes a
𝑝-vector and a 𝑞-vector and gives a (𝑝 + 𝑞 − 1)-vector as

[𝑣1 . . . 𝑣𝑝, 𝑢1 . . . 𝑢𝑞]SN =
∑︁
𝑖, 𝑗

(−1)𝑖+ 𝑗 [𝑣𝑖 , 𝑢 𝑗]𝑣1 . . . 𝑣𝑖−1𝑣𝑖+1 . . . 𝑣𝑝𝑢1 . . . 𝑢 𝑗−1𝑢 𝑗+1 . . . 𝑢𝑞 , (2)

with wedge products understood on the right hand side. For example, Eq. (1) reads

Π [𝑖 |𝑙 |𝜕𝑙Π
𝑗𝑘 ] = 0 , (3)

which is nothing but the Jacobi identity for the Poisson bracket of functions 𝑓 and 𝑔,

{ 𝑓 , 𝑔} = Π(d 𝑓 , d𝑔) . (4)

A Poisson structure can be twisted by a 3-form. A 3-form twisted Poisson manifold is the
triple (𝑀,Π, 𝐻3) of a smooth manifold equipped with an antisymmetric 2-vector Π and a 3-form
𝐻3 such that [20]

1
2
[Π,Π]SN = ⟨⊗3Π, 𝐻3⟩ and d𝐻3 = 0 . (5)

The failure of Π to be Poisson is controlled by the closed 3-form 𝐻3 and measured by its triple
contraction with Π.

Both Poisson and twisted Poisson structures bear a relation to the structure of a Lie algebroid
(𝑀, 𝜌, [·, ·]𝐸). This is a vector bundle 𝐸 over a smooth manifold 𝑀 , anchored to the tangent bundle
via a smooth bundle map 𝜌 : 𝐸 → 𝑇𝑀 and equipped with a Lie algebra structure on its sections.
In other words, there exists a binary, skew-symmetric operation, a Lie bracket [𝑒, 𝑒′]𝐸 for sections
𝑒, 𝑒′ ∈ Γ(𝐸), which satisfies the Leibniz rule

[𝑒, 𝑓 𝑒′]𝐸 = 𝑓 [𝑒, 𝑒′]𝐸 + 𝜌(𝑒) 𝑓 𝑒′ . (6)

Poisson structures and their twisted extension are related to this concept when one makes the
choice that the vector bundle is the cotangent bundle, namely 𝐸 = 𝑇∗𝑀 , the map 𝜌 is the “musical”
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isomorphismΠ♯ : 𝑇∗𝑀 → 𝑇𝑀 induced by a (possibly twisted, in the above sense) Poisson structure
on 𝑀 and the bracket on sections of the cotangent bundle (that is, 1-forms) is the (twisted) Koszul
bracket

[𝑒, 𝑒′]𝐾 = LΠ♯ (𝑒)𝑒
′ − LΠ♯ (𝑒′)𝑒 − d(Π(𝑒, 𝑒′)) + 𝐻3(Π♯ (𝑒),Π♯ (𝑒′)) . (7)

Then (𝑇∗𝑀,Π♯, [·, ·]𝐾 ) is a Lie algebroid if and only if the defining conditions (5) hold.
A topological sigma model in two dimensions can be constructed on the basis of twisted

Poisson geometry. It comprises a field content of real scalar fields 𝑋 𝑖 = 𝑋 𝑖 (𝜎) accompanied with
worldsheet 1-forms 𝐴𝑖 = 𝐴𝑖𝛼 (𝜎)d𝜎𝛼, where 𝜎𝛼, 𝛼 = 0, 1 are local coordinates on the worldsheet
Σ2. In more geometric terms, the fields are components of

𝑋 ∈ 𝐶∞(Σ2, 𝑀) and 𝐴 ∈ Ω1(Σ2, 𝑋
∗𝑇∗𝑀) . (8)

We observe that the 1-forms 𝐴𝑖 take values in the pull-back bundle of the cotangent bundle of 𝑀
through the pull-back map of the sigma model map 𝑋 : Σ2 → 𝑀 . The action functional of the
topological field theory is [5]

𝑆HPSM =

∫
Σ2

(
𝐴𝑖 ∧ d𝑋 𝑖 + 1

2
Π𝑖 𝑗 (𝑋) 𝐴𝑖 ∧ 𝐴 𝑗

)
+
∫
Σ3

𝑋∗𝐻3 . (9)

The twist 𝐻3 of the geometrical structure manifests itself as a Wess-Zumino term in the theory,
supported on an open membrane with boundary the worldsheet Σ2 and obeying certain conditions
that render the theory well-defined as a 2D one, see e.g. [21].

The 3-form-twisted Poisson sigma model described above is an example of a gauge theory
with gauge algebra that does not close off-shell, in other words of one where the commutator of two
gauge transformations result in a trivial gauge transformation. The gauge symmetries of the theory
are

𝛿𝜖 𝑋
𝑖 = Π 𝑗𝑖𝜖 𝑗 and 𝛿𝜖 𝐴𝑖 = d𝜖𝑖 + 𝜕𝑖Π

𝑗𝑘𝐴 𝑗𝜖𝑘 +
1
2
Π 𝑗𝑘𝐻𝑖 𝑗𝑙 (d𝑋 𝑙 − Π𝑙𝑚𝐴𝑚)𝜖𝑘 . (10)

The quantities 𝜕𝑖Π 𝑗𝑘 that appear in the gauge transformation of the 1-forms 𝐴𝑖 are essentially the
structure functions of the gauge algebra as well as the ones of the Lie algebroid (Koszul) bracket in a
coordinate system—we thus see that apart from having a so-called “open” gauge algebra, the theory
at hand has a so-called “soft” gauge algebra too, i.e. one where the structure “constants” are not
constant. The gauge transformation of 𝐴𝑖 is then just the ordinary one for nonlinear gauge theory,
save the ultimate 𝐻3-dependent term. This last term appears due to the Wess-Zumino term of the
theory and it cancels its contribution to 𝛿𝜖 𝑆HPSM. We will see below that the specific combination
of the 1-forms d𝑋 𝑖 and 𝐴𝑖 appearing in it, are in fact a special case of a general combination
for higher-dimensional topological sigma models with an underlying Poisson or twisted Poisson
structure.

