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1. Introduction

Quantum groups are born to encode quantum symmetries. We treat physical geometric objects
like the Minkowski space as homogeneous spaces, with natural actions coming from their physical
symmetries (see [18] and refs. therein). With quantization, however, we lose the geometrical point
of view and we need the algebra of function, or better its quantization, to retrieve all the properties
we are interested in.

The notion of principal bundle over an affine base is replaced by Hopf-Galois extension of the
algebra of functions on the base and triviality is generalized by algebraic conditions, like the cleft
property [2, 3, 30]. The case of an affine base was pursued successfully, via the notion of Hopf-
Galois extension, by several authors, see [6–8, 19, 20] and refs. therein. However, this approach is
not suitable when the base is not affine, because in this case we need an affine open cover to properly
describe our geometrical object. The algebra of functions must be replaced by the structural sheaf
and care must be exterted in gluing and localizing. The key idea is to associate a graded quantum
ring to a projective base encoding its embedding into a projective space. This is obtained by a
quantum line bundle, via the key notion of quantum section (see [11]), with a gluing procedure
similar to the classical Proj one in [1, 28, 33, 34] (see also [12, 13, 15–17, 26] for the description of
quantum projective varieties and flags). Once the quantum principal bundle concept is established
in this more general setting, we can proceed and define a first order differential calculus (FODC) in
sheaf theoretic terms. An alternative approach to quantum differential calculi on quantum flags for
quantum algebraic groups can be also found in [9, 21–23, 31], but with different techniques.

The present work is organized as follows: we first describe a sheaf theoretic construction
of quantum principal bundles and then how to define a differential calculus using Ore extension,
summarizing the work [3] and announcing the main results in [4], yet to be published.

We discuss in detail the example of the special linear group SL𝑞 (2,C) as a principal bundle on
the projective line to elucidate our construction.
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2. Quantum principal bundles via sheaves

In this section we give a sheaf theoretic point of view on the concept of principal bundle. We
start with the classical definition (see [24]).

Definition 2.1. Let 𝐸 and 𝑀 be topological spaces, 𝑃 a topological group and ℘ : 𝐸 −→ 𝑀 a
continuous function. We say that (𝐸, 𝑀, ℘, 𝑃) is a 𝑃-principal bundle (or principal bundle for
short) with total space 𝐸 and base 𝑀 , if the following conditions hold

1. ℘ is surjective.

2. 𝑃 acts freely from the right on 𝐸 .

3. 𝑃 acts transitively on the fiber ℘−1(𝑚) of each point 𝑚 ∈ 𝑀 .

4. 𝐸 is locally trivial over 𝑀 , i.e. there is an open covering 𝑀 = ∪𝑈𝑖 and homeomorphisms
𝜎𝑖 : ℘−1(𝑈𝑖) −→ 𝑈𝑖 × 𝑃 that are 𝑃-equivariant i.e., 𝜎𝑖 (𝑢𝑝) = 𝜎𝑖 (𝑢)𝑝, 𝑢 ∈ 𝑈𝑖 , 𝑝 ∈ 𝑃.

Let us look at a simple, yet elucidating example.

Example 2.2. Consider the special linear group SL2(C) as a principal bundle over the complex
projective line:

SL2(C) −→ SL2(C)/𝑃 = P1(C)

where

𝑃 =

(
𝑡 𝑝

0 𝑡−1

)
Notice that the base 𝑀 = P1(C) has no global non constant holomorphic functions and, furthermore,
that we are considering the special, yet interesting, case in which the total space 𝐸 has a group
structure.

The first three properties of our previous definition are clear. The local triviality can be easily
checked on the two open sets in SL2(C):{(

𝛼 𝛽

𝛾 𝛿

) ���� det = 𝛼𝛿 − 𝛽𝛾 = 1, 𝛼 ≠ 0

} {(
𝛼 𝛽

𝛾 𝛿

) ���� det = 𝛼𝛿 − 𝛽𝛾 = 1, 𝛾 ≠ 0

}
(1)

The fact that on projective bases like P1(C) there are no non constant holomorphic functions
requires to go beyond the ring theoretic description of the properties of principal bundles, when
advancing to the quantum setting.

We start with a sheaf theoretic definition of quantum ringed space, following Manin [29] and
Pflaum [32], that takes into account the non affine setting and then we proceed to give a sheaf
theoretic definition of principal bundle.

Definition 2.3. We say that (𝑀,O𝑀 ) is a quantum ringed space, if 𝑀 is a classical topological
space and O𝑀 is a sheaf of algebras over 𝑀 .

Let us look at our previous example.
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Example 2.4. Consider 𝑀 = SL2(C)/𝑃 = P1(C). We can define an affine open cover of P1(C) =
𝑈 ∪𝑉 :

𝑈 = {[𝑥0, 𝑥1] ∈ P1(C) | 𝑥0 ≠ 0}, 𝑉 = {[𝑥0, 𝑥1] ∈ P1(C) | 𝑥1 ≠ 0}

and the ring of functions on the open sets:

O𝑀 (𝑈) := C[𝑢], O𝑀 (𝑉) := C[𝑣]

where 𝑢 = 𝑥1/𝑥0, 𝑣 = 𝑥0/𝑥1. As one can readily check, there is compatibility on intersection
(change of chart):

𝑢 ↦→ 𝑣 := 1/𝑢

so we have O𝑀 (𝑈 ∩𝑉) = C[𝑢, 𝑢−1]. The assignment:

𝑈 ∪𝑉 ↦→ C, 𝑈 ↦→ O𝑀 (𝑈), 𝑉 ↦→ O𝑀 (𝑉), 𝑈 ∩𝑉 ↦→ O𝑀 (𝑈 ∩𝑉)

defines a sheaf on 𝑀 . Notice that we give the sheaf not on the full Zariski topology of 𝑀 . This is
necessary in the quantum setting in order to obtain non trivial noncommutative localizations, i.e.
the quantized algebras of functions on open sets, in meaningful examples. We shall see that the
rough topology we use is however sufficient to describe the principal bundle SL2(C) → P1(C).

