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1. Introduction

It is widely estimated that physics close to Planck scale might be significantly different than it
is in the other scales and what we call "quantum gravity" might be quite different from the quantum
field theories of ordinary scales. In addition, another widespread estimation is that singularities and
divergences are only technical artifacts which indicate the limitations of a physical theory. However,
most theories do contain singularities as an essential element and these are generally considered to
contain important information on possible extensions. Among elementary particle physicists, for
example, the opinion that infinities in renormalizable field theories not only are not problematic
since they can be treated by the renormalization procedure but instead can be considered as signals
of a nearby new-physics threshold is formed. A possible way to resolve field-theory singularities,
that is infinities related to the field-theoretical description of particle physics is to introduce yet
another scale, this time related to the possible unification scale of the non-gravitational interactions.
Accordingly, Grand Unified Theories (GUTs) with N = 1 supersymmetry have been constructed
which, in turn, can be made finite even to all loops, including the soft supersymmetry breaking
sector [1–5] and have predicted, among others, successfully the top [1, 6] and Higgs masses [7].

The above considerations can be applied to singularities in the Einstein theory of gravity
as well, extrapolating that these singularities are not of physical significance but only signal the
existence of a new structure of space-time beyond a certain scale. This new structure might be
offered by noncommutative geometry. The ultimate aim then is the construction of a generalization
of the General theory of Relativity (GR) which is assumed to become essentially noncommutative
in regions where the commutative limit would be singular. The physical idea we have in mind
is that the description of space-time using a set of commuting coordinates is only valid at energy
scales smaller than some fundamental one. At higher scales it is impossible to localize a point and a
new geometry should be used. As the description by the commuting coordinates breaks down, they
must be replaced by elements of a noncommutative algebra. According to the general idea outlined
above, a singularity in the metric is due to the extrapolation of the use of commuting coordinates
beyond their natural domain of definition into the region where they are physically inappropriate.
In a specific example the Kasner manifold has been replaced by a noncommutative algebra, whose
Jacobi identities force a modification of the time dependence of the metric [8, 9]. Similar examples
have been presented later by other authors [10, 11].

It is well-known that at ordinary scales, which is the arena of particle physics examined
mostly in colliders, the Standard Model (SM) of Elementary Particle Physics, which consists
of the Strong, Weak and Electromagnetic interactions, has been established. The SM has been
successfully formulated using gauge theories, while at much smaller distances the Grand Unified
Gauge Theories (GUTs) provide a very attractive unification scheme of the three interactions. The
gravitational interaction is not part of this picture, admitting a geometric formulation. However,
there exists a gauge-theoretic approach to gravity besides the geometric one [12–23]. This approach
started with the pioneer work of Utiyama [12] and was refined by other authors [13–23]; eventually
maybe the best description is to consider it as a gauge theory of the de Sitter 𝑆𝑂 (1, 4) group,
spontaneously broken by a scalar field to the Lorentz 𝑆𝑂 (1, 3) group [14].

In the noncommutative framework and taking into account the gauge-theoretic description of
gravity, the well-established formulation of gauge theories on noncommutative spaces has led to
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the construction of models of noncommutative gravity [24–34]. In these treatments the authors use
the constant noncommutativity (Moyal-Weyl), the formulation of the star-product and the Seiberg-
Witten map [35].

In addition to the above treatments, noncommutative gravitational models can be constructed
using the noncommutative realization of matrix geometries [36–48], while it should also be noted
that there exist alternative approaches [49–51]. Both the latter directions will not be considered
here. Our orientation is towards the matrix-realized models. Specifically, we focus on a particular
class of noncommutative spaces which are called covariant [52–58], which have the very important
property for our purposes that is the preservance of Lorentz covariance [39, 59–61]. In particular we
focus to a very interesting class of models which can be constructed on the so-called fuzzy spaces,
which is a subclass of noncommutative spaces which preserve the isometries of their commutative
analogues. The most typical example of such a space is the fuzzy two-sphere [54], the isometry of
which is SO(3) and at the commutative limit the ordinary two-sphere is recovered.

However, a generalization to a higher-dimensional sphere is not straightforward. In particular,
in the case of a four-dimensional sphere, the same procedure leads to a number of independent
functions which is not a square of an integer. Therefore, one cannot construct a map from functions
to matrices. One can restate this difficulty algebraically. Algebras of a fuzzy four-sphere have been
constructed in [59] and the difference from the fuzzy two-sphere case is that the commutators of
the coordinates do not close in the fuzzy four-sphere case. In [62] (see also [63, 64]), we started
a programme realizing gravity as noncommutative gauge theory in three dimensions. In our next
contributions in the subject, we worked on the more realistic four-dimensional case [65–71]. Both
the constructions and the details involved will be presented in the following.

