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1. Introduction

The mathematical formalization of the quantization procedure at the basis of quantum me-
chanics is one century old and has a multitude of incarnations. The simplest one is deformation
quantization. A deformation quantization of a Poisson manifold (", c) is an associative★ℏ-product
defined on �∞(") [[ℏ]] that deforms the commutative product of functions and recovers the Pois-
son bracket in the semiclassical limit. Since the expansion is formal and no notion of topology
is required, this is regarded as a formal quantization. The problem of finding such ★ℏ-product for
every Poisson manifold has been solved by Kontsevich formula [14]. A quantum field theoretical
interpretation has been given in [6]. Much more elusive is the problem of non formal quantization,
i.e. a procedure that associates to the classical observables operators on an Hilbert space. There
are many different approaches, here we are interested in those having a geometrical flavour.

Geometric quantization generalizes the construction of canonical quantization to a symplectic
manifold (",l) (see [19]). The first step is prequantization: provided l takes integer values when
evaluated on closed 2-cycles, one can consider the prequantization line bundle, i.e. a line bundle
! → " endowed with a connection ∇ whose curvature is l. The second step is polarization:
one has to choose a lagrangian distribution � ⊂ )C" and define the Hilbert space as the space of
covariantly constant sections of !. In order this procedure to work, several regularity assumptions
are required to � and suitable polarizations exist in general only for cotangent manifolds and for
Kahler manifolds.

In the case of Poisson manifolds a straightforward generalization of geometric quantization
is not satisfactory, since it misses the Casimirs. Weinstein and Karasev indipendently introduced
the notion of symplectic groupoid having in mind the quantization problem (see [21],[12]). A
symplectic groupoid is a Lie groupoid G ⇒ " with a compatible symplectic form ΩG . Since the
space of units " naturally inherits a Poisson bracket, the symplectic groupoid is said to integrate
the underlying Poisson manifold. Compatibility between the groupoid structure and ΩG can be
stated by saying that the graph of the multiplication is Lagrangian inside G × G × Ḡ, where the
bar indicates that the last factor is taken with opposite symplectic form. Quantization of G must
take into account the compatibility with the groupoid structure so that the space of states carries
the structure of associative algebra, regarded as the algebra of operators quantizing the underlying
Poisson manifold. If the quantization scheme is geometric quantization, this compatibility amounts
to use compatible prequantization and multiplicative polarizations (see [11]). In particular, the
prototype example of polarization is given by a real polarization � such that the space L� = G/�
of lagrangian leaves inherits a Lie groupoid structure. In this case, the output of the quantization
is the convolution algebra AF of L� . The request of compatibility makes the task of finding
polarizations for sufficiently wide classes of examples even harder.

In this note we review a variation to this approach that allows to consider also very singular
polarizations whose space of leaves L� is just a topological groupoid. The basic observation is
that, if L� allows an Haar system, it is still possible to define the convolution algebra AF . We
consider in particular the case where � is defined by amultiplicative integrable model. A particular
rich source of examples can be found in Poisson-Nijenhuis manifolds of symplectic type, an example
of bihamiltonian geometry. In this case, the integrable flux is given by the modular vector field,
an intrinsic dynamical system on " defined by the Poisson brackets. The modular vector field can
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be lifted to the modular cocycle of the symplectic groupoid G together with the hamiltonians in
involution, giving rise to an integrable model on G that is compatible with the groupoid structure.

Although this approach cannot be seen as a general one, there are indeed very interesting
examples. Indeed, a class of PN structures defined on compact symmetric spaces was introduced in
[13]. Here the degenerate Poisson structure is the Bruhat-Poisson structure, that is the semiclassical
limit of homeogeneous spaces of quantumgroups. The properties of the integrablemodels have been
studied in [4] for the classical cases and in [5] for the exceptional cases. In particular, in the case of
Grassmannians the integrable model corresponds to the much studied Gelfand-Tsetlin system. The
quantization program has been discussed for C%= in [2], where we recover as convolution algebras
the groupoid �∗-algebras described in [18] for the quantum projective spaces. The quantization of
Bruhat-Poisson for Grassmannians is currently under investigation.