We are ready for the key definition of this section, motivated by the classical Example 2.2.
Let (𝑀,O𝑀 ) be a quantum ringed space and 𝐻 a Hopf algebra.

Definition 2.5. We say that a sheaf F on 𝑀 is an 𝐻-quantum principal bundle over the quantum
ringed space (𝑀,O𝑀 ) if:

• F is a sheaf of right 𝐻-comodule algebras.

• There exists an open covering {𝑈𝑖} of 𝑀 such that:

1. F (𝑈𝑖)co𝐻 = O𝑀 (𝑈𝑖),
2. F is locally cleft, i.e., F (𝑈𝑖) � F (𝑈𝑖)co𝐻 ⊗ 𝐻, as left F (𝑈𝑖)co𝐻-modules and right

𝐻-comodules.

Notice that for a 𝑃-principal bundle 𝐸 −→ 𝑀 = 𝐸/𝑃, according to Def. 2.1, the 𝐻-comodule
structure encodes the right action of the group 𝑃 on 𝐸 , while the locally cleft condition encodes
effectively the local triviality in the classical sense (see also [20], [2] for more details on this subtle
question).

We are now going to reinterpret Example 2.2 of a classical principal bundle in the light of
Def. 2.5.

Example 2.6. Consider, as before:

𝐸 = SL2(C) −→ 𝑀 = SL2(C)/𝑃 ≃ P1(C)

where

𝑃 =

{(
𝑡 𝑝

0 𝑡−1

)}
⊂ SL2(C) =

{(
𝛼 𝛽

𝛾 𝛿

) ���� det = 𝛼𝛿 − 𝛽𝛾 = 1

}
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We define the sheaf F on 𝑀 = 𝑈 ∪𝑉

𝑈 ↦→ F (𝑈) := C[𝛼, 𝛽, 𝛾, 𝛿] [𝛼−1]/(det−1)

𝑉 ↦→ F (𝑉) := C[𝛼, 𝛽, 𝛾, 𝛿] [𝛾−1]/(det−1)

𝑈 ∩𝑉 ↦→ F (𝑈 ∩𝑉) := C[𝛼, 𝛽, 𝛾, 𝛿] [𝛼−1, 𝛾−1]/(det−1)

and F (𝑈 ∪𝑉) = C[SL2] := C[𝛼, 𝛽, 𝛾, 𝛿]/(det−1).
Notice that the opens 𝑈 and 𝑉 in 𝑀 lift to open sets defined in (1) in Example 2.2.
As for the right coaction of 𝐻 := C[𝑡, 𝑝] [𝑡−1] on the sheaf F , define:

C[SL2] −→ C[SL2] ⊗ 𝐻(
𝛼 𝛽

𝛾 𝛿

)
↦→

(
𝛼 𝛽

𝛾 𝛿

)
⊗

(
𝑡 𝑝

0 𝑡−1

)
This coaction extends to F by the universal property of commutative localizations. Notice that 𝐻
is a Hopf algebra with coalgebra structure and antipode

Δ

(
𝑡 𝑝

0 𝑡−1

)
=

(
𝑡 𝑝

0 𝑡−1

)
⊗

(
𝑡 𝑝

0 𝑡−1

)
, 𝜖

(
𝑡 𝑝

0 𝑡−1

)
=

(
1 0
0 1

)
, 𝑆

(
𝑡 𝑝

0 𝑡−1

)
=

(
𝑡−1 −𝑝
0 𝑡

)
.

Hence we have that F is a (quantum) principal bundle on P1(C).

We now give a quantum version of the previous example.

Example 2.7. Let us consider the quantum special linear group as defined by Manin in [29]:

C𝑞 [SL2] = C𝑞 ⟨𝛼, 𝛽, 𝛾, 𝛿⟩
/
𝐼𝑀 + (𝛼𝛿 − 𝑞−1𝛽𝛾 − 1) .

𝐼𝑀 is the ideal of the Manin relations:

𝛼𝛽 = 𝑞−1𝛽𝛼, 𝛼𝛾 = 𝑞−1𝛾𝛼, 𝛽𝛿 = 𝑞−1𝛿𝛽, 𝛾𝛿 = 𝑞−1𝛿𝛾,

𝛽𝛾 = 𝛾𝛽 𝛼𝛿 − 𝛿𝛼 = (𝑞−1 − 𝑞)𝛽𝛾

C𝑞 [SL2] is a Hopf algebra:

Δ

(
𝛼 𝛽

𝛾 𝛿

)
=

(
𝛼 𝛽

𝛾 𝛿

)
⊗

(
𝛼 𝛽

𝛾 𝛿

)
, 𝜖

(
𝛼 𝛽

𝛾 𝛿

)
=

(
1 0
0 1

)
, 𝑆

(
𝛼 𝛽

𝛾 𝛿

)
=

(
𝛿 −𝑞𝛽

−𝑞−1𝛾 𝛼

)
Define the sheaf on P1(C) = 𝑈 ∪𝑉 :

𝑈 ↦→ F (𝑈) := C𝑞 [SL2] [𝛼−1]
𝑉 ↦→ F (𝑉) := C𝑞 [SL2] [𝛾−1]

𝑈 ∩𝑉 ↦→ F (𝑈 ∩𝑉) := C𝑞 [SL2] [𝛼−1, 𝛾−1]
𝑈 ∪𝑉 ↦→ F (𝑈 ∪𝑉) := C𝑞 [SL2]
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where here adjoining the element 𝛼−1 is with respect to the Ore localization (see [3] Sec. 3 and
refs. therein for more details).