2. Gauge theories in noncommutative spaces

Before presenting fuzzy gravity, first we need to recall the way gauge theories formulate in
noncommutative spaces, according to [72].

The infinitesimal gauge transformation of a scalar field, 𝜙(𝑋), where 𝑋 are the coordinates of
the noncommutative space, parametrized by 𝜀(𝑋), will be:

𝛿𝜙(𝑋) = 𝜀(𝑋)𝜙(𝑋). (1)

Contrary to the scalar field, the coordinates themselves transform trivially. Because of the latter,
the transformation of their product is:

𝛿(𝑋𝜇𝜙(𝑋)) = 𝑋𝜇𝜖 (𝑋)𝜙(𝑋). (2)

Taking into account the noncommutativity of the coordinates, it can be easily shown that the above
does not consist a covariant transformation. The resolution of this issue comes with the introduction
of the covariant coordinate, which is defined directly through the covariant transformation:

𝛿
(
X𝜇𝜙(𝑋)

)
≡ 𝜀(𝑋)X𝜇𝜙(𝑋). (3)

Thanks to the covariant coordinate, the analogy with the ordinary gauge theories is being preserved.
Now, from the above covariant transformation, the transformation of the covariant coordinate can
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be given by the following commutation relation:

𝛿X𝜇 =
[
𝜀(𝑋),X𝜇

]
, (4)

which is the covariant transformation of the covariant coordinate itself, that is true by definition.
In order to express the covariant coordinate in a more familiar way, it is suggested to introduce a
quantity A𝜇 (𝑋), with its transformation rule:

𝛿A𝜇 (𝑋) = −
[
𝑋𝜇, 𝜀(𝑋)

]
+

[
𝜀(𝑋),A𝜇 (𝑋)

]
. (5)

Now, the covariant coordinate can be expressed as X𝜇 = 𝑋𝜇 + A𝜇 (𝑋), from which it is now clear
that A𝜇 plays effectively the role of the gauge connection and, as such, it will be accompanied by
a corresponding field strength tensor, which one can in turn find. It is expected that, apart from
the defining term of the commutator of the covariant coordinates, the field strength tensor will also
contain some extra terms, guaranteeing covariance.

Last, it is necessary to properly treat the anticommutators of the various coordinate-dependent
quantities (fields and parameters), as the theory is formulated on a noncommutative space. Specifi-
cally, let us consider two elements of an arbitrary algebra, 𝜀(𝑋) = 𝜀𝑎 (𝑋)𝑇𝑎 and 𝜙(𝑋) = 𝜙𝑎 (𝑋)𝑇𝑎,
where 𝑇𝑎 are its generators. Their commutator can be expressed as:

[𝜀, 𝜙] = 1
2

{
𝜀𝑎, 𝜙𝑏

}
[𝑇𝑎, 𝑇𝑏] +

1
2

[
𝜀𝑎, 𝜙𝑏

]
{𝑇𝑎, 𝑇𝑏} . (6)

In the ordinary case, where the space is commutative, the last term vanishes as the components 𝜀𝑎 and
𝜙𝑏 are ordinary functions of coordinates which naturally commute with each other. On the contrary,
when the space is noncommutative, the last term is not vanishing and, thus, the anticommutator
of the generators remains in the expression. In the general case, an anticommutator like that will
give products that do not belong to the original algebra of the theory, causing the problem that
the algebra will not be closing. One possible solution of this problem would be to expand the
original algebra of the theory by including all the possible operators that would be produced by the
anticommutators as generators. However, the anticommutators of the new generators would also
not be closing, leading us to expand again and again the algebra and eventually resulting with an
infinite-dimensional algebra. This treatment, although useful in other cases (e.g., in [73], [29] and
[30]), is not practical for our cause. Another one -the one that we chose- is to consider the products
of the anticommutators to be representation-dependent. In this case, on a specific representation,
the anticommutators of the generators will produce finite new operators, and thus, by including
them to the algebra, one ends up with an extended algebra, which nevertheless will be of finite
dimension.