We sketch all the ingredients needed for the construction without giving proofs, that can be
found in the literature. Only exception is Proposition 5.1 where the description of the lift of the
integrable model differs from that of [1]. Another novelty is the explicit description of the groupoid
of lagrangian leaves for all the Poisson structures of the hierarchy.

2. Poisson manifolds

Let (", c) be a Poisson manifold with Poisson tensor given by c ∈ Γ(∧2)"); we denote with
{, }c the Poisson bracket defined by c. The Jacobi identity of {, }c is encoded in the relation

[c, c] = 0 , (1)

where [, ] denotes the Schouten bracket among multivector fields Γ(∧)"). We can extend the
antisymmetric bracket to Ω1(") as

{U, V}c = ! c (U) (V) − ! c (V) (U) − 3〈c, U ∧ V〉 U, V ∈ Ω1(") , (2)

where we denote with the same symbol the bivector c and the antisymmetric map c : )∗" → )" .
This antisymmetric bracket satisfies the Jacobi identity if and only if c satisfies (1).

The complex (Γ(∧•)"), 3c), where 3c = [c,−] squares to zero as a consequence of (1),
computes the Lichnerowicz-Poisson cohomology �•

!%
(", c). For any 5 ∈ �∞("), 3c ( 5 ) = E 5 ,

where E 5 = c(35 ) denotes the hamiltonian vector field of 5 . Moreover, a vector field E ∈ Γ()")
satisfies 3c (E) = 0 if it is a derivation of the bracket {, }; in this case it is called a Poisson vector
field. We then see that �1

!%
(", c) is the space of Poisson modulo hamiltonian vector fields

2.1 The modular class

Let us fix a volume form a ∈ Γ(∧C>?)∗"). For each 5 ∈ �∞("), since a is a volume form,
we compute

!E 5 (a) = ja ( 5 )a

for some ja ( 5 ) ∈ �∞("). It is immediate to see that ja ( 5 6) = 5 ja (6) + 6ja ( 5 ), i.e. ja is a
vector field, that we call the modular vector field with respect to the volume form a.

The modular vector field is a Poisson vector field, i.e. it is a derivation of the Poisson bracket.
Moreover, if we change the volume form to a′ = 4fa for some f ∈ �∞(") then the modular vector
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field changes as ja′ = ja + Ef . The class [ja] ∈ �1
!%
(", c) is then independent on the choice of

the volume form. We call this class the modular class. By construction the modular class vanishes
if and only if there exists a volume form that is invariant with respect to the hamiltonian flow. In
this case (", c) is said to be unimodular.

In the non degenerate case, i.e. when c is the inverse of a symplectic form l ∈ Ω2("),
the symplectic volume a = l: (2: = dim") is invariant under the hamiltonian flux: symplectic
manifolds are unimodular.

2.2 The symplectic groupoid

A symplectic groupoid is a couple (G,ΩG) where G ⇒ " is a Lie groupoid and ΩG is a
symplectic form on G such that the graph of the multiplication graph(G) ⊂ G×G×Ḡ is Lagrangian
(where the bar on the third factor means that the symplectic form isΩG ⊕ΩG 	ΩG). We will denote
with B, C the source and target maps. We will denote with G(:) = {(W1 . . . W:) ∈ G× . . .×G, C (W8) =
B(W8+1)} the space of :-composable arrows. The face maps are 38 : G(:) → G(:−1) , 8 = 0, . . . : ,
defined for : > 1 as

38 (W1, . . . W:) =


(W2, . . . W:) 8 = 0
(W1, . . . W8W8+1 . . .) 0 < 8 < :
(W1, . . . W:−1) 8 = :

(3)

and for : = 1 as 30(W) = B(W), 31(W) = C (W). The simplicial coboundary operator m∗ : ΩA (G(:) ) →
ΩA (G(:+1) ) is defined as

m∗(l) =
B∑
8=0
(−)83∗8 (l) ,

and m∗2 = 0. The cohomology of this complex for A = 0 is the real valued groupoid cohomology;
:-cocycles are denoted as / : (G,R).