This sheaf defines a quantum principal bundle on P1(C) for 𝐻 = C𝑞 [SL2]/(𝛾), the quotient
Hopf algebra of C𝑞 [SL2] with respect to the Hopf ideal (𝛾) generated by 𝛾. See also Example 2.2.
We have that

C𝑞 [SL2] −→ C𝑞 [SL2] ⊗ 𝐻(
𝛼 𝛽

𝛾 𝛿

)
↦→

(
𝛼 𝛽

𝛾 𝛿

)
⊗

(
𝑡 𝑝

0 𝑡−1

)
is a well-defined coaction. The properties of the Ore localization ensure that the latter extends to
the whole sheaf. We leave to the reader the easy checks involved to verify Def. 2.5. In particular
F co𝐻 (𝑈) = O𝑀 (𝑈) is generated by 𝑢 = 𝛾𝛼−1 and F co𝐻 (𝑉) = O𝑀 (𝑉) is generated by 𝑣 = 𝛼𝛾−1.

3. The quantum principal bundle 𝐺 → 𝐺/𝑃

Let 𝐺 be a complex semisimple algebraic group and 𝑃 a closed algebraic subgroup of 𝐺. Let
O𝑞 (𝐺) and O𝑞 (𝑃) := O𝑞 (𝐺)/𝐼𝑃 be the Hopf algebra quantizations of the algebraic functions on 𝐺

and 𝑃 respectively.
Notice: here 𝑞 is a parameter, when 𝑞 is specialized to 1 we obtain the commutative algebras

O(𝐺) and O(𝑃) of algebraic functions on 𝐺 and 𝑃 respectively.

Let 𝑠 ∈ O𝑞 (𝐺) be a quantum section, that is, an element 𝑠 ∈ O𝑞 (𝐺) such that Δ(𝑠) − 𝑠 ⊗ 𝑠 ∈
O𝑞 (𝐺) ⊗ 𝐼𝑃. The element 𝑠 can be seen as the quantum version of the lift to O(𝐺) of the character
of 𝑃 defining the line bundle L giving the projective embedding of 𝐺/𝑃. Hence the name quantum
section. This is a key concept, 𝑠 controls the ring of algebraic functions on𝐺/𝑃 and its quantization.
The elements 𝑠𝑖 appearing in the expression of the comultiplication of 𝑠

Δ𝐺 (𝑠) = 𝑠𝑖 ⊗ 𝑠𝑖

give an open cover of 𝐺:

𝐺 = ∪𝑈𝑖 , 𝑈𝑖 := {𝑔 ∈ 𝐺 | 𝑠𝑖 (𝑔) ≠ 0}

so that O(𝑈𝑖) = O(𝐺) [𝑠−1
𝑖
]. The projection of the open cover 𝑈𝑖 under 𝐺 −→ 𝐺/𝑃 is an open

cover of 𝐺/𝑃 (see [3] Sec. 3).
Notice that the opens 𝑈𝐼 := ∩𝑖∈𝐼𝑈𝑖 , 𝐼 = (𝑖1, . . . , 𝑖𝑟 ), 𝑟 ∈ N, form a base B for a topology and

that in order to give a sheaf for such topology it is enough to give an assignment for each 𝑈𝐼 (see
[14] Ch. 1).

We now state the main result in [3], Thm 4.8.
Let𝑈𝐼 := ∩𝑖∈𝐼𝑈𝑖 and O𝑞 (𝐺)𝑆−1

𝐼
denote the subsequent localizations with respect to 𝑆𝑖1 . . . 𝑆𝑖𝑟 ,

𝐼 = (𝑖1, . . . , 𝑖𝑟 ), 𝑆𝑖 := {𝑠𝑘
𝑖
, 𝑘 ∈ N}. Similarly, let 𝑠𝐼 := 𝑠𝑖1 . . . 𝑠𝑖𝑟 .

Theorem 3.1. Let the notation be as above. Assume 𝑆𝑖 is Ore and that subsequent Ore localizations
of O𝑞 (𝐺) with respect to the 𝑆𝑖’s do not depend on the order.
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1. The assignment
𝑈𝐼 ↦→ O𝑀 (𝑈𝐼 ) := ⟨𝑠𝐾 𝑠−1

𝐼 ⟩ ⊂ O𝑞 (𝐺)𝑆−1
𝐼 ,

where ⟨𝑠𝐾 𝑠−1
𝐼
⟩ is the subalgebra in O𝑞 (𝐺)𝑆−1

𝐼
generated by the elements 𝑠𝐾 𝑠

−1
𝐼

, defines a
quantum ringed space on 𝑀 .

2. The assignment 𝑈𝐼 ↦→ F𝐺 (𝑈𝐼 ) := O𝑞 (𝐺)𝑆−1
𝐼

defines a sheaf of right O𝑞 (𝑃)-comodule
algebras on the quantum ringed space 𝑀 .

3. F𝐺 (𝑈𝐼 )co O𝑞 (𝑃) = O𝑀 (𝑈𝐼 ).

If locally trivial, F𝐺 is a quantum principal bundle.

Example 3.2. Let us look again at the Example 2.2. Here 𝐺 = SL2(C) and a quantum section is
𝛼 ∈ O𝑞 (𝐺). We have that

Δ(𝛼) = 𝛼 ⊗ 𝛼 + 𝛽 ⊗ 𝛾

so the 𝑠𝑖’s are given by 𝛼 and 𝛾. As one can readily check, the construction in Example 2.7 verifies
all the hypothesis of the theorem, including the local triviality. Hence it is a quantum principal
bundle.

It is possible to construct in the same fashion also an example of a quantum principal bundle
over the 𝑛-dimensional projective space. This is done in Sec. 5 in [3].

4. Quantum differential calculus: the affine setting

We start with the affine picture, that is we define a quantum differential calculus on 𝐻-comodule
algebras. Let 𝐻 be a Hopf algebra, 𝐴 a right 𝐻-comodule algebra with coaction 𝛿𝐴 : 𝐴 −→ 𝐴 ⊗ 𝐻.