The classical field equations of the theory read

𝐹𝑖 := d𝑋 𝑖 + Π𝑖 𝑗𝐴 𝑗 = 0 , 𝐺𝑖 := d𝐴𝑖 +
1
2
𝜕𝑖Π

𝑗𝑘𝐴 𝑗 ∧ 𝐴𝑘 +
1
2
𝐻𝑖 𝑗𝑘d𝑋 𝑗 ∧ d𝑋 𝑘 = 0 . (11)

We observe that the first one appears in the gauge transformation of 𝐴𝑖 . However, one should note
that it is not the parenthesis of the second term. Therefore, not all 𝐻-dependence of 𝛿𝜖 𝐴𝑖 resides
in a field equation dependent term.
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Before moving on, it is worth discussing the invariant geometrical meaning of what was
presented so far, following the reasoning in [6]. In a discussion like this, one should consider the
action functional itself, the gauge transformations and the field equations. However, in the present
case the action functional is essentially already taken case of. It suffices to notice that 𝐴 ∧ d𝑋 and
Π(𝐴 ∧ 𝐴) are well defined 2-forms, see for example [22]. In fact, the same holds for the gauge
transformation on 𝑋 and the field equation of 𝐴, which may be written as

𝛿𝜖 𝑋 = Π(𝜖, ·) and 𝐹 = d𝑋 + Π(·, 𝐴) , (12)

and we have indicated the slot where the contraction takes place.
What remain are the gauge transformation of 𝐴 and the field equation for 𝑋 . Observing that

both of them contain a partial derivative on the components of the tensor Π, it is clear that we need
a connection to turn this object into a tensor. This is an ordinary connection ∇ with torsion on 𝑀 .
In a coordinate system, its coefficients are Γ𝑖

𝑗𝑘
= Γ̊𝑖

𝑗𝑘
− 1

2Π
𝑖𝑙𝐻 𝑗𝑘𝑙, where Γ̊𝑖

𝑗𝑘
are symmetric in the

lower indices (they correspond to the coefficients of a connection ∇̊ without torsion) and therefore
the torsion of ∇ in component reads Π𝑖𝑙𝐻 𝑗𝑘𝑙 ≡ 𝐻𝑖 𝑗𝑘 . (We introduce a notation different than [6]
and [1], where this torsion tensor is denoted as Θ, maintaining the logic that indices of differential
form twists like 𝐻3 are raised with the map Π♯.) Moreover, note that a dual connection is naturally
induced on 𝑇∗𝑀 , usually denoted as ∇∗ and having coefficients −Γ𝑖

𝑗𝑘
.

Aside the above ordinary connection, we also have to consider a non-ordinary one, defined as
follows. Recall that a connection on a vector bundle 𝑉 is a linear map ∇ : Γ(𝑉) → Γ(𝑇∗𝑀 ⊗ 𝑉)
that satisfies the Leibniz rule

∇( 𝑓 𝑣) = 𝑓∇𝑣 + d 𝑓 ⊗ 𝑣 , 𝑣 ∈ Γ(𝑉), 𝑓 ∈ 𝐶∞(𝑀) . (13)

Associated to it is a covariant derivative ∇𝑋 : Γ(𝑉) → Γ(𝑉) along a vector field 𝑋 ∈ Γ(𝑇𝑀),
which satisfies the usual linearity conditions and the Leibniz rule

∇𝑋 ( 𝑓 𝑣) = 𝑓∇𝑋𝑣 + 𝑋 ( 𝑓 )𝑣 . (14)

These two common notions may be generalized to the case when 𝑋 is not a vector field but instead a
section of some suitable vector bundle 𝐸 , such as a Lie algebroid. Specifically, an 𝐸-connection on
𝑉 is then a linear map 𝐸∇ : Γ(𝑉) → Γ(𝐸∗ ⊗ 𝑉) and as such the associated 𝐸-covariant derivative
𝐸∇𝑒 with argument 𝑒 ∈ Γ(𝐸) satisfies a Leibniz rule with the help of the anchor map 𝜌:

𝐸∇𝑒 ( 𝑓 𝑣) = 𝑓 𝐸∇𝑒𝑣 + 𝜌(𝑒) 𝑓 𝑣 . (15)

Note that𝑉 can also have a Lie algebroid structure, in particular it can be 𝐸 itself, in which case one
would have an 𝐸-connection on 𝐸 . To summarize and avoid any potential confusion, one should
keep in mind that there are three different notions at play here: (i) an ordinary connection on 𝑉 , (ii)
an 𝐸-connection on 𝑉 and (iii) the special case of an 𝐸-connection on 𝐸 .

Like their ordinary counterparts, 𝐸-covariant derivatives on 𝐸 may have a non-vanishing
𝐸-torsion and 𝐸-curvature tensors, defined in a straightforward way as

𝐸𝑇 (𝑒, 𝑒′) = 𝐸∇𝑒𝑒′ − 𝐸∇𝑒′𝑒 − [𝑒, 𝑒′]𝐸 , (16)
𝐸𝑅(𝑒, 𝑒′) = [𝐸∇𝑒, 𝐸∇𝑒′] − 𝐸∇[𝑒,𝑒′]𝐸 , (17)
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and satisfying the usual properties such as 𝐸𝑇 (𝑒, 𝑒′) = − 𝐸𝑇 (𝑒′, 𝑒), 𝐸𝑇 ( 𝑓 𝑒, 𝑒′) = 𝑓 𝑇 (𝑒, 𝑒′) etc.
Furthermore, a useful notion that we will need in this paper is the basic curvature2 S, defined as

S(𝑒, 𝑒′) = L𝑒 (∇𝑒′) − L𝑒′ (∇𝑒) − ∇𝜌(∇𝑒)𝑒′ + ∇𝜌(∇𝑒′)𝑒 − ∇[𝑒, 𝑒′]𝐸 , (18)

for the ordinary connection ∇ on 𝐸 . It turns out that this basic curvature is given as [23]

S = ∇(𝐸𝑇) + 2Alt⟨𝜌,R⟩ , (19)

where R is the ordinary curvature of ∇. We will encounter this formula repeatedly in the field
theory setting of twisted R-Poisson sigma models.

