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1. Introduction

In quantum field theory the notion of vacuum state has no universal meaning. To put it in the
words of P. C. W. Davies [1] “Before the 1970s nobody thought very much about “for whom" the
vacuum state appears devoid of “stuff"...". The well known example in flat Minkowski space-time
is that of the Poincaré invariant vacuum state for inertial observers which is perceived as a thermal
state by uniformly accelerating observers. This fact is at the basis of the celebrated Unruh effect [2]
(see [3] for an extensive review) according to which a uniformly accelerated detector in Minkowski
space-time responds as if immersed in a thermal bath of particles at a temperature proportional to
the magnitude of its four-acceleration.

Focusing on a non-interacting field, one can trace the origin of the ambiguity in the definition
of the vacuum state to the existence of different possible choices of time-like Killing vectors which
one can use to decompose the solutions of the equation of motion of the field into positive and
negative frequency components [4]. The positive frequency subspace of solutions defines the one-
particle Hilbert space of the quantum field from which one can construct the Fock space, the full
multi-particle Hilbert space of the theory [5]. In this picture the vacuum state is the element of
the Fock space which does not contain particles seen as positive frequency excitations of the field
and, as such, it depends on the notion of time evolution we choose. In the case of the Unruh effect
the time evolution for inertial observers is determined by the time translation Killing vector of the
Poincaré algebra while time evolution for uniformly accelerated observers is generated by the boost
Killing vector. The latter is time-like only within the left and right Rindler wedges and becomes
null on their boundaries given by the light-cone passing through the origin. Such light-cone acts as
a causal horizon for uniformly accelerating observers within each wedge.

The key observation which is at the basis of the analysis we present in this contribution is
that for conformally invariant fields the range of choices for generators of time evolution extends
to time-like conformal Killing vectors. For example one could use the generator of dilations in
Minkowski space-time to quantize a field according to the Milne time-evolution, the time evolution
associated to a hyperbolic slicing of the future-cone of Minkowski space-time: the Milne universe
(see [6–8]). Another instance in which quantization using a notion of time evolution determined
by a time-like conformal Killing vector is found when considering uniformly accelerated observers
with a finite lifetime [9]. The trajectories of such observers are confined to a region of Minkowski
space-time known as the causal diamond, the intersection of a past and future light-cone, related to
a Rindler wedge by a conformal map [10]. It has been suggested that, in analogy with accelerated
observers in a Rindler wedge, for such “diamond observers" the inertial Minkowski vacuum state
should appear as a thermal state at a temperature related to the size of the causal diamond [9, 11].

In this contribution we provide further evidence for the fact that the inertial vacuum should
appear as a thermal state for both Milne and diamond observers by exploiting a correspondence
between radial conformal Killing vectors in Minkowski space-time and the generators of time
evolution in conformal quantum mechanics, a 0 + 1-dimensional conformal field theory [12, 19].
We will show that in such simple one-dimensional model one can construct states which are the
analogue of the vacuum states for inertial observers (which have access to the whole geometrical
domain of the theory) and for observers whose time evolution is determined by a conformal Killing
vector whose orbits cover a finite or semi-infinite region of the (space)-time (diamond and Milne

2



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
7
8

Getting hot without accelerating Michele Arzano

observers, respectively). For such non-eternal observers the inertial vacuum is a thermal state at
the diamond and Milne temperature respectively [13, 14]. The results we present provide a unified
group-theoretical description of such temperatures and show that the essential ingredient the basis of
these “vacuum thermal effects" is the existence of boundaries for the causal domain of the observers
rather than their acceleration.