Definition 4.1. A right 𝐻-covariant first order differential calculus (FODC) on 𝐴 is an 𝐴-bimodule
Γ, together with a C-linear map d: 𝐴 −→ Γ such that:

• d( 𝑓 𝑔) = d( 𝑓 )𝑔 + 𝑓 d𝑔 (Leibniz Rule)

• Γ = 𝐴d𝐴 (Surjectivity)

• ΔΓ : Γ −→ Γ ⊗ 𝐻, 𝑓 d𝑔 ↦→ 𝑓0d𝑔0 ⊗ 𝑓1𝑔1 is well-defined (right 𝐻-covariance)

where, as usual, we denote 𝛿𝐴( 𝑓 ) = 𝑓0 ⊗ 𝑓1 ∈ 𝐴 ⊗ 𝐻 for 𝑓 ∈ 𝐴.
Similarly left 𝐻-covariant FODC are defined on left 𝐻-comodule algebras and 𝐻-bicovariant

FODC are defined on 𝐻-bicomodule algebras. If 𝐻 is viewed as an 𝐻-comodule algebra with
respect to its comultiplication we simply refer to right 𝐻-covariant FODC on 𝐻 as right covariant
FODC and similarly for left and bicovariant FODC on 𝐻. If we do not require covariance we refer
to (Γ, d) as a FODC on an algebra 𝐴.

7
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It follows that (Γ, d) is a right 𝐻-covariant FODC on (𝐴, 𝛿𝐴) if and only if (Γ,ΔΓ) is a right
𝐻-covariant 𝐴-bimodule and d is right 𝐻-colinear, c.f. [35]. For a detailed introduction to covariant
FODC we refer to [5, 27].

A morphism (Φ, 𝜙) : (Γ, d) → (Γ′, d′) of right 𝐻-covariant FODC on 𝐴 and 𝐴′ is a morphism
𝜙 : 𝐴 → 𝐴′ of right 𝐻-comodule algebras and a morphism Φ : Γ → Γ′ of right 𝐻-covariant
𝐴-bimodules such that Φ ◦ d = d′ ◦ 𝜙. If Φ and 𝜙 are isomorphisms we call (Γ, d) and (Γ′, d′)
equivalent. More in general, we call an algebra morphism 𝜙 : 𝐴 → 𝐴′ differentiable if there exists
an 𝐴-bimodule morphism d𝜙 : Γ → Γ′ such that

𝐴 𝐴′

Γ Γ′

𝜙

d d′

d𝜙

commutes, where the 𝐴-bimodule action on Γ′ is given by 𝜙. In the following proposition, taken
from [4], it is shown that for injective or surjective algebra morphisms we can induce FODC such
that the algebra map is differentiable.

Proposition 4.2 (Induced FODC). Consider a right 𝐻-covariant FODC (Γ, d) on a right 𝐻-
comodule algebra (𝐴, 𝛿𝐴).

i.) Every injective right 𝐻-comodule algebra morphism 𝜄 : 𝐵 ↩→ 𝐴 gives a right 𝐻-covariant
FODC (Γ𝜄, d 𝜄) on 𝐵, where Γ𝜄 = 𝜄(𝐵)d𝜄(𝐵) ⊆ Γ and d 𝜄 = d ◦ 𝜄 : 𝐵 → Γ𝜄.

ii.) Every surjective right 𝐻-comodule algebra morphism 𝜋 : 𝐴 ↠ 𝐵 gives a right 𝐻-covariant
FODC (Γ𝜋 , d𝜋) on 𝐵, where Γ𝜋 = Γ/Γ𝐼 with Γ𝐼 = 𝐴d𝐼 + 𝐼d𝐴, 𝐼 = ker 𝜋 and d𝜋 : 𝐵 → Γ𝜋 is
induced by d on the quotient 𝐵 � 𝐴/𝐼.

iii.) If 0 → ker 𝜋 → 𝐴
𝜋−→ 𝐵 → 0 is a split exact sequence of right 𝐻-comodule algebras with

section 𝜄 : 𝐵 → 𝐴 the induced right 𝐻-covariant FODC (Γ𝜄, d 𝜄) and (Γ𝜋 , d𝜋) are equivalent.

We call (Γ𝜄, d 𝜄) the pullback calculus and (Γ𝜋 , d𝜋) the quotient calculus.

In the rest of this section we discuss the example of a bicovariant FODC on C𝑞 [SL2]. Via
Proposition 4.2 we induce a bicovariant calculus on the Hopf algebra quotient 𝜋 : C𝑞 [SL2] →
O𝑞 (𝑃).

Example 4.3. The Hopf algebra 𝐴 = C𝑞 [SL2] discussed in Example 2.7 admits a 4-dimensional
bicovariant FODC (Γ, d), as described in [36], see also [25]. Here Γ = span𝐴{𝜔1, 𝜔2, 𝜔3, 𝜔4} is
the free left 𝐴-module generated by four 1-forms 𝜔1, 𝜔2, 𝜔3, 𝜔4. The right 𝐴-module action on Γ