As a consequence of compatibility, the manifold of units " inherits a Poisson structure. If
a Poisson manifold (", c) is the space of units of some symplectic groupoid then it is said to be
integrable. There are obstructions to the integrability (see [8]), but here we assume that all Poisson
structures are integrable; in this case, there exists a unique source simply connected (ssc) symplectic
groupoid G(", c).

In [7], G(", c) has been constructed as the symplectic reduction of the phase space of the
Poisson sigma model with target (", c). Let {G`} denote a set of coordinates on a chart of " . A
cotangent path is a bundle map (-, [) : ) [0, 1] → )∗" satisfying

¤-` + c`a[a = 0 .

Let us call C the space of cotangent paths. For each V ∈ -∗()∗") with V(0) = V(1) = 0, let us
consider the vector field XV on C defined as

XV-
` = c`aVa , XV[` = ¤V` + m`cdf[dVf .

It is proven in [7] that, when smooth, G = C/∼ is finite dimensional and carries the structure of
symplectic groupoid (G ⇒ ",ΩG). The obstruction to make G smooth, and then to identify it as
the (ssc) source simply connected groupoid G(", c) integrating (", c) are studied in [8].
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Let us consider now E ∈ Γ()") be a Poisson vector field. Then

ℎE [-, [] =
∫ 1

0
E` (-)[`

descends to ℎE ∈ �∞(G) and satisfies

(m∗ℎE ) (W1, W2) = ℎE (W1) + ℎE (W2) − ℎE (W1W2) = 0

for each multiplicable (W1, W2) ∈ G(2) , so that ℎE ∈ /1(G,R). In particular if E = E 5 for some
5 ∈ �∞(") then ℎ 5 = m∗ 5 , where

m∗ 5 = B∗( 5 ) − C∗( 5 )

is the groupoid coboundary operator m∗ : �∞(") → �∞(G).

3. Poisson-Nijenhuis structures

We recall here basic facts of Poisson-Nijenhuis geometry (see [16] and [15]). A (1, 1)-tensor
# : )" → )" is called a Nijenhuis tensor if its Nijenhuis torsion ) (#) vanishes, i.e. for any
couple (E1, E2) of vector fields on " we have

) (#) (E1, E2) = [#E1, #E2] − # ( [#E1, E2] + [E1, #E2] − # [E1, E2]) = 0 . (4)

Let ]# be the degree 0 derivation on multivector fields defined as ]# ( 5 ) = 0 and ]# (E) = # (E) for
5 ∈ �∞(") and E ∈ Γ()"). Let ]# ∗ be the dual derivation on Ω1("). The algebroid differential
is the degree one derivation 3# on Ω1(") defined as

3# = []# ∗ , 3] , (5)

that squares to zero. It is clear that [3, 3# ] = 33# + 3# 3 = 0. The hamiltonian forms are defined
as

Ω1
ℎ0<(", #) = {U ∈ Ω

1(") | 3U = 3#U = 0} . (6)

Definition 3.1. A triple (", %, #), where (", %) is a Poisson manifold and # a Nijenhuis tensor,
is called a Poisson-Nijenhuis (PN) manifold if % and # are compatible, i.e.

#% = %#∗ , {U, V}#% = {#∗U, V}% + {U, #∗V}% − #∗{U, V}% , (7)

for U, V ∈ Ω1(").

Among the consequences of the above definition, there exists a hierarchy of compatible Poisson
structures. Indeed, for all A > 0 and 9 ≥ 0, (", % 9 , #A ) where % 9 = # 9%, is a %# manifold.
Moreover, they are compatible, i.e. [% 9 , %B] = 0.

The proof of the following Proposition can be found in [1].

Proposition 3.2. The space Ω1
ℎ0<
(") of Hamiltonian forms is #-invariant.
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If we assume that �1(") = 0, then hamiltonian forms appear in hierarchies of smooth
functions, as 5• = { 5=}=≥0, where 5= ∈ �∞("), such that

#∗35= = 35=+1 . (8)

We call 5• a Lenhart hierarchy.