3. Fuzzy gravity in three dimensions

In the following section, the gauge-theoretic construction of the three-dimensional matrix
model of noncommutative gravity will be presented. Of course, in order to build a noncommutative
gauge theory, a noncommutative space will be needed to accommodate it. Consequently, we shall
firstly specify the appropriate three-dimensional, covariant, noncommutative space that will act as
the background for the three-dimensional fuzzy gravity model. Subsequently, the aforementioned
three-dimensional gravity model shall be presented, built as a noncommutative gauge theory on the
above space.
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The R3
𝜆

space

In order to get to the desired background space, we shall begin from the most well-known
covariant, noncommutative space - that is the fuzzy sphere [54, 74]. The fuzzy sphere is defined
through its coordinates which are expressed in terms of the three rescaled angular momentum
operators 𝑋𝑖 = 𝜆𝐽𝑖 . These consist the Lie algebra generators of a unitary, irreducible representation
of SU(2), and satisfy the following relations:

[𝑋𝑖 , 𝑋 𝑗] = 𝑖𝜆𝜖𝑖 𝑗𝑘𝑋𝑘 ,

3∑︁
𝑖=1

𝑋𝑖𝑋𝑖 = 𝜆
2 𝑗 ( 𝑗 + 1) := 𝑟2 , (7)

where 𝑖, 𝑗 , 𝑘 = 1, . . . 3, 𝜆 ∈ R and 2 𝑗 ∈ N. The second relation of the above comes from the Casimir
element. Relaxing this Casimir condition, allowing in turn the coordinates 𝑋𝑖 to live in unitary,
though reducible representations of SU(2), while at the same time keeping 𝜆 fixed, one obtains
the three-dimensional noncommutative space known as R3

𝜆
[75]. This space can be expressed as a

direct sum of fuzzy spheres, for every possible radius determined by 2 𝑗 ∈ N [75–78]

R3
𝜆 =

∑︁
2 𝑗∈N

𝑆2
𝜆, 𝑗 . (8)

Thus, R3
𝜆

can be thought as a discrete foliation of the three-dimensional Euclidean space by several
fuzzy spheres, each of a different radius, with each of them consisting a ‘leaf’ of the foliation [79].

Gauge theory of three-dimensional gravity on R3
𝜆

Then, the description of a noncommutative version of the three-dimensional gravity will be
reviewed, formulated on the space that was presented above.

It has been shown that gravity, in three dimensions, can be successfully formulated as a
Chern-Simons gauge theory of the ISO(1,2) group1, with regard to both the transformations of its
gauge fields, as well as its dynamics [23, 62]. This is achieved by introducing the dreibein2 and
the spin connection as gauge fields corresponding to translations and the Lorentz transformations
respectively, as well as promoting the common derivative to the appropriate covariant one.

The steps towards the formulation of this noncommutative gauge theory of three-dimensional
gravity, are the same that would be followed in order to formulate the corresponding commutative
gauge theory [23, 62], albeit in this case, the tools of noncommutative gauge theories (which were
mentioned in Section 2) shall be used. This, in turn, means that the covariant derivative shall now
contain information about the noncommutative counterparts of the dreibein and spin connection3.

The first thing that has to be determined, in the process of formulating this three-dimensional
fuzzy gravity model on the noncommutative space R3

𝜆
, is the appropriate -starting- gauge group.

The relevant group that describes the symmetry of the above fuzzy space, in the Euclidean case,
is the SO(4)4. This shall lead to a non-abelian noncommutative gauge theory, which in turn will

1In the case that a cosmological constant were present, the corresponding algebra would be the de Sitter SO(1,3) or
the anti-de Sitter SO(2,2), depending on the sign of the constant.

2The dreibein is the three-dimensional case of the vielbein
3Similar approaches can be found in [43, 44, 46]
4In the Lorentzian case, the relevant group would have been the SO(1,3).
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cause the unwelcome feature of the non-closure of the anticommutators of the generators that
was described in Section 2. Following the procedure that was explained in that section, gaining
motivation by the approach that was followed in the Moyal-Weyl case in [28], the algebra shall be
extended appropriately, so that the products of the anticommutators are also included in it.