2. Radial conformal symmetries in Minkowski space-time

We start by describing the radial conformal Killing vectors of Minkowski space-time. Such
vectors were fully classified in [15]. The Minkowski metric in spherical coordinates is given by

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑\2 + sin2 \ 𝑑𝜙2) . (1)

Let us consider a generic radial vector field

b = 𝐴(𝑡, 𝑟, \, 𝜙) 𝜕𝑡 + 𝐵(𝑡, 𝑟, \, 𝜙) 𝜕𝑟 (2)

and impose that it is a conformal Killing vector i.e. that

Lb[`a ∝ [`a (3)

where Lb denotes the Lie derivative and [`a is the Minkowski metric. Such condition implies [15]
that b is independent of \ and 𝜙 and it has the general form

b =

(
𝑎(𝑡2 + 𝑟2) + 𝑏𝑡 + 𝑐

)
𝜕𝑡 + 𝑟 (2𝑎𝑡 + 𝑏) 𝜕𝑟 (4)

with 𝑎, 𝑏, 𝑐 real constants. A key observation is that this conformal Killing vector can be written as

b = 𝑎𝐾0 + 𝑏𝐷0 + 𝑐𝑃0 , (5)

where 𝑃0, 𝐷0 and 𝐾0 generate, respectively, time translations, dilations and special conformal
transformations

𝑃0 = 𝜕𝑡 , 𝐷0 = 𝑟 𝜕𝑟 + 𝑡 𝜕𝑡 , 𝐾0 = 2𝑡𝑟 𝜕𝑟 + (𝑡2 + 𝑟2) 𝜕𝑡 . (6)

Their commutators close the sl(2,R) Lie algebra

[𝑃0, 𝐷0] = 𝑃0 , [𝐾0, 𝐷0] = −𝐾0 , [𝑃0, 𝐾0] = 2𝐷0 . (7)

One can define three different families of conformal Killing vectors according to the sign of the
determinat Δ = 𝑏2 − 4𝑎𝑐

- ForΔ < 0 we have generators of elliptic transformations; thinking of the relationship between
sl(2,R) and the Lie algebra of the three-dimensional Lorentz group so(2, 1) these correspond
to generators of rotations. A representative element of this class is

𝑅0 =
1
2

(
𝛼𝑃0 +

𝐾0
𝛼

)
. (8)

Notice the introduction of the constant 𝛼 with dimensions of length needed for dimensional
reasons: it will play a crucial role throughout our analysis.
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- For Δ = 0 we have generators of parabolic transformations which in Lorentz group language
correspond to null rotations. Representatives of this class are 𝑃0 and 𝐾0.

- For Δ > 0 we have generators of hyperbolic transformation corresponding to generators of
Lorentz boosts in terms of Lorentz transformations. Representatives of this class are 𝐷0 and
the combination

𝑆0 =
1
2

(
𝛼𝑃0 −

𝐾0
𝛼

)
. (9)

Notice that while the Killing vectors corresponding to generators of elliptic transformations
are always space-like, the ones corresponding to to parabolic and hyperbolic transformations can
be time-like. In particular we have that 𝑃0 is everywhere timelike and generates inertial time
evolution. The generator of dilations 𝐷0 is time-like within a light-cone centered at the origin and,
in particular, in the future light cone it generates conformal time evolution in the Milne universe
i.e. Minkowski space-time written in hyperbolic slicing coordinates

𝑑𝑠2 = −𝑑𝑡 2 + 𝑡 2
(
𝑑𝜒2 + sinh 𝜒2𝑑Ω2

)
(10)

with 𝑡 = 𝑡 cosh 𝜒 and 𝑟 = 𝑡 sinh 𝜒 [8]. Like-wise the Killing vector 𝑆0 is time-like in various
regions of Minkowski space-time [15, 16] and,in particular, it maps a causal diamond of radius 𝛼
into itself [17]. Within the diamond it can be seen as the generator of time evolution of accelerated
observers with a finite life-time, the diamond time. Worldlines of such observers are orbits of the
transformation generated by 𝑆0 [18].