Proposition 3.3. Let 5• be a Lenhart hierarchy; then

{ 5=, 5<}%9
= 0

for each =, <, 9 ≥ 0.

Example 3.4. Toda lattice (see [10]). Let us consider " = R2= and let l =
∑
8 3@

8 ∧ 3?8 the
canonical symplectic form and

Ω =

=∑
8=1

(
4−(@

8+1−@8)3@8 ∧ 3@8+1 − ?83@8 ∧ 3?8
)
− 1

2
n8 93?8 ∧ 3? 9

where n8 9 = 1 if 8 < 9 . They are compatible symplectic structures and define the Nijenhuis tensor
# = Ω−1 ◦ l . One computes �1 = Tr# =

∑=
8=1 ?8 and

�2 =
1
2

Tr#2 =
1
2

2∑
8=1

?2
8 +

=−1∑
8=1

4−(@
8+1−@8)

is the hamiltonian of the Toda lattice.

3.1 Lenhart hierarchies and Poisson cohomology

We are particularly interested in the cohomological interpretation of Lenhart hierarchies.

Lemma 3.5. For each = ≥ 0, the vector field %35= is % 9-Poisson for all 9 ≥ 0 and % 9-hamiltonian
for all = ≥ 9 .

Proof. By applying 9-times # to (8) we get that # 935= = 35=+ 9 ; if we apply % to both sides we
get

% 935= = %35=+ 9 ,

which implies that %35= is % 9-hamiltonian for = ≥ 9 . Moreover,

[% 9 , %35=] = [%, % 935=] = [%, %35=+ 9] = 0 ,

where the first step follows because % and % 9 are compatible. �

Let us define �: = Tr# :/:; it satisfies

#∗3�: = 3�:+1 , (9)

and, as a consequence,
{�=, �<}%9

= 0 .

6
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We call �• = {�: }:≥0 the canonical hierarchy: it is a canonical set of functions in involution with
respect to all Poisson structures % 9 .

We will be interested in the case when % = l−1 is the inverse of a symplectic form l. We
call this case a symplectic PN structure. In this case PN structures are completely characterized
by compatible Poisson structures. Indeed if a Poisson structure c and a symplectic form l are
compatible, i.e. [c, l−1] = 0 then (",l−1, # = c ◦ l) is a symplectic PN-structure.

The following result is proven in [9].

Proposition 3.6. The vector field l−13�1 is the modular vector field of c with respect to the
symplectic volume form.

By applying this statement to the symplectic PN structure (",l−1, # 9) we get that l−13 ( 9 � 9)
is the modular vector field of % 9 with respect to the symplectic volume, for each 9 .

We say that # is of maximal rank if there exist an open dense "0 where there are defined
dim"/2 independent functions _U ∈ �1("0) such that _U (G) is an eigenvalue of # at G ∈ "0.
We call such functions _U the Nijenhuis eigenvalues. They satisfy the following equation

#∗3_U = _U3_U . (10)

One can prove that hamiltonian forms are in involution with respect to all the Poisson structures
% 9 of the hierarchy. We then have an integrable model and the Nijenhuis eigenvalues make a
canonical system of action variables. Based on the above discussion, we can say that the flux of
the modular vector fields of all the Poisson structures of the PN hierarchy is integrable. Several
classical integrable system give examples of the above geometry.

4. Quantization from singular polarizations

Let us consider the geometric quantization of (G,ΩG) (see [11]). The step of prequantization
has been studied in [22]: if G is prequantizable as a symplectic manifold then there exist a unique
prequantization line bundle (! → G,∇) such that the flat connection ∇|" obtained by restriction
to the (lagrangian) space of units has trivial holonomy. Equivalently, this prequantization comes
with a prequantization cocycle q ∈ /2(G, !). Let Θ be a (local) primitive of ΩG and let m∗ the
simplicial coboundary defined by the nerve of G. Then q ∈ �∞(G(2) , S1) is defined as

3q + m∗Θq = 0 . (11)

We recall that a polarization � ⊂ )CG is an involutive, lagrangian distribution. It is said to
be multiplicative if it is a subgroupoid of the tangent groupoid )CG ⇒ )" . Roughly speaking,
the basic idea of [11] is to define an associative product (twisted by q) on the space of polarized
sectionsA = Γ� (!). We refer to [11] for its definition, here it is enough to say that the paradigmatic
example is the case when � is real and L = G/� is a smooth Lie groupoid. In this case, the algebra
A coincides with the convolution algebra �2 (L) (twisted by q). Of course, real polarizations
are very rare in general, typically they can be found for cotangent bundles, and are not in general
multiplicative.