Returning to the discussion of the invariant geometrical meaning of the gauge transformations
and field equations, the target space covariant result is

𝛿∇𝐴 = D𝜖 − 𝑇 (𝐴, 𝜖) and 𝐺∇ = D𝐴 − 1
2
𝑇 (𝐴, 𝐴) , (20)

where D is the induced differential by ∇ on the exterior algebra and 𝑇 is the 𝐸-torsion of the
𝐸-connection

𝐸∇𝑒𝑒′ := ∇Π (𝑒)𝑒
′ (21)

for the Lie algebroid (𝑇∗𝑀,Π♯, [·, ·]𝐾 ) encountered before and it is given as

𝑇 = −∇̊Π . (22)

Note that the 𝐸-torsion does not contain 𝐻3 at all, since it is controlled by the connection without
torsion ∇̊. All the 𝐻3 dependence is through the differential D [6].

2.2 Twisted R-Poisson in any dimension

After this brief introduction to twisted Poisson manifolds, their corresponding Lie algebroids
and the associated topological field theory, let us move on to the main concept underlying the
field theories we consider in this contribution, namely twisted R-Poisson manifolds. These are
equipped with the additional structure of a multivector field 𝑅 of order 𝑝 + 1. This can give rise
to a bracket that generalizes the Poisson bracket3 {·, ·}, however we directly describe the structure
in terms of the alternative formulation based on the Schouten-Nijenhuis bracket. Therefore, we
consider the quadruple (𝑀,Π, 𝑅, 𝐻) consisting of a smooth manifold 𝑀 equipped with a bivector
Π ∈ Γ(∧2𝑇𝑀), an antisymmetric multivector 𝑅 ∈ Γ(∧𝑝+1𝑇𝑀) of degree 𝑝 + 1 and a (𝑝 + 2)-form
𝐻 ∈ Γ(∧𝑝+2𝑇∗𝑀). This is called a twisted R-Poisson manifold when the following conditions hold
[1]4

[Π,Π]SN = 0 , [Π, 𝑅]SN = (−1) 𝑝+1⟨⊗𝑝+2Π, 𝐻⟩ and d𝐻 = 0 . (23)

2As explained in [23], this is the curvature of the splitting of the short exact sequence associated to every vector
bundle.

3Note that every multivector field defines a multiderivation on a manifold, namely a multilinear map 𝐶∞ (𝑀) ×
. . . 𝐶∞ (𝑀) → 𝐶∞ (𝑀) which is totally antisymmetric and a 𝐶∞-derivation in each of the arguments [24]. In addition,
the space of multiderivations and the space of multivector fields of the same order are in one-to-one correspondence.

4Note a sign correction in the second equation with respect to the original paper.
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For completeness and in absence of any other structure one may include in the definition the
requirement that [𝑅, 𝑅]SN = 0, although this does not appear in the field theoretic incarnation of
twisted R-Poisson target spaces. Evidently, for vanishing 𝐻 this should be called an (ordinary or
untwisted) R-Poisson structure. Moreover, when in addition 𝑅 is absent, this reduces to a standard
Poisson structure. Note that twisted Poisson structures are not included in this class; we explain
how they appear from this point of view in Section 2.3.

Much like the simpler case of Poisson structures, twisted R-Poisson structures give rise to
topological field theory. However, the corresponding topological sigma models are theories defined
in 𝑝+1 dimensions with 𝑝 ≥ 2. This can also be seen from the fact that the twist 𝐻 is a (𝑝+2)-form
and it appears in the field theory as a Wess-Zumino term. The field content of the topological field
theory is chosen such that it can accommodate a 2-vector background and it reads

(𝑋 𝑖 , 𝐴𝑖 , 𝑌 𝑖 , 𝑍𝑖) , (24)

with differential form degrees (0, 1, 𝑝−1, 𝑝) respectively and fields taking values in suitable bundles
pulled-back via the map 𝑋 : Σ𝑝+1 → 𝑀 whose components are the real scalars on the (𝑝 + 1)D
worldvolume Σ𝑝+1, namely

𝐴 ∈ Ω1(Σ𝑝+1, 𝑋
∗𝑇∗𝑀) 𝑌 ∈ Ω𝑝−1(Σ𝑝+1, 𝑋

∗𝑇𝑀) 𝑍 ∈ Ω𝑝 (Σ𝑝+1, 𝑋
∗𝑇∗𝑀) . (25)

To write down an action functional, we include all admissible terms for arbitrary 𝑝. We emphasize
that in spacial number of dimensions there might exist more admissible terms, as discussed in
Section 2.3. The generic action functional for 𝑝 ≥ 2 is

𝑆 (𝑝+1) =

∫
Σ𝑝+1

(
𝑍𝑖 ∧ d𝑋 𝑖 − 𝐴𝑖 ∧ d𝑌 𝑖 + Π𝑖 𝑗 (𝑋) 𝑍𝑖 ∧ 𝐴 𝑗 −

1
2
𝜕𝑘Π

𝑖 𝑗 (𝑋)𝑌 𝑘 ∧ 𝐴𝑖 ∧ 𝐴 𝑗 +

+ 1
(𝑝 + 1)!𝑅

𝑖1...𝑖𝑝+1 (𝑋) 𝐴𝑖1 ∧ · · · ∧ 𝐴𝑖𝑝+1

)
+
∫
Σ𝑝+2

𝑋∗𝐻 .