Having said the above, we begin by considering the spin group of the group of symmetry.
In this case, it is the Spin(4) group, which is isomorphic to SU(2)×SU(2). Then, after choosing
a specific representation, the elements that are yielded from the anticommutators of the algebra
generators in that representation are determined. Subsequently, the above elements are manually
included in the algebra as generators, which causes the extension of the SU(2)×SU(2) symmetry to
the U(2)×U(2). The latter will be considered as the gauge group of the theory5. Since each U(2)
is comprised of four generators, given by the Pauli matrices as well as the identity, the U(2)×U(2)
gauge group will consist of the following 4 × 4 matrices

𝐽𝐿𝑎 =

(
𝜎𝑎 0
0 0

)
, 𝐽𝐿0 =

(
I 0
0 0

)
, 𝐽𝑅𝑎 =

(
0 0
0 𝜎𝑎

)
, 𝐽𝑅0 =

(
0 0
0 I

)
, (9)

where 𝑎 = 1, 2, 3. Still, the identification of the noncommutative dreibein and spin connection in
the the expansion of the gauge field should be treated with caution. In order to interpret the above
gauge fields correctly, the following linear combinations of the above matrices are considered as
generators instead:

𝑃𝑎 =
1
2

(
𝐽𝐿𝑎 − 𝐽𝑅𝑎

)
=

1
2

(
𝜎𝑎 0
0 −𝜎𝑎

)
, 𝑀𝑎 =

1
2

(
𝐽𝐿𝑎 + 𝐽𝑅𝑎

)
=

1
2

(
𝜎𝑎 0
0 𝜎𝑎

)
, (10)

as well as
I = 𝐽𝐿0 + 𝐽𝑅0 , 𝛾5 = 𝐽𝐿0 − 𝐽𝑅0 . (11)

Knowing the commutation and anticommutation relations of the Pauli matrices, the corresponding
relations of the above generators are found:

[𝑃𝑎, 𝑃𝑏] = 𝑖𝜖𝑎𝑏𝑐𝑀𝑐, [𝑃𝑎, 𝑀𝑏] = 𝑖𝜖𝑎𝑏𝑐𝑃𝑐, [𝑀𝑎, 𝑀𝑏] = 𝑖𝜖𝑎𝑏𝑐𝑀𝑐,

{𝑃𝑎, 𝑃𝑏} =
1
2
𝛿𝑎𝑏I, {𝑃𝑎, 𝑀𝑏} =

1
2
𝛿𝑎𝑏𝛾5, {𝑀𝑎, 𝑀𝑏} =

1
2
𝛿𝑎𝑏I,

[𝛾5, 𝑃𝑎] = [𝛾5, 𝑀𝑎] = 0, {𝛾5, 𝑃𝑎} = 2𝑀𝑎, {𝛾5, 𝑀𝑎} = 2𝑃𝑎 .

(12)

As was presented in the previous paragraph, regarding the R3
𝜆

space, the noncommutative
coordinates, 𝑋𝑎, will be identified with the three operators which define that fuzzy space. Thus, in
the same way that described in Section 2, the covariant coordinates will include information about
the deformation of space, through the gauge connection A𝜇, since

X𝜇 = 𝛿𝜇
𝑎𝑋𝑎 + A𝜇, (13)

where A𝜇 can be expanded on the generators of the algebra as A𝜇 = A 𝐼
𝜇 (𝑋) ⊗ 𝑇 𝐼 , 𝑇 𝐼 being the

generators with 𝐼 = 1, . . . , 8, and A 𝐼
𝜇 the U(2)×U(2)-valued gauge fields. It should be noted that

5Accordingly, in the Lorentzian case the initial SL(2;C) symmetry would be enlarged to GL(2;C)
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the component gauge fields are no longer functions of coordinates in a classical manifold, but are
now operator-valued (since the coordinates got promoted), while the generators are represented by
4 × 4 matrices. This explains the tensor products between the component fields and the generators.
According to the above, the explicit expansion of the gauge connection over the generators will be

A𝜇 (𝑋) = 𝑒𝜇𝑎 (𝑋) ⊗ 𝑃𝑎 + 𝜔𝜇
𝑎 (𝑋) ⊗ 𝑀𝑎 + 𝐴𝜇 (𝑋) ⊗ 𝑖I + �̃�𝜇 (𝑋) ⊗ 𝛾5, (14)

consequently leading to the explicit expansion of the covariant coordinate

X𝜇 = 𝑋𝜇 ⊗ 𝑖I + 𝑒𝜇𝑎 (𝑋) ⊗ 𝑃𝑎 + 𝜔𝜇
𝑎 (𝑋) ⊗ 𝑀𝑎 + 𝐴𝜇 (𝑋) ⊗ 𝑖I + �̃�𝜇 (𝑋) ⊗ 𝛾5. (15)