7
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Our observation is that the definition of the convolution algebra does not need that the groupoid
L is a Lie groupoid. We recall that a lagrangian leaf ℓ ∈ L is aBohr-Sommerfeld leaf if the restriction
of the (flat) prequantization connection ∇|ℓ has trivial holonomy. Let us denote with L�( ⊂ L the
set of BS leaves. Under some topological hypothesys (see [2]), it is a subgroupoid of L that we call
the BS groupoid L�( ⇒ L�(0 .

In order to proceed, it is now enough that the BS groupoid L�( admits a Haar system. Let us
recall its definition from [17]. Let�2 (L�() denote the space of continuous functions with compact
support. A left Haar system for L�( is a family of measures {G_, G ∈ L�(0 } on L

�( such that

8) the support of G_ is GL�( = B−1(G);

88) for any 5 ∈ �2 (L�(), and G ∈ L�(0 , _( 5 ) (G) =
∫
L 5 3G_, defines _( 5 ) ∈ �2 (L

�(
0 );

888) for any W ∈ L�( and 5 ∈ �2 (L�(),
∫
L 5 (WW

′)3C (W)_(W′) =
∫
L 5 (W

′)3B (W)_(W′).

The composition of G_ with the inverse map will be denoted as _G; this family defines a right
Haar system. Let q ∈ /2(L�( , S1) be a 2-cocycle, hopefully the one descending from (11). We
finally define the convolution product between 5 , 6 ∈ �2 (L�( , q) as

5 ★ 6(W) =
∫ �(

L
5 (WW′)6(W′)3C (W)_(W′).

5. Polarization from PN structures

We showed in the previous section that it is possible to consider polarizations that are singular
and useless from the point of view of ordinary geometric quantization. We are going to show that
PN geometry is a source of such polarizations.

5.1 Integrating PN structures

A symplectic Nijenhuis groupoid is a symplectic groupoid (G ⇒ ",ΩG) equipped with a
multiplicative tensor #G : )G → )G that makes (G,Ω−1

G , #G) a PN structure of symplectic type
(see [20]). Here multiplicative means that #G is a groupoid endomorphism of the tangent groupoid
)G ⇒ )" . As a consequence the unit space " inherits the structure of %# manifold; every PN
structure (", %, #) such that % is integrable integrates to a symplectic Nijenhuis groupoid.

Since given a PN structure (", %, #), we have a hierarchy of PN structures (", % 9 , #) with
% 9 = #

9%, if we assume that % 9 are all integrable Poisson structures we will have a hierarchy of
symplectic Nijenhuis groupoids (G 9 , #G 9

,ΩG 9
) for 9 ≥ 0.

Let us consider a Nijenhuis eigenvalue _ of # . It is clear that since #G8 commutes with source
and target maps B∗, C∗ : )G8 → )" , {B∗_, C∗_} is a Nijenhuis eigenvalue of #G8 , i.e. it satisfies

#G83B
∗_ = B∗_3B∗_ , #G83C

∗_ = C∗_3C∗_ .

Let us consider now a Lenhart hierarchy 5• = { 5=}=≥0. Let (G 9 ⇒ ",ΩG 9
) be the symplectic

groupoid integrating % 9 with Nijenhuis tensor #G 9
. Since #G 9

: )G 9 → )G 9 is a groupoid
morphism, it is clear that both B∗( 5 )• = {B∗ 5=}=≥0 and C∗( 5 )• = {C∗ 5=}=≥0 are Lenhart hierarchies.