The gauge symmetries of the theory are found to be

𝛿𝑋 𝑖 = Π 𝑗𝑖𝜖 𝑗 , (26)

𝛿𝐴𝑖 = d𝜖𝑖 + 𝜕𝑖Π
𝑗𝑘𝐴 𝑗𝜖𝑘 , (27)

𝛿𝑌 𝑖 = (−1) 𝑝−1d𝜒𝑖 + Π 𝑗𝑖 𝜓 𝑗 − 𝜕 𝑗Π
𝑖𝑘
(
𝜒 𝑗𝐴𝑘 + 𝑌 𝑗𝜖𝑘

)
+ 1
(𝑝 − 1)!𝑅

𝑖 𝑗𝑖1...𝑖𝑝−1 𝐴𝑖1 . . . 𝐴𝑖𝑝−1𝜖 𝑗 , (28)

𝛿𝑍𝑖 = (−1) 𝑝d𝜓𝑖 + 𝜕𝑖Π
𝑗𝑘

(
𝑍 𝑗𝜖𝑘 + 𝜓 𝑗𝐴𝑘

)
− 𝜕𝑖𝜕 𝑗Π

𝑘𝑙

(
𝑌 𝑗𝐴𝑘𝜖𝑙 −

1
2
𝐴𝑘𝐴𝑙𝜒

𝑗

)
+ (29)

+ (−1) 𝑝
𝑝!

𝜕𝑖𝑅
𝑗𝑖1...𝑖𝑝 𝐴𝑖1 . . . 𝐴𝑖𝑝𝜖 𝑗 −

1
(𝑝 + 1)!Π

𝑘 𝑗𝐻𝑖 𝑗𝑙1...𝑙𝑝𝜖𝑘

𝑝+1∑︁
𝑟=1

(−1)𝑟
𝑟−1∏
𝑠=1

d𝑋 𝑙𝑠
𝑝∏
𝑡=𝑟

Π𝑙𝑡𝑚𝑡 𝐴𝑚𝑡
,

in terms of 3 gauge parameters 𝜖𝑖 , 𝜒𝑖 , 𝜓𝑖 of differential form degree (0, 𝑝 − 2, 𝑝 − 1) respectively.
Note that the last term in the gauge transformation of the highest-form field 𝑍𝑖 is the only one that
contains the components of the twist 𝐻. It appears together with all admissible combinations of d𝑋
and 𝐴 with suitably alternating sign so as to cancel the contribution of the Wess-Zumino term in
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the gauge variation of the action functional. As such, it is the generalization to higher dimensions
of the corresponding term in the gauge transformation of the 1-form in the twisted Poisson sigma
model. In addition, one can determine the four classical field equations of the theory. We will not
write them explicitly here, their precise form may be found in the original paper [1], however for
notation purposes we write

{𝐹𝑖 ⊃ d𝑋 𝑖 , 𝐺𝑖 ⊃ d𝐴𝑖 , F 𝑖 ⊃ d𝑌 𝑖 , G𝑖 ⊃ d𝑍𝑖} = 0 , (30)

by which we mean that the four field strengths appearing in the curly brackets start with the
differential on the corresponding field, they contain multiple nonlinear terms that we do not present
and the field equations are that they vanish.

The theory introduced above is a highly reducible constrained Hamiltonian system. Since
some of the fundamental fields are differential forms of degree higher than 1 and there are gauge
parameters that are not scalars, the gauge parameters are not all independent. In addition, the gauge
algebra of the theory is open, even in the absence of the twist 𝐻, which is not surprising. What
is somewhat unusual is that in the present case the commutator of gauge transformations does not
only contain linear terms in the field equations but also nonlinear ones. To illustrate this “nonlinear
openness”, we note for instance that the commutator of two gauge transformations on 𝑍𝑖 contains
on the right hand side a variety of terms,

[𝛿1, 𝛿2]𝑍𝑖 = 𝛿12𝑍𝑖+(. . . ) 𝑗𝑖 𝐺 𝑗+(. . . )𝑖 𝑗F 𝑗+(. . . )𝑖 𝑗𝐹 𝑗+(. . . )𝑖 𝑗𝑘𝐹 𝑗𝐹𝑘+· · ·+(. . . )𝑖 𝑗1... 𝑗𝑝𝐹 𝑗1 . . . 𝐹 𝑗𝑝 ,

where the ellipses denote known combinations of the background quantities, namely the components
of Π and 𝑅 and their derivatives. Note also that only the field strength 𝐹 appears nonlinearly.

One may now ask what is the target space covariant formulation of this class of theories.
Unlike the twisted Poisson sigma model, in the present case we already encounter quantities that
are not manifestly tensorial in the action functional. This is once more the partial derivative on
the components of the Poisson structure Π. What is more, the gauge transformations and the
field equations contain second derivatives on Π𝑖 𝑗 and also derivatives on the components of 𝑅. To
properly give an invariant meaning to all these, first of all we should introduce again a connection on
𝑇𝑀 , this time without torsion. We denote it again as ∇̊. This induces a dual connection on𝑇∗𝑀 and
also a covariant differential D̊ on the exterior algebra of differential forms. A well-defined procedure
than leads to all the covariant expressions for the gauge transformations and field equations for all
fields of the theory. Indicatively, let us present here two illustrative ones, the field equations with
respect to 𝐴𝑖 and 𝑋 𝑖—the rest are found in the original paper:

F ∇̊ = D̊𝑌 − 𝑇 (𝐴,𝑌 ) + (−1) 𝑝Π(𝑍 ∇̊) − 1
𝑝!