Our starting point is the observation that along 𝑟 = const worldlines and on the light cones
𝑢 = 𝑡 − 𝑟 = const, 𝑣 = 𝑡 + 𝑟 = const the conformal Killing vector (4) can be written as

b =

(
𝑎 𝜏2 + 𝑏 𝜏 + 𝑐

)
𝜕𝜏 (11)

where 𝜏 is either 𝑡 for observers at 𝑟 = 0 or 𝑢 or 𝑣. Written in this form b coincides with the generator
of conformal transformations of the real (time) line. In particular 𝑃0 = 𝜕𝜏 generates translations
in “inertial time" 𝜏 covering the entire time line. The dilation Killing vector 𝐷0 = 𝜏𝜕𝜏 generates
translation in “Milne time" a defined by

𝐷0 = 𝛼𝜕a . (12)

One can easily derive that
𝜏 = ±2𝛼 exp

a

𝛼
(13)

and thus the Milne time covers only half of of the time line (the regions 𝜏 > 0 or 𝜏 < 0). Finally the
conformal Killing vector 𝑆0 = 1

2𝛼
(
𝛼2 − 𝜏2) 𝜕𝜏 generates translation in “diamond time" 𝜎 such that

𝑆0 = 𝛼𝜕𝜎 . (14)

This time variable is related to inertial time by

𝜏 = 𝛼 tanh𝜎/2𝛼

and thus it covers only the region |𝜏 | < 𝛼 of the time line: the analogue of the diamond in Minkowski
space-time. As it turns out these three types of time evolution are precisely the ones allowed in
conformal quantum mechanics as we discuss in the following section.
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3. Conformal quantum mechanics

Conformal quantum mechanics can be seen as an 𝑆𝐿 (2,R)-invariant 0+1-dimensional quantum
field theory [12]. One way to describe the model is through the conformally invariant Lagrangian

L =
1
2

(
¤𝑞(𝑡)2 + 𝑔

𝑞(𝑡)2

)
, (15)

where 𝑔 > 0 is a dimensionless coupling constant. The generators of conformal transformations
belonging to the sl(2,R) Lie algebra can be canonically realized as

𝐻 = 𝑖𝑃0 =
1
2

(
𝑝2 + 𝑔

𝑞2

)
(16)

𝐷 = 𝑖𝐷0 = 𝑡 𝐻 − 1
4
(𝑝𝑞 + 𝑞𝑝) (17)

𝐾 = 𝑖𝐾0 = −𝑡2 𝐻 + 2𝑡 𝐷 + 1
2
𝑞2 (18)

and the most general generator of time evolution for the model is given by

𝐺 = 𝑖 (𝑎 𝐾0 + 𝑏 𝐷0 + 𝑐 𝑃0)

formally identical to 𝑖b with b given by (11). The conformal quantum mechanics model of [12] can
be interpreted as one dimensional conformal quantum field theory 𝐶𝐹𝑇1 [19, 20]. The two-point
functions of such theory are built from the kets |𝜏⟩ labelled by the time variable 𝜏 first introduced
in [12] on which the Hamiltonian acts as a derivative

𝐻 |𝜏⟩ = −𝑖 𝜕𝜏 |𝜏⟩ .

To describe such kets one starts from the irreducible representations of the Lie algebra sl(2,R).
These can be constructed introducing ladder operators

𝐿± =
1
2

(
𝐾

𝛼
− 𝛼 𝐻

)
± 𝑖 𝐷 , 𝐿0 =

1
2

(
𝐾

𝛼
+ 𝛼 𝐻

)
(19)

whose commutators are given by

[𝐿−, 𝐿+] = 2𝐿0 , [𝐿0, 𝐿±] = ±𝐿± . (20)

Irreducible representations are given by kets |𝑛⟩ such that

𝐿0 |𝑛⟩ = 𝑟𝑛 |𝑛⟩ , 𝑟𝑛 = 𝑟0 + 𝑛 , 𝑟0 > 0 , 𝑛 = 0, 1 . . . (21)

The constant 𝑟0 characterizes the representations and is related to the eigenvalue of the Casimir
operator on the kets