8
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is determined by

𝜔1𝛼 =𝑞𝛼𝜔1,

𝜔2𝛼 =𝛼𝜔2,

𝜔3𝛼 = − 𝑞−1𝜆𝛽𝜔1 + 𝛼𝜔3,

𝜔4𝛼 = − 𝜆𝛽𝜔2 + 𝑞−1𝛼𝜔4,

𝜔1𝛾 =𝑞𝛾𝜔1,

𝜔2𝛾 =𝛾𝜔2,

𝜔3𝛾 =𝛾𝜔3 − 𝑞−1𝜆𝛿𝜔1,

𝜔4𝛾 = − 𝜆𝛿𝜔2 + 𝑞−1𝛾𝜔4,

𝜔1𝛽 =𝑞−1𝛽𝜔1,

𝜔2𝛽 = − 𝑞−1𝜆𝛼𝜔1 + 𝛽𝜔2,

𝜔3𝛽 =𝛽𝜔3,

𝜔4𝛽 =𝑞−1𝜆2𝛽𝜔1 − 𝜆𝛼𝜔3 + 𝑞𝛽𝜔4,

𝜔1𝛿 =𝑞−1𝛿𝜔1,

𝜔2𝛿 =𝛿𝜔2 − 𝑞−1𝜆𝛾𝜔1,

𝜔3𝛿 =𝛿𝜔3,

𝜔4𝛿 =𝑞−1𝜆2𝛿𝜔1 − 𝜆𝛾𝜔3 + 𝑞𝛿𝜔4,

(2)

where 𝜆 := 𝑞−1 − 𝑞. The differential d: 𝐴 → Γ is defined by

d𝛼 =
𝑞−1
𝜆

𝛼𝜔1 + 𝑞−1−1
𝜆

𝛼𝜔4 − 𝛽𝜔2

d𝛽 = 𝑄𝛽𝜔1 + 𝑞−1
𝜆

𝛽𝜔4 − 𝛼𝜔3

d𝛾 =
𝑞−1
𝜆

𝛾𝜔1 + 𝑞−1−1
𝜆

𝛾𝜔4 − 𝛿𝜔2

d𝛿 = 𝑄𝛿𝜔1 + 𝑞−1
𝜆

𝛿𝜔4 − 𝛾𝜔3,

(3)

𝑄 := 𝑞−1 (𝜆2+1)−1
𝜆

, and is extended via the Leibniz rule. Then (Γ,ΔΓ, ΓΔ) is a bicovariant𝐻-bimodule
such that

ΔΓ

(∑︁
𝑖

𝑎𝑖d𝑏𝑖
)
=

∑︁
𝑖

𝑎𝑖1d𝑏𝑖1 ⊗ 𝑎𝑖2𝑏
𝑖
2, ΓΔ

(∑︁
𝑖

𝑎𝑖d𝑏𝑖
)
=

∑︁
𝑖

𝑎𝑖1𝑏
𝑖
1 ⊗ 𝑎𝑖2d𝑏𝑖2

for all 𝑎𝑖 , 𝑏𝑖 ∈ 𝐴, i.e. (Γ, d) is a bicovariant FODC on 𝐴. With this definition the 1-forms
𝜔1, 𝜔2, 𝜔3, 𝜔4 are left coinvariant. The induced quotient calculus (Γ𝐻 , d𝐻) on 𝐻 = O𝑞 (𝑃) can be
shown to be the 2-dimensional bicovariant FODC with Γ𝐻 being the free left 𝐻-module generated by
the basis {[𝜔3], [𝜔4]} of left coinvariant elements (notice that [𝜔1] = [𝜔2] = 0, while [𝜔3], [𝜔4]
are linearly independent). The resulting commutation relations are

[𝜔3]𝑡 = 𝑡 [𝜔3] , [𝜔3]𝑝 = 𝑝 [𝜔3] , [𝜔4]𝑡 = 𝑞−1𝑡 [𝜔4] , [𝜔4]𝑝 = 𝑞𝑝 [𝜔4] − 𝜆𝑡 [𝜔3] ,

and the differential reads

d𝐻 𝑡 = 𝑞−1−1
𝜆

𝑡 [𝜔4] , d𝐻 𝑝 = −𝑡 [𝜔3] + 𝑞−1
𝜆

𝑝 [𝜔4] .

Via the Hopf algebra projection 𝜋 : 𝐴 → 𝐻 we can view (𝐴, 𝛿𝐴) as a right 𝐻-comodule algebra
and (Γ, d,Δ𝐻) as a right 𝐻-covariant FODC, where 𝛿𝐴 := (id ⊗ 𝜋) ◦ Δ : 𝐴 → 𝐴 ⊗ 𝐻 and
Δ𝐻 := (id ⊗ 𝜋) ◦ ΔΓ : Γ → Γ ⊗ 𝐻.

5. A sheaf approach to noncommutative differential calculi

We now want to take a sheaf theoretic point of view on the construction of the previous section.
Assume we have a quantum ringed space (𝑀,O𝑀 ) with open cover 𝑀 = ∪𝑈𝑖 and {𝑈𝐼 } a

topological basis. Recall from Definition 2.5 that a quantum principal bundle F on 𝑀 is a sheaf of
𝐻-comodule algebras which is locally cleft.

9
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Definition 5.1. A right 𝐻-covariant FODC on F is a sheaf Υ of right 𝐻-covariant F -bimodules
with a morphism of sheaves of right 𝐻-comodules

d: F −→ Υ

satisfying locally

• d𝐼 ( 𝑓 𝑔) = d𝐼 ( 𝑓 )𝑔 + 𝑓 d𝐼𝑔 for all 𝑓 , 𝑔 ∈ F (𝑈𝐼 ) (Leibniz Rule)

• Υ(𝑈𝐼 ) = F (𝑈𝐼 )d𝐼F (𝑈𝐼 ) (Surjectivity)

where d𝐼 := d|𝑈𝐼 : F (𝑈𝐼 ) → Υ(𝑈𝐼 ).

Notice that for each open 𝑈 ⊆ 𝑀 d|𝑈 : F (𝑈) → Υ(𝑈) is a right 𝐻-comodule map. Let 𝑃 be
an affine Lie group and 𝐻 = C[𝑃] the associated Hopf algebra. Clearly the de Rham calculus on a
smooth 𝑃-manifold fits Definition 5.1. The remaining part of this proceeding is devoted to provide
non-trivial noncommutative examples of Definition 5.1.