𝑅(𝐴, . . . , 𝐴) , (31)

G ∇̊ = (−1) 𝑝+1D̊𝑍 ∇̊ − 𝑇 (𝑍 ∇̊, 𝐴) + 1
2
S(𝑌, 𝐴, 𝐴) + 1

(𝑝 + 1)! (∇̊𝑅 + T )(𝐴, . . . , 𝐴) , (32)

where we introduced the field redefinition 𝑍 ∇̊
𝑖

= 𝑍𝑖 + Γ̊𝑘
𝑖 𝑗
𝑌 𝑗 ∧ 𝐴𝑘 . Remarkably, we observe that

tensors of 𝐸-geometry for 𝐸 = 𝑇∗𝑀 appear again in these covariant expressions. In particular we
encounter the 𝐸-torsion 𝑇 = −∇̊Π in both expressions. Furthermore, we notice the appearance
of the basic curvature S in G ∇̊, given in Eq. (19). This is the covariantization of the double
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dimΣ𝑝+1 Admissible deformations

2 𝑓 𝑖 𝑗 (𝑋,𝑌 ) 𝑍𝑖 ∧ 𝑍 𝑗 , 𝑓 𝑖 𝑗 (𝑌 ) 𝐴𝑖 ∧ 𝐴 𝑗

3 𝑓𝑖 𝑗𝑘 (𝑋)𝑌 𝑖 ∧ 𝑌 𝑗 ∧ 𝑌 𝑘 , 𝑓 𝑖
𝑗
(𝑋) 𝑍𝑖 ∧ 𝑌 𝑗 , 𝑓 𝑘

𝑖 𝑗
(𝑋)𝑌 𝑖 ∧ 𝑌 𝑗 ∧ 𝐴𝑘

4 𝑓𝑖 𝑗 (𝑋)𝑌 𝑖 ∧ 𝑌 𝑗

Table 1: Admissible deformations of twisted R-Poisson sigma models

partial derivative on the components of the Poisson structure. Note that in the case of the twisted
Poisson sigma model, the basic curvature did not appear at all at this level; it appears only when
one computes the gauge algebra or, equivalently, the square of the BRST operator. In the twisted
R-Poisson case it appears already at the level of the field equations. Finally, note the appearance of
the tensors ∇̊𝑅 and T ∈ Γ(𝑇∗𝑀 ⊗ ∧𝑝+1 𝑇𝑀). The latter is defined as

T := ⟨⊗𝑝+1Π, 𝐻𝑝+2⟩ (33)

and it is the higher analogue of the torsion of the ordinary connection in the twisted Poisson case.
A precise geometrical description of this higher torsion tensor will be given elsewhere.

Finally, the action functional itself can be written in a fully covariant form as follows:

𝑆 (𝑝+1) =

∫
Σ𝑝+1

(
⟨𝑍 ∇̊, 𝐹⟩ − ⟨𝑌, 𝐺 ∇̊⟩ + 1

(𝑝 + 1)!𝑅(𝐴, . . . , 𝐴)
)
+
∫
Σ𝑝+2

𝑋∗𝐻 . (34)

This provides the geometric completion of local patch results for string and M-theory fluxes
corresponding to Figure 1 [15–19].

2.3 Bi-twisted R-Poisson and other deformations

As mentioned in the previous section, there exist additional special cases with the same field
content that are not covered by the above analysis. One can view those as deformation of the twisted
R-Poisson sigma models that arise in special dimensions, in particular in 2, 3 and 4 dimensions. As
found in [1], these deformations appear in Table 1.

Let us briefly summarize the type of theories one obtains through these deformations. In 2
dimensions (𝑝 = 1), generically we find “doubled” sigma models, in other words sigma models
with two sets of real scalar fields, since one now has that the (𝑝 − 1)-form 𝑌 𝑖 is a scalar. Therefore,
this leads to much more options, out of which one is simply the twisted R-Poisson sigma model
already discussed. Interestingly, a different choice of parameters leads to the twisted Poisson sigma
model coupled to 2D BF theory. Thus we see that the twisted Poisson sigma model discussed in
Section 2.1 is also included in our analysis as a deformation of the twisted R-Poisson sigma model
in 2D.

11
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In 3 dimensions we encounter the most interesting case. As already discussed in the intro-
duction, Courant sigma models constitute a very general class of topological field theories in 3
dimensions. They contain Chern-Simons theory as a special case, but also untwisted R-Poisson
sigma models. Twisted R-Poisson sigma models would then be a special case of 4-form-twisted
Courant sigma models [13]. Inspecting the deformations of Table 1, we observe that they are
precisely the ones that lead to Courant structures, see [1] for a more detailed explanation. In the
present context, 𝑅 is a trivector. The special value 3 for its vector degree matches the one of the
Schouten-Nijenhuis bracket of Π with itself. This is only possible in 3 dimensions. Hence, one
may use 𝑅 to twist the Poisson substructure of twisted R-Poisson, thus being led in a bi-twisted
structure. Specifically, a bi-twisted R-Poisson structure is a quintuple (𝑀,Π, 𝑅, 𝑆, 𝐻) of a smooth
manifold 𝑀 equipped with a 2-vector Π, a 3-vector 𝑅, a 3-form 𝑆 and a 4-form 𝐻 such that

1
2
[Π,Π] = 𝑅 − ⟨Π ⊗ Π ⊗ Π, 𝑆⟩ , (35)

d𝑆 = 𝐻 . (36)

Note that for 𝑅 = 0 = 𝐻 the structure reduces to 𝑆-twisted Poisson. In general, this leads to a
bi-twisted R-Poisson sigma model, whose covariant formulation requires a connection with torsion.

Finally, we mention that in 4 dimensions the deformation is a “’theta-term” type of contribution.
Such models were considered before in Ref. [25].

3. Differential graded manifold perspective & BV

A differential graded manifold or simply Q-manifold is a graded supermanifold equipped with
a cohomological vector field 𝑄, for which

𝑄2 =
1
2
{𝑄,𝑄} = 0 . (37)

Remarkably, there exists an exact correspondence between Q-manifolds and Lie algebroids [8].
Indeed, instead of thinking of a Lie algebroid as the triple (𝐸, 𝜌, [·, ·]𝐸) of a vector bundle with an
anchor map and a binary skew-symmetric operation satisfying the Leibniz rule, one can think of
it in a significantly simpler way as a Q-manifold (𝐸 [1], 𝑄𝐸), where 𝐸 [1] is the degree-1-shifted
vector bundle 𝐸 .