C |𝑛⟩ =
(
1
2
(𝐾𝐻 + 𝐻𝐾) − 𝐷2

)
|𝑛⟩ = 𝑟0(𝑟0 − 1) |𝑛⟩ . (22)

The action of the raising and lowering operators 𝐿± is given by

𝐿± |𝑛⟩ =
√︁
𝑟𝑛 (𝑟𝑛 ± 1) − 𝑟0 (𝑟0 − 1) |𝑛 ± 1⟩ . (23)
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The |𝜏⟩ kets can be characterized by their overlap with |𝑛⟩ states given by

⟨𝜏 |𝑛⟩ = (−1)𝑛
[
Γ(2𝑟0 + 𝑛)

𝑛!

] 1
2
(
𝛼 − 𝑖𝜏
𝛼 + 𝑖𝜏

)𝑟𝑛 (
1 + 𝜏2

𝛼2

)−𝑟0

, (24)

which can be used to derive the inner product

⟨𝜏1 |𝜏2⟩ =
Γ (2𝑟0) 𝛼2𝑟0

[2𝑖 (𝜏1 − 𝜏2)]2𝑟0
. (25)

As shown in [19] such inner product can be interpreted as the two-point function of the 𝐶𝐹𝑇1

𝐺2(𝜏1, 𝜏2) ≡ ⟨𝜏1 |𝜏2⟩ . (26)

Notice how for 𝑟0 = 1 such two-point function coincides with that of a massless scalar field in
Minkowski space-time, evaluated along the worldline of an inertial observer sitting at the origin.
In other words two-point correlators for a massless field along the worldline of static observers
in Minkowski space-time are in correspondence with two-point functions of conformal quantum
mechanics for the states |𝜏⟩. This is reminiscent of the 𝑆𝐿 (2,R)-invariant wordline quantum
mechanics for static-patch observers in de Sitter space-time [21]. As shown in [19, 20] one can
re-write the 𝐶𝐹𝑇1 two-point function as

𝐺2(𝜏1, 𝜏2) ≡ ⟨𝜏1 |𝜏2⟩ = ⟨𝜏 = 0|𝑒−𝑖 (𝜏1−𝜏2)𝐻 |𝜏 = 0⟩ (27)

where
|𝜏 = 0⟩ = exp(−𝐿+) |𝑛 = 0⟩ (28)

(from now on we restrict to the case 𝑟0 = 1). We now come to a crucial observation made in [14]
which is central for what follows. It is well known from quantum optics (see e.g. [22]) that the
generators 𝐿± and 𝐿0 can be realized in terms of pairs of creation and annihilation operators for
simple harmonic oscillators, which we denote by 𝐿 and 𝑅 subscripts,

𝐿+ = 𝑎
†
𝐿
𝑎
†
𝑅
, 𝐿− = 𝑎𝐿𝑎𝑅 , 𝐿0 =

1
2

(
𝑎
†
𝐿
𝑎𝐿 + 𝑎†

𝑅
𝑎𝑅 + 1

)
(29)

and thus, from (28),
|𝜏 = 0⟩ = exp

[
−𝑎†

𝐿
𝑎
†
𝑅

]
|𝑛 = 0⟩ . (30)

This shows that the ground state |𝑛 = 0⟩ has a bipartite structure

|𝑛 = 0⟩ = |0⟩𝐿 ⊗ |0⟩𝑅 (31)

in terms of the ground states of the two harmonic oscillators |0⟩𝐿 and |0⟩𝑅. In what follows we
will explore the interpretation of such bipartite structure in terms of the analogue of the bipartite
structure of the quantum field vacuum states associated to observers whose causal domain covers
only a portion of Minkowski space-time.
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4. Vacuum states and thermal effects in 𝐶𝐹𝑇1

We start by observing that the Lie algebra

[𝐿−, 𝐿+] = 2𝐿0 , [𝐿0, 𝐿±] = ±𝐿± (32)

can be realized via another combination of 𝐻, 𝐷 and 𝐾 , namely

𝐿0 = 𝑖𝑆 , 𝐿+ =
1
2
(𝐷 − 𝑅) , 𝐿− = 2 (𝐷 + 𝑅) (33)