There exists a third way to integrate 5•. We know from Lemma 8 that %35= is % 9-Poisson for
all 9 ≥ 0 and % 9-hamiltonian for = ≥ 9 .

8
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Proposition 5.1. Let ℎ ( 9)
5=

be the groupoid 1-cocycle of G 9 ⇒ " integrating %35=. They satisfy

#∗G 9
3ℎ
( 9)
5=
= 3ℎ

( 9)
5=+1

,

i.e. ℎ ( 9)
5•
= {ℎ ( 9)

5=
}=≥0 is a Lenhart hierarchy.

Proof. Let us compute for each U< ∈ )∗<" and = ≥ 0

〈−→U , 3ℎ ( 9)
5=+1
〉< = 〈U<, %35=+1〉 = 〈U<, %#∗35=〉 = 〈U<, #%35=〉

= 〈#∗U<, %35=〉 = 〈
−−−→
#∗U<, 3ℎ

( 9)
5=
〉 = 〈#G 9

−→U<, 3ℎ ( 9)5= 〉
= 〈−→U<, #∗G 9

3ℎ
( 9)
5=
〉 .

This proves that the 1-form l= = 3ℎ
( 9)
5=+1
−#∗G 9

3ℎ
( 9)
5=
∈ B∗()∗")> ⊂ )G 9 . Since it is multiplicative,

i.e. m∗U= = 0, it vanishes when restricted to " ⊂ G 9 ; moreover, we have that for each W ∈ G 9 and
each EW ∈ )WG 9 and FC (W) ∈ )C (W)G 9 such that C∗(EW) = B∗(FC (W) ), we have that

〈l= (W), EW · FC (W)〉 = 〈l= (W), EW〉 + 〈l= (C (W)), FC (W)〉 = 〈l= (W), EW〉 ,

where · denotes groupoid multiplication of )G 9 ⇒ )" . This implies that l= (W) = 0 . �

It is clear that the Lenhart hierarchies B∗( 5 )•, C∗( 5 )• and ℎ ( 9)5• are not independent; indeed, since
%35 9 = % 9350 we have that

C∗ 5= = B
∗ 5= − ℎ 5=+ 9 . (12)

We can say that every Lenhart hierarchy is doubled to two independent hierarchies of (G 9 , #G 9
).

5.2 Groupoid of lagrangian leaves

An integrable model can be seen as a singular real polarization. Indeed there exists a dense
open where the quotient map from the phase space to the contour level set of the hamiltonians in
involution has lagrangian fibres. Of course in the closure of this open set, we do not have in general
control and the fibres can have quite different behaviors.

Given the non degenerate PN structure (",l−1, %), we can consider the topological quotient
" → Δ# defined by the equivalence relation < ∼ <′ when 5= (<) = 5= (<′) for each Lenhart
hierarchy 5•. The same quotient G 9 → L 9 is defined for the non degenerate symplectic PN strucure
(G 9 ,ΩG 9

, #G 9
) for each 9 ≥ 0.

It is easy to see that L 9 inherits a topological groupoid structure over Δ# . Indeed, (12) proves
that source and target maps descend to L 9 ; the multiplication is inherited since ℎ• are groupoid
cocycles. With an abuse of notation, we denote with ( 5•, ℎ•) the value of the functions appearing
in the hierarchies B∗( 5 )• and ℎ ( 9)5 • . A point in L 9 and Δ# is described by assigning the values of all
the Lenhart hierarchies. The groupoid structure of L 9 ⇒ Δ# is then described for each hierarchy
as 5•

B( 5•, ℎ 5 •) = 5•, C ( 5•, ℎ 5 •) = 5• − ℎ 5 •+ 9

( 5•, ℎ 5 •) ( 5 ′• , ℎ′5 •) = ( 5•, ℎ 5 • + ℎ
′
5 •) , ( 5•, ℎ 5 •)

−1 = ( 5• − ℎ 5 •+ 9 ,−ℎ 5 •)

5• → ( 5•, 0) .