We start with the general construction of the Ore calculus on the quantization O𝑞 (𝐺) of a
complex semisimple algebraic group 𝐺. Take a parabolic subgroup 𝑃 of 𝐺 and a quantization
O𝑞 (𝑃) thereof. Given a quantum section 𝑠 on O𝑞 (𝐺) we consider the corresponding open cover
{𝑈𝑖}, the induced topological basis {𝑈𝐼 } and the sheaves F𝐺 , O𝑀 given in Theorem 3.1. We denote
the restriction morphisms of F𝐺 by 𝑟𝐽𝐼 : F𝐺 (𝑈𝐼 ) → F𝐺 (𝑈𝐽 ) for 𝑈𝐽 ⊆ 𝑈𝐼 .

Lemma 5.2. Given a right O𝑞 (𝑃)-covariant FODC (Γ, d) on O𝑞 (𝐺) the assignment

Υ𝐺 : 𝑈𝐼 ↦→ Υ𝐺 (𝑈𝐼 ) := F𝐺 (𝑈𝐼 ) ⊗O𝑞 (𝐺) Γ ⊗O𝑞 (𝐺) F𝐺 (𝑈𝐼 )

determines a sheaf Υ𝐺 of right 𝐻-covariant F𝐺-bimodules on 𝑀 . The restriction morphisms
𝑟Υ
𝐽𝐼

: Υ𝐺 (𝑈𝐼 ) → Υ𝐺 (𝑈𝐽 ), 𝑈𝐽 ⊆ 𝑈𝐼 , are defined by

𝑟Υ𝐽𝐼 ( 𝑓 ⊗O𝑞 (𝐺) 𝜔 ⊗O𝑞 (𝐺) 𝑔) := 𝑟𝐽𝐼 ( 𝑓 ) ⊗O𝑞 (𝐺) 𝜔 ⊗O𝑞 (𝐺) 𝑟𝐽𝐼 (𝑔),

where 𝑓 , 𝑔 ∈ F𝐺 (𝑈𝐼 ) and 𝜔 ∈ Γ.

We can extend d: O𝑞 (𝐺) → Γ to a differential d𝐼 : F𝐺 (𝑈𝐼 ) → Υ𝐺 (𝑈𝐼 ) on F𝐺 (𝑈𝐼 ) by defining
d𝐼 |O𝑞 (𝐺) = d and

d𝐼 (𝑠−1
𝑖𝑘
) := −𝑠−1

𝑖𝑘
⊗O𝑞 (𝐺) d𝑠𝑖𝑘 ⊗O𝑞 (𝐺) 𝑠

−1
𝑖𝑘
, (4)

where 𝐼 = (𝑖1, . . . , 𝑖𝑟 ) and 1 ≤ 𝑘 ≤ 𝑟 . In the following we shall omit the tensor product in (4) thus
simply writing d𝐼 (𝑠−1

𝑖𝑘
) = −𝑠−1

𝑖𝑘
d(𝑠𝑖𝑘 )𝑠−1

𝑖𝑘
. Then d𝐼 is extended to arbitrary elements of F𝐺 (𝑈𝐼 ) via

the Leibniz rule. As a consequence we obtain the following main result of this proceeding, c.f. [4]
for more explanations and the proof of this non trivial result.

Theorem 5.3. Any right O𝑞 (𝑃)-covariant FODC (Γ, d) on O𝑞 (𝐺) induces a right O𝑞 (𝑃)-covariant
FODC (Υ𝐺 , d𝐺) on F𝐺 . The subsheaf (Υ𝑀 , d𝑀 ) given by the pullback calculi corresponding to
the algebra embeddings O𝑀 (𝑈𝐼 ) = F co𝐻

𝐺
(𝑈𝐼 ) ⊆ F𝐺 (𝑈𝐼 ) is a FODC on O𝑀 .

We exemplify the machinery provided by Theorem 5.3 with the covariant FODC presented in
Example 4.3.

10
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Example 5.4. Consider the 4-dimensional FODC (Γ, d) on 𝐴 = C𝑞 [SL2] viewed as a right 𝐻 =

O𝑞 (𝑃)-covariant FODC, c.f. Example 4.3. The sheaf F𝐺 is spelled out explicitly in Example 2.7,
with opens 𝑈 and 𝑉 defined in Example 2.4. According to Theorem 5.3, on the level of differential
1-forms we have the assignment

𝑈 ↦→ Υ𝐺 (𝑈) := C𝑞 [SL2] [𝛼−1] ⊗𝐴 Γ ⊗𝐴 C𝑞 [SL2] [𝛼−1]
𝑉 ↦→ Υ𝐺 (𝑉) := C𝑞 [SL2] [𝛾−1] ⊗𝐴 Γ ⊗𝐴 C𝑞 [SL2] [𝛾−1]

𝑈 ∩𝑉 ↦→ Υ𝐺 (𝑈 ∩𝑉) := C𝑞 [SL2] [𝛼−1, 𝛾−1] ⊗𝐴 Γ ⊗𝐴 C𝑞 [SL2] [𝛼−1, 𝛾−1]
𝑈 ∪𝑉 ↦→ Υ𝐺 (𝑈 ∪𝑉) := Γ

with covariant differential on 𝑈 and 𝑉 defined as in equation (4)

d𝑈 (𝛼−1) = −𝛼−1d(𝛼)𝛼−1, d𝑉 (𝛾−1) = −𝛾−1d(𝛾)𝛾−1

and similarly for the differential on 𝑈 ∩𝑉 .
We now give a more explicit description of this right 𝐻-covariant FODC on the sheaf F𝐺 . We

show that

i.) Υ𝐺 (𝑈𝐼 ) is a free leftF𝐺 (𝑈𝐼 )-module, generated by the left coinvariant 1-forms𝜔1, 𝜔2, 𝜔3, 𝜔4.