This suggests that in 𝐶𝐹𝑇1 we can identify two “vacuum-like" states:

• the state |𝑛 = 0⟩, the ground state of the generator of diamond time evolution 𝑆, which is the
analogue of the “Boulware vacuum", the vacuum state for generators with a bounded causal
domain in Minkowski space-time, in this case observers restricted to a causal diamond;

• the state |𝜏 = 0⟩ the “inertial vacuum" from which we build the two point function acting
with the 0 + 1-dimensional analogues of the field operator

𝐺2(𝜏1, 𝜏2) = ⟨𝜏 = 0|𝑒−𝑖 (𝜏1−𝜏2)𝐻 |𝜏 = 0⟩ ,

which can be seen as the analogue of the “Hartle-Hawking vacuum", the vacuum state for
observers whose causal domain covers the entire space-time.

As in the “real world" case of four-dimensional Minkowski space-time the Hartle-Hawking
vacuum we identified above is a thermofield double state built on its bipartite Boulware counterpart
as we will now show. With simple manipulations from (30) we can write the inertial vacuum as

|𝜏 = 0⟩ =

∞∑︁
𝑛=0

(−1)𝑛
𝑛!

(
𝑎
†
𝐿
𝑎
†
𝑅

)𝑛
|0⟩𝐿 ⊗ |0⟩𝑅 =

∞∑︁
𝑛=0

(−1)𝑛 |𝑛⟩𝐿 ⊗ |𝑛⟩𝑅 (34)

= −
∞∑︁
𝑛=0

𝑒𝑖 𝜋𝐿0 |𝑛⟩𝐿 ⊗ |𝑛⟩𝑅

and thus

|𝜏 = 0⟩ = −
∞∑︁
𝑛=0

𝑒−𝜋𝑆 |𝑛⟩𝐿 ⊗ |𝑛⟩𝑅 . (35)

Before proceeding let us briefly recall the definition of a thermfofield double state (see e.g. [23]
for more details). Let us consider the set of eigenstates of the Hamiltonian of a generic quantum
system

𝐻 |𝑘⟩ = 𝐸𝑘 |𝑘⟩ . (36)

The thermofield double state is built by “doubling" the system’s degrees of freedom and it consists
of the superposition

|𝑇𝐹𝐷⟩ = 1
𝑍 (𝛽)

∞∑︁
𝑘=0

𝑒−𝛽𝐸𝑘/2 |𝑘⟩𝐿 ⊗ |𝑘⟩𝑅 , (37)
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where 𝑍 (𝛽) =
∑∞

𝑘=0 𝑒
−𝛽𝐸𝑘 is the partition function at inverse temperature 𝛽. The peculiarity of

such systems is that it is a highly entangled pure state which, tracing over the degrees of freedom
of one copy of the system, one obtains a thermal density matrix

𝑇𝑟𝐿 ( |𝑇𝐹𝐷⟩⟨𝑇𝐹𝐷 |) = 𝑒−𝛽𝐻

𝑍 (𝛽)

at a temperature𝑇 = 1/𝛽. Going back to our model we see that the inertial vacuum (35) is formally1

a thermofield double state at a temperature

𝑇𝑆 =
1

2𝜋𝛼
(38)

for the Hamiltonian 𝑆/𝛼 which generates diamond time evolution. The temperature 𝑇𝑆 is precisely
the diamond temperature perceived by observers sitting at the origin within a causal diamond in
Minkwoski space-time, with worldlines given by orbits of the conformal Killing vector (9), whose
existence was suggested in [9] and [11].