9
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It is clear that L0 = Δ# × Δ# ⇒ Δ# is the pair groupoid (we suppose that " is simply connected
so that G0 = " × " ⇒ ").

In order to discuss 9 ≥ 1, let us suppose that there exist global Nijenhuis eigenvalues. Thanks
to (10), for each eigenvalue _ the Lenhart hierarchy _• is computed as _= = _=+1/(= + 1). In
particular, it is completely identified by fixing the value of _. Let us call ℎ• the Lenhart hierarchy
of cocycles of G 9 ⇒ " integrating _•.

Let us consider now the first Poisson structure of the hierarchy %1. By applying % to (10), we
obtain %3_ = %13_/_ that integrates to

C∗_ = 4−ℎ0 B∗_ . (13)

From (12) we conclude that the hierarchy ℎ• is identified by fixing ℎ0 and B∗_.
Let us consider %2. By repeating the same trick we get that

%3_ = −%23 (1/_) (14)

that integrates to ℎ0 = −m∗(1/_), that we solve as

C∗_ =
B∗_

1 + B∗_ℎ0
. (15)

Analogously we can write (14) as %23_ = _%3_1 that integrates to ℎ1 = m∗ log_ so that C∗_ =
4−ℎ1 B∗_ which implies

4ℎ1 = 1 + B∗_ℎ0 .

Also in this case the values of hierarchy ℎ• are fixed by fixing ℎ0 and B∗_.
Let us consider % 9+1, for 9 ≥ 1. By repeating the same trick we get that %3_ = − 1

9
% 9+13_− 9

that integrates to ℎ0 = − 1
9
m∗_− 9 , that we solve as

C∗_ =
B∗_

9
√

1 + 9 B∗_ 9ℎ0
.

Analogously, we can prove that ℎ: for : ≥ 1 can be written as a function of B∗_ and ℎ0 so that the
values of the hierarchies ℎ• and _• are fixed by fixing _ and ℎ0.

If all Nijenhuis eigenvalues are globally smooth functions we obtain the following description
of L 9 ⇒ Δ# for 9 ≥ 1. Let dim" = 2A and let us consider an embedding Δ# ↩→ RA thanks to a
choice of numbering of the eigenvalues. Then L 9 ⇒ Δ# is a subgroupoid of the restriction to Δ#
of the action groupoid RA n RA ⇒ RA with respect to the action of RA on itself defined for 9 = 1 as

ℎ ·1 _ = 4−ℎ_ (16)

and for 9 > 1 as

ℎ · 9 _ =
_

9
√

1 + 9_ 9ℎ
. (17)

10



P
o
S
(
C
O
R
F
U
2
0
2
1
)
2
8
4

Integrability of the modular vector field and quantization Francesco Bonechi

6. Bruhat-Poisson

We are mainly interested in a class of PN structures of symplectic type defined on compact
hermitian symmetric spaces. These were introduced in [13], where it was proved that the KKS
symplectic form defined by looking at the " as a coadjoint orbit of a simple compact Lie group and
the Bruhat-Poisson structure c obtained by considering " as a quotient of the standard Poisson-Lie
group are compatible. The non degeneracy of these PN structures has been studied in [4] for
the classical cases and in [5] where one can find partial results on the exceptional cases. The
quantization program has been completed only for " = C%= in [2]. Here, as an example, we briefly
describe the simplest case of C%1.

By using the complex stereographic coordinates I = 1/F the inverse of the symplectic form
reads

l =
83I 3Ī

(1 + |I |2)2
=

83F 3F̄

(1 + |F |2)2

and the Bruhat-Poisson structure reads

c = 8(1 + |I |2)mI ∧ mĪ = 8 |F |2(1 + |F |2)mF ∧ mF̄ ,

so that # (mI) = 1/(1 + |I |2)mI . There is then only one global eigenvalue

�1 = _ =
1

1 + |I |2
=
|F |2

1 + |F |2
,

so that Δ# = [0, 1]. The Poisson structures of the hierarchy are for 9 ≥ 0

% 9 =
8

(1 + |I |2) 9−2 mI ∧ mĪ =
8 |F |2 9

(1 + |F |2) 9−2 mF ∧ mF̄ .