ii.) The base forms (Υ𝑀 , d𝑀 ) are determined by the free modules Υ𝑀 (𝑈) = spanO𝑀 (𝑈) {𝛼−2𝜔2}
and Υ𝑀 (𝑉) = spanO𝑀 (𝑉) {𝛾−2𝜔2}, i.e. they are the left span over O𝑀 (𝑈) and O𝑀 (𝑉) of
the forms 𝛼−2𝜔2 and 𝛾−2𝜔2, respectively. The algebras O𝑀 (𝑈) and O𝑀 (𝑉) are generated
by 𝑢 = 𝛾𝛼−1 and 𝑣 = 𝛼𝛾−1 as discussed at the end of Example 2.7. We thus recover the
commutation relations

(d𝑈𝑢)𝑢 = 𝑞2𝑢d𝑈𝑢, (d𝑉𝑣)𝑣 = 𝑞−2𝑣d𝑉𝑣

described by Chu, Ho and Zumino in [10]. FurthermoreΥ𝑀 (𝑈∩𝑉) = spanO𝑀 (𝑈∩𝑉) {𝛼−2𝜔2}
is a free left O𝑀 (𝑈 ∩𝑉)-module and d𝑈𝑢 = −𝑞2𝑢2d𝑉𝑣 in Υ𝑀 (𝑈 ∩𝑉).

Proof. We show 𝑖.) and 𝑖𝑖.) on the open 𝑈; the results for the other opens follow similarly. Recall
form Example 4.3 that we have the free left 𝐴-module of 1-forms Γ = span𝐴{𝜔1, 𝜔2, 𝜔3, 𝜔4}, then
from Lemma 5.2 we have spanF𝐺 (𝑈) {𝜔1, 𝜔2, 𝜔3, 𝜔4} ⊆ Υ𝐺 (𝑈). Point 𝑖.) is proven by showing the
other inclusion. This reduces to show that d𝑈 (𝛼−1) ∈ spanF𝐺 (𝑈) {𝜔1, 𝜔2, 𝜔3, 𝜔4}. Using equations
(2) and (3) we obtain

𝛼d𝛼 =
𝑞 − 1
𝜆

𝛼2𝜔1 + 𝑞−1 − 1
𝜆

𝛼2𝜔4 − 𝛼𝛽𝜔2 = 𝑞−1 𝑞 − 1
𝜆

𝛼𝜔1𝛼 + 𝑞
𝑞−1 − 1

𝜆
𝛼𝜔4𝛼 − 𝛽𝜔2𝛼,

which implies

d(𝛼)𝛼−1 = 𝛼−1𝛼d(𝛼)𝛼−1 = 𝑞−1 𝑞 − 1
𝜆

𝜔1 + 𝑞
𝑞−1 − 1

𝜆
𝜔4 − 𝛼−1𝛽𝜔2. (5)

This shows that d𝑈𝛼−1 = −𝛼−1d(𝛼)𝛼−1 ∈ spanF𝐺 (𝑈) {𝜔1, 𝜔2, 𝜔3, 𝜔4}. In order to prove point 𝑖𝑖.)
we show that d𝑈 (𝑢) = −𝛼−2𝜔2. The commutation relations (2) and (3) give

d(𝛾)𝛼−1 =
𝑞 − 1
𝜆

𝛾𝜔1𝛼−1 + 𝑞−1 − 1
𝜆

𝛾𝜔4𝛼−1 − 𝛿𝜔2𝛼−1

=𝑞−1 𝑞 − 1
𝜆

𝛾𝛼−1𝜔1 + 𝑞−1 − 1
𝜆

𝛾(𝑞𝛼−1𝜔4 + 𝑞𝜆𝛼−1𝛽𝜔2𝛼−1) − 𝛿𝜔2𝛼−1
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and so

d𝑈 (𝑢) =d(𝛾)𝛼−1 + 𝛾d𝑈𝛼−1

=
𝑞−1 − 1

𝜆
𝛾(𝑞𝛼−1𝜔4 + 𝑞𝜆𝛼−1𝛽𝜔2𝛼−1) − 𝛿𝜔2𝛼−1 − 𝑞

𝑞−1 − 1
𝜆

𝛾𝛼−1𝜔4 + 𝛼−1𝛾𝛼−1𝛽𝜔2

=𝑞(𝑞−1 − 1)𝛾𝛼−1𝛽𝜔2𝛼−1 − 𝛿𝜔2𝛼−1 + 𝛼−1𝛾𝛼−1𝛽𝜔2

=𝑞−1𝛾𝛼−1𝛽𝜔2𝛼−1 − 𝛿𝜔2𝛼−1

= − 𝛼−2𝜔2,

where we also used (5) and the determinant relation 𝛿𝛼−1−𝑞−1𝛼−1𝛽𝛾𝛼−1 = 𝛼−2. The commutation
relation

d𝑈 (𝑢)𝑢 = −𝛼−2𝜔2𝛾𝛼−1 = −𝛼−2𝛾𝛼−1𝜔2 = −𝑞2𝛾𝛼−1𝛼−2𝜔2 = 𝑞2𝑢d𝑈𝑢

shows that the F co𝐻
𝐺

(𝑈) = O𝑀 (𝑈)-bimodule Υ𝑀 (𝑈) is the free left F co𝐻
𝐺

(𝑈) = O𝑀 (𝑈)-module
freely generated by d𝑈 (𝑢) = −𝛼−2𝜔2. □

6. Conclusions

We have defined a notion of Quantum Principal Bundle over a non affine base and provided
a concrete example, the quantization of the principal bundle SL2(C) −→ P1(C), the complex
projective line. We have also stated a general theorem regarding the flag varieties of classical
groups (see [3] Ch. 4, for more details).

We have defined a first order differential calculus on quantum principal bundles over projective
bases elucidating our definition with a calculus on the quantization of the bundle SL2(C) −→ P1(C).