In Section 2.1, we encountered the twisted Poisson structure (𝑀,Π, 𝐻3) and the Lie algebroid
(𝑇∗𝑀,Π♯, [·, ·]𝐾 ). In the present formulation, one can introduce the graded supermanifold𝑇∗ [1]𝑀 ,
with local coordinates 𝑥𝑖 of degree 0 and 𝑎𝑖 of degree 1. Let us denote by 𝜕𝑥𝑖 and 𝜕𝑎𝑖 the associated
derivatives 𝜕/𝜕𝑥𝑖 and 𝜕/𝜕𝑎𝑖 respectively. Then consider a vector field of degree 1 on this graded
manifold of the form

𝑄𝑇∗𝑀 = Π𝑖 𝑗 (𝑥)𝜉𝑖𝜕𝑥 𝑗 − 1
2
(𝜕𝑖Π 𝑗𝑘 + Π 𝑗𝑙Π𝑘𝑚𝐻𝑖𝑙𝑚)𝜉 𝑗𝜉𝑘𝜕𝜉𝑖 . (38)

Then, this vector field is cohomological if and only if the twisted Poisson condition (5) holds.
In the case of twisted R-Poisson structure a Q-manifold can be found in a similar way. This

time one begins with the graded manifold 𝑇∗ [1]𝑀 of the previous paragraph and considers its
cotangent bundle with shifted degree by 𝑝, namely 𝑇∗ [𝑝]𝑇∗ [1]𝑀 . As explained already in the
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introduction, this graded manifold can be assigned coordinates of degrees (0, 1, 𝑝 − 1, 𝑝), which
we denote respectively as (𝑥𝑖 , 𝑎𝑖 , 𝑦𝑖 , 𝑧𝑖). The notation should already indicate that the fields of the
twisted R-Poisson sigma model are the pull-backs of these four sets of graded coordinates by some
general sigma model map. We now consider the following degree-1 vector field on the graded
manifold:

𝑄 = Π 𝑗𝑖𝑎 𝑗𝜕𝑥𝑖 −
1
2
𝜕𝑖Π

𝑗𝑘𝑎 𝑗𝑎𝑘𝜕𝑎𝑖 +
(
(−1) 𝑝Π 𝑗𝑖𝑧 𝑗 − 𝜕 𝑗Π

𝑖𝑘𝑎𝑘𝑦
𝑗 + 1

𝑝!
𝑅𝑖 𝑗1... 𝑗𝑝𝑎 𝑗1 . . . 𝑎 𝑗𝑝

)
𝜕𝑦𝑖 +

+
(
𝜕𝑖Π

𝑗𝑘𝑎𝑘𝑧 𝑗 −
(−1) 𝑝

2
𝜕𝑖𝜕 𝑗Π

𝑘𝑙𝑦 𝑗𝑎𝑘𝑎𝑙 +
(−1) 𝑝
(𝑝 + 1)! 𝑓

𝑘1...𝑘𝑝+1
𝑖

𝑎𝑘1 . . . 𝑎𝑘𝑝+1

)
𝜕𝑧𝑖 , (39)

where we have defined

𝑓
𝑘1...𝑘𝑝+1
𝑖

= 𝜕𝑖𝑅
𝑘1...𝑘𝑝+1 +

𝑝+1∏
𝑟=1

Π𝑘𝑟 𝑙𝑟𝐻𝑖𝑙1...𝑙𝑝+1 . (40)

Then (𝑇∗ [𝑝]𝑇∗ [1]𝑀,𝑄) is a Q-manifold if and only if the defining conditions (23) for a twisted
R-Poisson structure hold. Thus we have described twisted R-Poisson manifolds as Q-manifolds.

Note now that the Q-manifold in both cases above is a cotangent bundle—a second order
cotangent bundle in the latter case. This means that apart from its structure as a Q-manifold
(“Q-structure”), it also has a natural graded symplectic structure (“P-structure”). In Darboux
coordinates this is simply given by a graded symplectic 2-form, say 𝜔, which is of the general form
d(coordinates) ∧ d(momenta). In the case of 𝑇∗ [1], the coordinates are 𝑥𝑖 and the corresponding
momenta are 𝑎𝑖 . The symplectic form in this case is of degree 1. In the case of 𝑇∗ [𝑝]𝑇∗ [1]𝑀 , we
can consider the 𝑥𝑖 and 𝑎𝑖 as coordinates of the second order cotangent bundle and correspondingly
𝑧𝑖 and 𝑦𝑖 as the associated momenta. The symplectic form is then of degree 𝑝.

The above discussion leads to the notion of a QPp-manifold [26], a graded manifold equipped
with a cohomological vector field and a graded symplectic 2-form 𝜔 of degree 𝑝 such that the latter
is invariant under the flow of the former, specifically

L𝑄𝜔 = 0 . (41)

Notable examples of QP-manifolds are the ones corresponding to Poisson geometry and Courant
algebroids. More examples may be found e.g. in the review [27]. Note though the absence of the
word “twisted” in the aforementioned examples. Twisted Poisson and twisted Courant (including
twisted R-Poisson) structures do not satisfy the condition (41) exactly. For twisted R-Poisson
structures one finds that the right hand side in the Lie derivative along 𝑄 is an exact form,

L𝑄𝜔 |R-Poisson ∝ d(𝜄𝑝+1
Π♯

𝐻) , (42)

where the notation 𝜄𝑝+1 means the interior product taken 𝑝 + 1 times. This is essentially the same
as the tensor T of Section 2.2. As long as it is not closed, there exists an obstruction to the QP-ness
of the geometrical structure on 𝑇∗ [𝑝]𝑇∗ [1]𝑀 . This means that in general

• Wess-Zumino terms obstruct QP-ness even in the presence of both Q and P structures.
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To understand the importance of this statement, let us briefly shift our attention to the BV
quantization of this class of topological field theories. As is well-known, quantization in the BV
formalism is necessary when we encounter gauge theories that have one or more of the following
properties:

• The gauge algebra closes only when the classical equations of motion are used.

• The gauge algebra has structure functions that depend on the fields of the theory.

• The gauge transformations are reducible.