As discussed in Section 2, the generators 𝑆 and 𝐷 belong to the same class of Hamiltonians
determining hyperbolic time evolution. We can thus find a 𝑆𝐿 (2,R) transformation on the time axis
which maps one generator into another [14]. Such map 𝜏 → 𝜏′ is easily found by requiring that

𝑆(𝜏) ≡ 𝐷 (𝜏′) (39)

and is given by
𝜏′ = −2𝛼

𝜏 + 𝛼
𝜏 − 𝛼 . (40)

Notice how such map coincides with the map from the causal diamond to the Rindler wedge in
light-cone coordinates in Minkowski space-time used to derive the diamond modular Hamiltonian
from the Rindler one [24]. Under such map we have the following identification of the ladder
operators

𝐿0 = 𝑖𝐷 , 𝐿+ = −𝛼𝐻 , 𝐿− =
𝐾

𝛼
. (41)

Under such identification the ground state |𝑛 = 0⟩ is seen as the 𝐶𝐹𝑇1 analogue of the vacuum
state associated to the generator of Milne time evolution 𝐷. Thus the inertial vacuum |𝜏 = 0⟩
with such identification matches the thermofield double state for the Hamiltonian 𝐷/𝛼 at the Milne
temperature

𝑇𝐷 =
1

2𝜋𝛼
(42)

as described e.g. in [6]. Finally we should stress that, as shown in [15], observers whose worldlines
are integral curves of a time-like radial conformal Killing vector of the form

b = 𝑎𝐾0 + 𝑏𝐷0 + 𝑐𝑃0 (43)

1The 𝜏-vacuum (35) is not normalizable since the two-point function (25) is divergent in the limit of coincident points.
To make the correspondence precise one should regolarize the expression by introducing an appropriate normalization
factor. For our purposes it is sufficient to show that the superposition of states appearing in (35) is the same of that of a
thermofield double.

8



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
7
8

Getting hot without accelerating Michele Arzano

are accelerated, with modulus of the four-acceleration given by

|a| = 2|𝑎 |
√
𝜔 − Δ

(44)

where Δ = 𝑏2 − 4𝑎𝑐 and
𝜔 =

𝑎(𝑡2 − 𝑎2) + 𝑏𝑡 + 𝑐
𝑟

. (45)

We see that for integral curves of the generator of dilations 𝐷, i.e. worldlines of Milne observers,
𝑎 = 𝑐 = 0 and thus the modulus of the four-acceleration vanishes |a| = 0. The same holds for
diamond observers sitting at the origin 𝑟 = 0. Thus the correspondence between the generators of
time evolution for such observers and the ones of conformal quantum mechanics supports the view
that these observers experience the inertial vacuum as a thermal bath at temperatures (42) and (38),
respectively, even though they have vanishing acceleration. This suggests that certain classes of
observers can experience the inertial vacuum as a thermal state, as long as the field theoretic content
of the theory is conformally invariant and thus we are allowed to consider time-like conformal
Killing vectors as generators of time evolution.

5. Summary

In this contribution it is argued that a one-dimensional conformal field theory (conformal
quantum mechanics), despite its simplicity, is rich enough to reproduce the basic features which
lead to vacuum thermal effects in space-times in which different classes of observers disagree on
the particle content of the theory and on the notion of vacuum state. As in quantum field theoretic
models such ambiguity in the choice of vacuum state is related to the freedom in the choice of
time evolution. Our analysis provides further evidence for the existence of diamond and Milne
temperatures whose existence has been discussed in scattered works in the literature and only for
1+1-d Minkwoski space-time. The correspondence between radial conformal flows in Minkowski
space-time and time evolution in conformal quantum mechanics which we exploited in our analysis
provides a group-theoretical ground for the existence of such temperatures and show how they are
intimately related. Moreover our results show that the inertial vacuum appears as a thermal state
for observers whose time evolution is not eternal despite of whether they are accelerating or not.
Finally our analysis suggests that thermodynamic properties of the Milne “patch" of Minkowski
space-time and of causal diamonds are deeply connected and we hope this might provide a new
powerful tool for studying entanglement properties of quantum fields across regions of Minkowski
and other maximally symmetric space-times [18].
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