Appendix: The gluing procedure

We pedagogically illustrate the gluing of two right 𝐻-comodule algebras F𝐺 (𝑈𝐼 ), F𝐺 (𝑈𝐽 )
obtained from Theorem 3.1 on two opens 𝑈𝐼 ,𝑈𝐽 ∈ B. We set

F𝐺 (𝑈𝐼 ∪𝑈𝐽 ) := { ®𝑓 ∈ Π𝑈𝐾 ∈B: 𝑈𝐾 ⊆𝑈𝐼∪𝑈𝐽F𝐺 (𝑈𝐾 ) | ∀𝑈𝐾 ⊆ 𝑈𝐿 ⊆ 𝑈𝐼 ∪𝑈𝐽 : 𝑓𝐾 = 𝑟𝐾𝐿 ( 𝑓𝐿)}, (6)

where 𝑓𝐾 is the component of ®𝑓 corresponding to F𝐺 (𝑈𝐾 ) for all 𝑈𝐾 ⊆ 𝑈𝐼 ∪ 𝑈𝐽 . Note that
F𝐺 (𝑈𝐼 ∪𝑈𝐽 ) is not empty since it certainly contains the diagonal in O𝑞 (𝐺) × . . . × O𝑞 (𝐺). Since
B is finite we can number all index sets 𝐼1, . . . , 𝐼𝑛 such that 𝑈𝐼𝑘 ⊆ 𝑈𝐼 ∪ 𝑈𝐽 for all 0 < 𝑘 ≤ 𝑛.
Then (6) is a C𝑞-module with respect to the action 𝜆 · ( 𝑓 1, . . . , 𝑓 𝑛) = (𝜆 · 𝑓 1, . . . , 𝜆 · 𝑓 𝑛) and
an associative algebra with respect to componentwise multiplication ( 𝑓 1, . . . , 𝑓 𝑛) · (𝑔1, . . . , 𝑔𝑛) =
( 𝑓 1𝑔1, . . . , 𝑓 𝑛𝑔𝑛) and unit (1, . . . , 1), for all𝜆 ∈ C𝑞 and ( 𝑓 1, . . . , 𝑓 𝑛), (𝑔1, . . . , 𝑔𝑛) ∈ F𝐺 (𝑈𝐼∪𝑈𝐽 ),
where 𝑓 𝑘 , 𝑔𝑘 ∈ F𝐺 (𝑈𝐼𝑘 ) for all 0 < 𝑘 ≤ 𝑛. Moreover, we structure (6) as a right O𝑞 (𝑃)-comodule
algebra via

Δ𝑅 ( 𝑓 1, . . . , 𝑓 𝑛) := ( 𝑓 1
0 , 0, . . . , 0) ⊗ 𝑓 1

1 + . . . + (0, . . . , 0, 𝑓 𝑛0 ) ⊗ 𝑓 𝑛1

12
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for all ( 𝑓 1, . . . , 𝑓 𝑛) ∈ F𝐺 (𝑈𝐼∪𝑈𝐽 ). In factΔ𝑅 (1, . . . , 1) = (1, 0, . . . , 0)⊗1+. . .+(0, . . . , 0, 1)⊗1 =

(1, . . . , 1) ⊗ 1 and

Δ𝑅 ( 𝑓 1, . . . , 𝑓 𝑛)Δ𝑅 (𝑔1, . . . , 𝑔𝑛) =(( 𝑓 1
0 , 0, . . . , 0) ⊗ 𝑓1 + . . . + (0, . . . , 0, 𝑓 𝑛0 ) ⊗ 𝑓 𝑛1 )

· ((𝑔1
0, 0, . . . , 0) ⊗ 𝑔1

1 + (0, . . . , 0, 𝑔𝑛0 ) ⊗ 𝑔𝑛1 )
=( 𝑓 1

0 𝑔
1
0, 0, . . . , 0) ⊗ 𝑓 1

1 𝑔
1
1 + . . . + (0, . . . , 0, 𝑓 𝑛0 𝑔

𝑛
0 ) ⊗ 𝑓 𝑛1 𝑔

𝑛
1

=Δ𝑅 (( 𝑓 1, . . . , 𝑓 𝑛) · (𝑔1, . . . , 𝑔𝑛))

for all ( 𝑓 1, . . . , 𝑓 𝑛), (𝑔1, . . . , 𝑔𝑛) ∈ F𝐺 (𝑈𝐼 ∪𝑈𝐽 ).
For an open 𝑈𝐾 ⊆ 𝑈𝐼 ∪𝑈𝐽 we define the restriction morphism 𝑟𝑈𝐾 ,𝑈𝐼∪𝑈𝐽 : F𝐺 (𝑈𝐼 ∪𝑈𝐽 ) →

F𝐺 (𝑈𝐾 ) by 𝑟𝑈𝐾 ,𝑈𝐼∪𝑈𝐽 ( ®𝑓 ) := 𝑓𝐾 , where 𝑓𝐾 is the component of ®𝑓 in F𝐺 (𝑈𝐾 ). An arbitrary open
is the union 𝑈 = 𝑈𝐽1 ∪ . . . 𝑈 𝑗𝑚 of elements in B. Note that B is finite, so it suffices to consider
finite unions. Then F𝐺 (𝑈) is defined in analogy to (6). If 𝑈 ⊆ 𝑈𝐼 ∪𝑈𝐽 we define the restriction
morphism 𝑟𝑈,𝑈𝐼∪𝑈𝐽 : F𝐺 (𝑈𝐼 ∪𝑈𝐽 ) → F𝐺 (𝑈) by

𝑟𝑈,𝑈𝐼∪𝑈𝐽 ( ®𝑓 ) := {®𝑔 ∈ Π𝑈𝐾 ∈B: 𝑈𝐾 ⊆𝑈F𝐺 (𝑈𝐾 ) | ∀𝑈𝐾 ⊆ 𝑈 : 𝑔𝐾 = 𝑓𝐾 }.

The previous description generalizes from 𝑈𝐼 ∪𝑈𝐽 to arbitrary opens 𝑈𝐼1 ∪ . . . ∪𝑈𝐼ℓ in 𝑀 .
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