The theories we discuss exhibit all three properties.
In applying the classical BV formalism to a theory with a given action functional [28, 29], say

𝑆0, and a set of gauge symmetries, first one enlarges the configuration space by ghosts, ghosts for
ghosts and antifields. Ghosts are in correspondence with the gauge parameters and ghosts for ghosts
take care of the dependencies among the gauge transformations, in other words of the reducibility.
For each field, ghosts and ghosts for ghost there is a corresponding antifield. Then one defines an
odd symplectic structure on the space of all these fields and antifields, the BV (anti)bracket (·, ·)BV.
Next the classical action 𝑆0 is extended to one with all admissible terms with ghosts and antifields,
say 𝑆. Finally one should solve the classical master equation

(𝑆, 𝑆)BV = 0 , (43)

subject to suitable boundary conditions. The solution of the classical master equation, the BV
action, is unique up to canonical transformations. Note that the same information can be encoded in
the BV operator 𝑠. Recalling that the square of the BRST operator 𝑠0 on fields does not vanish, but
instead is proportional to the classical field equations, the BV operator is its extension by antifield
terms such that it is nilpotent off-shell. It is related to the classical BV action 𝑆 via

𝑠𝜑 = (𝑆, 𝜑)BV , (44)

for any field 𝜑 in the theory. In fact, it is often computationally easier to determine 𝑠 rather than 𝑆.
Instead of the traditional approach sketched above, there exists a geometrical method to deter-

mine the solution to the classical master equation. This is called the AKSZ construction [7] and it
amounts to considering maps from a Q-manifold Σ̂ (typically being 𝑇 [1]Σ, but not necessarily) to
a QP𝑝-manifold M along with a degree 𝑝 + 1 Hamiltonian function Θ ∈ 𝐶∞(M) such that

𝑄 = {Θ, ·} , (45)

where 𝑄 refers to the cohomological vector field on the target M and the curly brackets denote the
induced Poisson bracket by the symplectic form on M. Due to the nilpotency of𝑄, the Hamiltonian
function satisfies

{Θ,Θ} = 0 . (46)

This is a key equation, since it guarantees that once the Hamiltonian is pulled-back via the pull-back
of the map from Σ to M, say 𝜑, to an action functional

𝑆[𝜑] =
∫ (

1
2
𝜔𝑎𝑏 𝜑

𝑎 ∧ d𝜑𝑏 + 𝜑∗(Θ)
)
, (47)
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(Anti)Field 𝑋 𝑖 𝐴𝑖 𝜖𝑖 𝑋+
𝑖

𝐴𝑖+ 𝜖 𝑖+

gh(·) 0 0 1 -1 -1 -2

Form
degree

0 1 0 2 1 2

Table 2: Fields and antifields of the Poisson sigma model.

then this action functional satisfies the classical master equation. This way we see that geometry
and field theory go hand in hand.

We briefly recall that for the (untwisted) Poisson sigma model in 2D, obtained from the
discussion in Section 2.1 with 𝐻3 = 0, the target QP1-manifold is 𝑇∗ [1]𝑀 . The full field content
appears in Table 2. It contains the scalar fields 𝑋 𝑖 , the 1-forms 𝐴𝑖 , the single scalar ghost 𝜖𝑖 , which
we denote with the same letter as the gauge parameter to avoid clutter, and their corresponding
antifields. Note that the antifields have ghost number gh(𝜑+) equal to −1 − gh(𝜑) and form degree
𝑓 (𝜑+) = 2 − 𝑓 (𝜑).

The worldsheet Q-manifold 𝑇 [1]Σ2 has coordinates 𝜎𝛼, 𝜃𝛼 of degree 0 and 1 respectively.
Then one can define two superfields:

X𝑖 = 𝑋 𝑖 + 𝐴𝑖+𝛼𝜃
𝛼 − 1

2𝜖
𝑖
+𝛼𝛽𝜃

𝛼𝜃𝛽 ,

A𝑖 = 𝜖𝑖 + 𝐴𝑖𝛼𝜃
𝛼 + 1

2𝑋
+
𝑖𝛼𝛽𝜃

𝛼𝜃𝛽 .

The BV action is given in terms of them as

𝑆 =

∫ (
A𝑖 dX𝑖 + 1

2
Π𝑖 𝑗 (X) A𝑖A 𝑗

)
,

which is simply the “bold” version of the classical action. A similar approach works in the 3D case
of general Courant sigma models, including (untwisted) R-Poisson ones. Once more, the action is
the “bold” version of the corresponding classical one, once the correct superfields are defined for
the four fields 𝑋 𝑖 , 𝐴𝑖 , 𝑌 𝑖 , 𝑍𝑖 .

Once Wess-Zumino terms are turned on, the above logic does not apply any longer. This was
demonstrated explicitly in [6], where the authors showed that the naive generalization of the AKSZ
action does not work for the 3-form-twisted Poisson sigma model in 2D. In other words, the “bold”
action is not the correct one. The underlying reason is the obstruction to QP-ness that we discussed
earlier. Nevertheless, the correct BV action can be identified in a traditional way, as described in
the beginning. This is what [6] did.

On the other hand, the 3-form-twisted Poisson sigma model in 2D is only a single example.
How special is it? The construction of twisted R-Poisson sigma models was essentially motivated
by this question. Note also that the latter theories exhibits features that do not appear in the 2D

15



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
7
1

Twisted R-Poisson Sigma Models Athanasios Chatzistavrakidis

Field/Ghost 𝑋 𝑖 𝐴𝑖 𝑌 𝑖 𝑍𝑖 𝜖𝑖 𝜒𝑖(𝑟) 𝜓
(𝑟)
𝑖

Ghost degree 0 0 0 0 1 𝑟 + 1 𝑟 + 1

Form degree 0 1 𝑝 − 1 𝑝 0 𝑝 − 2 − 𝑟 𝑝 − 1 − 𝑟

Table 3: The fields of the twisted R-Poisson sigma model in 𝑝 + 1 dimensions

Antifield 𝑋+
𝑖

𝐴𝑖+ 𝑌+
𝑖

𝑍 𝑖+ 𝜖 𝑖+ 𝜒+
𝑖
(𝑟) 𝜓𝑖+ (𝑟)

Ghost degree −1 −1 −1 −1 −2 −𝑟 − 2 −𝑟 − 2

Form degree 𝑝 + 1 𝑝 2 1 𝑝 + 1 𝑟 + 3 𝑟 + 2

Table 4: The antifields of the twisted R-Poisson sigma model in 𝑝 + 1 dimensions

case. These include the presence of higher differential form gauge parameters (only a scalar gauge
parameter appears in 2D) and the nonlinear openness of the gauge algebra (which is linear in 2D).