We see that for all 9 ≥ 1 the north pole chart is symplectic; at I = ∞, % 9 has an isolated zero
of degree 2 9 . The modular vector field of % 9 with respect to the symplectic volume is

j 9 = l
−13_ 9 = 9_ 9−18(ImI − ĪmĪ) = − 9_ 9−18(FmF − F̄mF̄ ) .

The symplectic groupoid integrating %0 = l−1 is the pair groupoid S2 × S2 ⇒ S2 with
symplectic form ΩG0 = l 	 l. The groupoid L�(0 is easily computed as {0, 1} × {0, 1} ⇒ {0, 1},
corresponding to the states of spin 1/2-representation of (* (2). The convolution algebra is then
A(L�(0 ) = "2(C).

The symplectic groupoid of %1 = c can be described as a symplectic reduction of the Lu-
Weinstein groupoid integrating the standard Poisson structure on (* (2) (see [3]). The integrability
of (", % 9) for 9 > 1 has not been studied. In order to compute the groupoid of BS leaves in
this simple case it is not necessary to have such description; we simply suppose that (S2, % 9) is
integrable and we denote with G 9 its (ssc) symplectic groupoid.

When restricted to the symplectic chart*# , G 9 |*#
∼ *# ×*# and the symplectic form reads

ΩG 9
= 3m∗Θ 9 (18)

where
Θ1 = log_ 3q , Θ 9 = −

1
9 − 1

_1− 93q , 9 ≥ 2

11
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and 3q = (8/2) (3I/I − 3Ī/Ī). In the symplectic chart, the lagrangian leaf is defined by fixing
B∗_ ≡ _ and C∗_ ≡ d so that a leaf is BS when there exist integers =, < ≥ 0 such that for 9 = 1

log_ = −=, log d = −< . (19)

From (13) the modular cocycle is ℎ0 = = − <. When 9 ≥ 2 a leaf is BS if there exist integers
=, < ≥ 1/( 9 − 1) such that

_1− 9 = ( 9 − 1)= , d1− 9 = ( 9 − 1)< (20)

so that from (15) themodular cocycle reads ℎ0 = <−=. We only have to addG 9 |F=0 that corresponds
to a single leaf _ = d = ℎ0 = 0.

We then conclude that the groupoid L�(
9
= L�( for each 9 ≥ 1 can be described as follows.

Let Z acting on Z̄ = Z ∪ {∞}, where ∞ is added as a fixed point of the action. Then L�( is the
restriction to N̄ = N ∪ {∞} ⊂ Z̄ of the action groupoid Z n Z̄⇒ Z̄. This groupoid was used in [18]
to describe the �∗-algebra of the Podles quantum 2-sphere.

The groupoid L�( ⇒ N̄ admits a unique (up to costant multiplicative) Haar system, that is
the counting measure. We can then consider its convolution algebra A(LBS) that is generated by
{4<,=, = ≥ 0, < + = ≥ 0} and the identity id =

∑
=≥0 40,= satisfying

4<= ∗ 4<′=′ = X=,<′+=′4<+<′,=′ . (21)

Remark 6.1.

8) The BS groupoid is the same for all 9 ≥ 1. This means that it is only sensible to the topology of
the space of symplectic leaves, which is the same for all % 9 . These Poisson structures differ only
by the order of the zero that is 2 9 for % 9 . The different embeddings of the induced �( leaves inside
[0, 1] given by (19) and (20) feel this order.

88) The output of the quantization is the convolution algebra A(LBS); since it does not contain ℏ,
no notion of semiclassical limit exists. This probably can be added to the picture by enhancing it to
the quantization of the Poisson structure ℏ% 9 .

888) The prequantization cocycle in (11) should be added to the description. So far we used q = 1
which is the right one only if there exists a multiplicative primitive Θ of ΩG . The one used in (18)
is obviously multiplicative but it is not global.

8E) In the computation of BS condition the Maslov correction is not included. This is equivalent to
ignoring the addition of the partial Bott connection to the prequantization connection.
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