Since twisted R-Poisson structures also have an obstruction to the QP structure on M, one
should follow the traditional BV formalism, which in the present case is more demanding. The
complete field content of the theory appears in Tables 3 and 4. There we see that there are two
towers of ghosts for ghosts, and the corresponding antifields. For the 𝜒-series of ghosts for ghosts
the number 𝑟 runs from 0 to 𝑝 − 2, whereas for the 𝜓-series from 0 to 𝑝 − 1. The ghosts for ghosts
with the highest ghost degree are scalars.

To determine the solution to the classical master equation, one would then consider the most
general form of the BV action as an expansion on antifields,

𝑆 = 𝑆 (0) + 𝑆 (1) + · · · + 𝑆 (𝑝+1) , (48)

where 𝑆 (𝑛) contains 𝑛 antifields. Contrary to the Poisson case in 2D, where 𝑛 goes up to 2, and
to the Courant case in 3D, where 𝑛 goes up to 3, the general case is difficult. Nevertheless, since
the known gauge transformation on the fields produces the BRST operator on them, one can use
“refinements” by antifields to determine the BV operator on all fields, ghosts and antifields. One
can then compare the BV operator to the one found via the AKSZ contruction in the untwisted case
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and write schematically
𝑠𝜑 = 𝑠AKSZ𝜑 + (Δ𝑠𝜑) (𝐻, 𝐹) , (49)

where the discrepant piece is a both 𝐻-dependent and 𝐹-dependent, 𝐻 being the (𝑝 + 2)-form twist
and 𝐹 the field equation of 𝑍𝑖 . One interesting outcome is that all ghosts in the 𝜓-series, save the
highest, receive equation of motion corrections. This strategy was developed recently in [14] and
it led to complete closed expressions for the BV operator, from which the BV action can be fully
determined. We refer to the original paper for a detailed discussion.

4. Conclusions and outlook

We close this contribution with a few messages and comments. From the study of twisted
R-Poisson sigma models and their underlying geometry, we draw the conclusion that Poisson and
twisted Poisson sigma models are not a strictly two-dimensional story. There exist topological field
theories in higher dimensions that are based on these geometric structures and extensions thereof by
higher degree multivector fields. This includes the special case of bi-twisted R-Poisson structures in
3D, which combine twisted Poisson and twisted R-Poisson in a precise way. It would be interesting
to explore how special these bi-twisted structures really are or whether they can somehow appear
in higher than 3 dimensions too.

A second conclusion is that the study of target space covariance for such topological field
theories reveals strong ties to the geometry of higher algebroids and in particular of the notions
of 𝐸-connections, 𝐸-curvature and 𝐸-torsion for a Lie algebroid vector bundle 𝐸 . Nevertheless,
the complete description of the 𝐸-geometric structure for twisted R-Poisson sigma models is still
lacking and we hope to report on this in future work.

The third conclusion is that Wess-Zumino terms complicate the identification of the classical
BV action for topological field theories, since they do not allow direct application of the powerful
AKSZ construction. This is due to an obstruction in the compatibility of Q and P structures. Twisted
R-Poisson sigma models offer a class of examples in general worldvolume dimensions beyond the
single example of twisted Poisson in 2D that was studied in [6].

Aside the obstruction to QP structures mentioned above, there exists a more direct way that
a vanilla QP structure can be absent. This happens when there is no P structure to start with.
Examples of such situations are Dirac sigma models in 2D [30], which are based on the graded
target manifold 𝐸 [1], with 𝐸 a Dirac structure of the standard 𝐻-twisted Courant algebroid. The
BV action for such models is currently under study. Furthermore, going slightly beyond Poisson
structures, one can consider twisted Jacobi manifolds and their topological field theory in 2D, called
twisted Jacobi sigma model [31]—see also [32] for the untwisted case.

Some further interesting directions would be the following. First, although the BV action
for a variety of theories that do not have a QP structure on the target is identified, a systematic
procedure that refines the AKSZ construction is not yet found. The fact that several examples
are now worked out is a good motivation to attempt such a general construction. Aside this, it
would be interesting to study also the quantum BV action, especially with regard to deformation
quantization. Recall that Poisson sigma models are important also from this perspective. They
provide a physical realization of the Kontsevich formality theorem [33] for deformation quantization

17



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
7
1

Twisted R-Poisson Sigma Models Athanasios Chatzistavrakidis

of Poisson manifolds. Indeed, it turns out that the star product obtained through the diagrammatic
approach of Kontsevich corresponds to a 2-point function in the quantization of the Poisson sigma
model on a disk [34]. It would be interesting to investigate whether twisted R-Poisson sigma models
lead to deformation quantization in this sense too. Furthermore, one could try going even beyond
twisted R-Poisson structures toward the general framework of homotopy Poisson or P∞ structures
[35] on the target space. Finally, it is not only the target space whose diverse structures lead to
interesting models, but the worldvolume as well. In most instances in the literature, this is taken
to be 𝑇 [1]Σ, the degree shifted tangent bundle of an ordinary worldvolume. This only allows
for differential forms as fields. An exception is Ref. [36], where more general graded spacetime
manifolds are considered and gauge theories with mixed symmetry tensor fields are described.

Acknowledgements. I am grateful to Noriaki Ikeda and Grgur Šimunić for enlightening discus-
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