Similarly, since the gauge parameter 𝜀(𝑋) is also an element of the algebra, it will also be expanded
on its generators as

𝜀(𝑋) = 𝜉𝑎 (𝑋) ⊗ 𝑃𝑎 + 𝜆𝑎 (𝑋) ⊗ 𝑀𝑎 + 𝜀0(𝑋) ⊗ 𝑖I + 𝜀0(𝑋) ⊗ 𝛾5. (16)

Next, we proceed with the calculation of the transformations of the gauge fields. Having the above
explicit expansions, we can use the relations (5) and (6), to reach the explicit transformation relations
for each of the gauge fields:

𝛿𝑒𝜇
𝑎 = − 𝑖

[
𝑋𝜇 + 𝐴𝜇, 𝜉

𝑎
]
+ 𝑖

2
{
𝜉𝑏, 𝜔𝜇𝑐

}
𝜖𝑎𝑏𝑐 + 𝑖

2
{
𝜆𝑏, 𝑒𝜇𝑐

}
𝜖𝑎𝑏𝑐

+ 𝑖
[
𝜀0, 𝑒𝜇

𝑎
]
+

[
𝜆𝑎, �̃�𝜇

]
+

[
𝜀0, 𝜔𝜇

𝑎
]
,

𝛿𝜔𝜇
𝑎 = − 𝑖

[
𝑋𝜇 + 𝐴𝜇, 𝜆

𝑎
]
+ 𝑖

2
{
𝜉𝑏, 𝑒𝜇𝑐

}
𝜖𝑎𝑏𝑐 + 𝑖

2
{
𝜆𝑏, 𝜔𝜇𝑐

}
𝜖𝑎𝑏𝑐

+ 𝑖
[
𝜀0, 𝜔𝜇

𝑎
]
+

[
𝜉𝑎, �̃�𝜇

]
+

[
𝜀0, 𝑒𝜇

𝑎
]
,

𝛿𝐴𝜇 = − 𝑖
[
𝑋𝜇 + 𝐴𝜇, 𝜀0

]
− 𝑖

4
[
𝜉𝑎, 𝑒𝜇𝑎

]
− 𝑖

4
[
𝜆𝑎, 𝜔𝜇𝑎

]
− 𝑖

[
𝜀0, �̃�𝜇

]
,

𝛿 �̃�𝜇 = − 𝑖
[
𝑋𝜇 + 𝐴𝜇, 𝜀0

]
+ 1

4
[
𝜉𝑎, 𝜔𝜇𝑎

]
+ 1

4
[
𝜆𝑎, 𝑒𝜇𝑎

]
+ 𝑖

[
𝜀0, �̃�𝜇

]
.

(17)

At this point, we shall take a moment to comment on the behaviour of the above transformation
relations, when the Abelian and the commutative limit are considered.

First, let us consider the case in which an Abelian gauge group was chosen, or in other words,
the gauge group that was used were an Abelian U(1) group. Naturally, this would lead to an Abelian
gauge theory on the chosen fuzzy space, which effectively amounts to setting 𝑒𝜇𝑎, 𝜔𝜇

𝑎, �̃�𝜇, as well
as their corresponding parameters 𝜉𝑎, 𝜆𝑎, 𝜀0 equal to zero, leaving 𝐴𝜇 as the only non-vanishing
gauge field and 𝜀0 as the only non-vanishing gauge parameter. Consequently, the only non-trivial
transformation out of the above would be:

𝛿𝐴𝜇 = −𝑖[𝑋𝜇, 𝜀0] + 𝑖[𝜀0, 𝐴𝜇], (18)

which is the anticipated transformation of a noncommutative Maxwell gauge field. Therefore, it
is manifested that the Maxwell sector is always present in the theory, intrinsically related to the
noncommutative nature of the background space, independently of whether the dreibein is trivial
or not, with the covariant coordinate being 𝑋𝜇 + 𝐴𝜇.
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On the other hand, when the commutative limit is considered, the interplay between gravity-
related and Yang-Mills fields ceases to exist, consequently making the gauge fields that were
introduced due to the noncommutativity, 𝐴𝜇 and �̃�𝜇, vanish. In turn, the inner derivation reduces
to the commutative one, that is [𝑋𝜇, 𝑓 ] → −𝑖𝜕𝜇 𝑓 , therefore leading to the following transformation
rules of the dreibein and spin connection:

𝛿𝑒𝜇
𝑎 = −𝜕𝜇𝜉𝑎 − 𝜖𝑎𝑏𝑐 (−𝑖𝜉𝑏𝜔𝜇𝑐 − 𝑖𝜆𝑏𝑒𝜇𝑐) (19)

𝛿𝜔𝜇
𝑎 = −𝜕𝜇𝜆𝑎 − 𝜖𝑎𝑏𝑐 (−𝑖𝜆𝑏𝜔𝜇𝑐 − 𝑖𝜉𝑏𝑒𝜇𝑐) (20)

Upon closer inspection, it is observed that the above relations closely resemble the corresponding
ones in the commutative case as they are given in [62]:

𝛿𝑒𝜇
𝑎 |com = 𝜕𝜇𝜉

𝑎 − 𝜖𝑎𝑏𝑐 (𝜉𝑏𝜔𝜇𝑐 + 𝜆𝑏𝑒𝜇𝑐) , (21)

𝛿𝜔𝜇
𝑎 |com = 𝜕𝜇𝜆

𝑎 − 𝜖𝑎𝑏𝑐 (𝜆𝑏𝜔𝜇𝑐 + Λ𝜉𝑏𝑒𝜇𝑐). (22)

More specifically, after performing the following rescalings on the generators:

𝑃𝑎 → − 𝑖
√
Λ
𝑃𝑎, 𝑀𝑎 → 𝑖𝑀𝑎,

as well as on the gauge fields and parameters:

𝑒𝜇
𝑎 → 𝑖

√
Λ𝑒𝜇

𝑎, 𝜉𝑎 → −𝑖
√
Λ𝑒𝜇

𝑎, 𝜔𝜇
𝑎 → −𝑖𝜔𝜇

𝑎, 𝜆𝜇
𝑎 → 𝑖𝜆𝜇

𝑎,

the transformations of the noncommutative dreibein and spin connection (19) and (20) at the
commutative limit, exactly coincide with their commutative counterparts (21) and (22). Thus, it
becomes apparent that in the commutative limit, the transformations of the gauge fields of the
three-dimensional gravity, presented in [23], are recovered.

Resuming the formulation of the fuzzy gravity model, the curvature tensor of the theory has to
be obtained. This is accomplished by using the usual formula of calculating the commutator of the
covariant derivatives, which in our case are the covariant coordinates. It should be noted that since
the right hand side of the commutator of the coordinates is linear with respect to the coordinates -
as shown in the first equation of (7) - an additional linear term should be included in the definition
of the curvature as indicated below:

R𝜇𝜈 (𝑋) = [X𝜇,X𝜈] − 𝑖𝜆𝜖𝜇𝜈𝜌X𝜌. (23)

The curvature tensor R𝜇𝜈 is, too, an element of the U(2)×U(2) and as such, it can be expanded on
the algebra’s generators:

R𝜇𝜈 (𝑋) = 𝑇𝜇𝜈𝑎 (𝑋) ⊗ 𝑃𝑎 + 𝑅𝜇𝜈
𝑎 (𝑋) ⊗ 𝑀𝑎 + 𝐹𝜇𝜈 (𝑋) ⊗ 𝑖I + �̃�𝜇𝜈 (𝑋) ⊗ 𝛾5. (24)

Following a similar procedure as when calculating the transformation laws of the gauge fields, using
the definition of the curvature (23), together with the expansions of the curvature tensor and the
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covariant coordinate (24) and (15) respectively, the component curvature tensors are calculated:

𝑇𝜇𝜈
𝑎 =𝑖

[
𝑋𝜇 + 𝐴𝜇, 𝑒𝜈

𝑎
]
− 𝑖

[
𝑋𝜈 + 𝐴𝜈 , 𝑒𝜇

𝑎
]
+ 𝑖

2
{
𝑒𝜇𝑏, 𝜔𝜈𝑐

}
𝜖𝑎𝑏𝑐 + 𝑖

2
{
𝜔𝜇𝑏, 𝑒𝜈𝑐

}
𝜖𝑎𝑏𝑐

+
[
𝜔𝜇

𝑎, �̃�𝜈

]
−

[
𝜔𝜈

𝑎, �̃�𝜇

]
− 𝑖𝜆𝜖𝜇𝜈𝜌𝑒𝜌𝑎,

𝑅𝜇𝜈
𝑎 =𝑖

[
𝑋𝜇 + 𝐴𝜇, 𝜔𝜈

𝑎
]
− 𝑖

[
𝑋𝜈 + 𝐴𝜈 , 𝜔𝜇

𝑎
]
+ 𝑖

2
{
𝜔𝜇𝑏, 𝜔𝜈𝑐

}
𝜖𝑎𝑏𝑐 + 𝑖

2
{
𝑒𝜇𝑏, 𝑒𝜈𝑐

}
𝜖𝑎𝑏𝑐

+
[
𝑒𝜇

𝑎, �̃�𝜈

]
−

[
𝑒𝜈

𝑎, �̃�𝜇

]
− 𝑖𝜆𝜖𝜇𝜈𝜌𝜔𝜌𝑎,

𝐹𝜇𝜈 =𝑖
[
𝑋𝜇 + 𝐴𝜇, 𝑋𝜈 + 𝐴𝜈

]
− 𝑖

4
[
𝑒𝜇

𝑎, 𝑒𝜈𝑎
]
− 𝑖

4
[
𝜔𝜇

𝑎, 𝜔𝜈𝑎

]
− 𝑖

[
�̃�𝜇, �̃�𝜈

]
− 𝑖𝜆𝜖𝜇𝜈𝜌 (𝑋𝜌 + 𝐴𝜌) ,

�̃�𝜇𝜈 =𝑖
[
𝑋𝜇 + 𝐴𝜇, �̃�𝜈

]
− 𝑖

[
𝑋𝜈 + 𝐴𝜈 , �̃�𝜇

]
+ 1

4
[
𝑒𝜇

𝑎, 𝜔𝜈𝑎

]
+ 1

4
[
𝜔𝜇

𝑎, 𝑒𝜈𝑎
]

+ −𝑖𝜆𝜖𝜇𝜈𝜌 �̃�𝜌.

(25)

Once again, when the commutative limit as well as the rescalings that were mentioned before are
considered, the corresponding tensors of the commutative case (as presented in [62]) are recovered:

𝑇𝜇𝜈
𝑎 |com = 2𝜕[𝜇𝑒𝜈 ]𝑎 + 2𝜖𝑎𝑏𝑐𝜔 [𝜇𝑏𝑒𝜈 ]𝑐 , (26)

𝑅𝜇𝜈
𝑎 |com = 2𝜕[𝜇𝜔𝜈 ]

𝑎 + 𝜖𝑎𝑏𝑐 (𝜔𝜇𝑏𝜔𝜈𝑐 + Λ𝑒𝜇𝑐𝑒𝜈𝑐), (27)

exactly as expected.

Action of three-dimensional fuzzy gravity

Reaching the conclusion of the three-dimensional case, an action for the aforementioned theory
should be found. Once again inspiration is gained by the commutative gauge-theoretic approach of
three-dimensional gravity, leading to the well-motivated choice of an action of Chern-Simons type.
For the Euclidean case, which we have discussed so far, the suggested action is:

𝑆0 =
1
𝑔2 Tr

(
𝑖

3
𝜖 𝜇𝜈𝜌𝑋𝜇𝑋𝜈𝑋𝜌 − 𝑚2𝑋𝜇𝑋

𝜇

)
, (28)

which, following its variation, leads to the field equation:[
𝑋𝜇, 𝑋𝜈

]
+ 2𝑖𝑚2𝜖𝜇𝜈𝜌𝑋

𝜌 = 0. (29)

The above field equation admits the space R3
𝜆

that we have used as a solution, for 2𝑚2 = −𝜆.
Next, the gauge fields need to be introduced in the aforementioned action. To that end, there are

two possible paths one could follow. The first path would be to consider fluctuations of the above
equation of motion by replacing the coordinates with their covariant counterparts. The other, less
straightforward path, would be to replace the coordinates in the action with the covariant coordinates
and then complete its variation, in order to obtain the field equations in terms of the gauge fields.
One way or another, the action will eventually be written in terms of the gauge fields itself and
because of that an additional trace, tr, over the gauge indices should be involved in its expression.
Consequently, the proposed action is:

𝑆 =
1
𝑔2 Tr tr

(
𝑖

3
𝜖 𝜇𝜈𝜌X𝜇X𝜈X𝜌 +

𝜆

2
X𝜇X𝜇

)
, (30)
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where the first trace is over the matrices 𝑋 and the second over the generators of the gauge group.
The above action can be rewritten as:

𝑆 =
1

6𝑔2 Tr tr(𝑖𝜖 𝜇𝜈𝜌X𝜇R𝜈𝜌) +
𝜆

6𝑔2 Tr tr(X𝜇X𝜇)

= S + 𝑆𝜆,
(31)

where all the 𝜆-related terms have been isolated in 𝑆𝜆, which vanishes for 𝜆 → 0.
Now, following the calculation of the traces over the gauge indices of the relations (12) of the

generators of the algebra, it is found that the only non-vanishing ones are the following:

𝑡𝑟 (𝑃𝑎𝑃𝑏) = 𝛿𝑎𝑏, 𝑡𝑟 (𝑀𝑎𝑀𝑏) = 𝛿𝑎𝑏 . (32)

Consequently, the first term S of the above action turns out to be equal to:

S =
𝑖

6𝑔2 Tr 𝜖 𝜇𝜈𝜌 (𝑒𝜇𝑎𝑇𝜈𝜌𝑎 + 𝜔𝜇𝑎𝑅𝜈𝜌
𝑎 − 4(𝑋𝜇 + 𝐴𝜇)𝐹𝜈𝜌 + 4�̃�𝜇 �̃�𝜈𝜌). (33)

This action is similar to the one presented in Ref.[23]; when the commutative limit is considered
and the rescalings that were mentioned before are applied, the first two terms of the above action are
identical to the one presented in [23]. Nevertheless, in this case, an additional sector is unavoidably
obtained. This sector is evidently associated with the additional gauge fields, which cannot decouple
in the noncommutative case.

Concluding, variation of the action (31) with respect to the covariant coordinate yields the
following field equations:

𝑇𝜇𝜈
𝑎 = 0, 𝑅𝜇𝜈

𝑎 = 0, 𝐹𝜇𝜈 = 0, �̃�𝜇𝜈 = 0. (34)

At this point, it is noted that the same equations of motion are obtained, following the variation of
(31) with respect to the gauge fields, after using the algebra trace and replacing the tensors with
their expansions on the generators of the algebra (25).

4. Fuzzy gravity in four dimensions

In this section, we are going to present the construction of the four-dimensional matrix model
of gravity as a noncommutative gauge theory, after establishing the corresponding noncommutative
space on which the model will be constructed.

A Fuzzy Version of the Four-Sphere

The noncommutative space on which we are going to construct our model is the fuzzy four-
sphere, 𝑆4

𝐹
. The fuzzy four-sphere is the four-dimensional analogue of the fuzzy sphere, 𝑆2

𝐹
, which

is the discrete matrix approximation of the common sphere. Drawing lessons from the ordinary
gauge-theoretic approaches of gravitational theories mentioned earlier, it would be plausible to
examine first the 𝑆𝑂 (5) group, as it consists the corresponding isometry group and as such, a subset
of its generators could be identified as the coordinate operators. Nevertheless, this group is not
suitable for performing the above identification because the subalgebra is not closing. Because of
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the latter, covariance is not being preserved and thus a larger group is needed [58]. The larger group,
that is needed to be used instead, has to possess the property of incorporating all generators and the
noncommutativity -with some appropriate identification- in it. In this case, the preservation of the
covariance will be manifested as the coordinate operators will transform as vectors under rotational
transformations. Eventually, taking into consideration the above arguments, the resulting, minimally
extended, group is the 𝑆𝑂 (6) [65], [68], the generators of which obey the following algebra:

[𝐽𝐴𝐵, 𝐽𝐶𝐷] = 𝑖(𝛿𝐴𝐶𝐽𝐵𝐷 + 𝛿𝐵𝐷𝐽𝐴𝐶 − 𝛿𝐵𝐶𝐽𝐴𝐷 − 𝛿𝐴𝐷𝐽𝐵𝐶). (35)

Reading the above generators in an 𝑆𝑂 (4) notation, the following definitions take place:

𝐽𝜇𝜈 =
1
ℏ
Θ𝜇𝜈 , 𝐽𝜇5 =

1
𝜆
𝑋5, 𝐽𝜇6 =

𝜆

2ℏ
𝑃𝜇, 𝐽56 =

1
2
ℎ, (36)

where 𝜇, 𝜈 = 1, ..., 4, 𝜆 is a parameter of non-trivial dimensions and ℎ is an operator inheriting
the information of the radius constraint of the fuzzy four-sphere. The 𝑋𝜇, 𝑃𝜇 and Θ𝜇𝜈 are iden-
tified as coordinates, momenta and noncommutativity tensor respectively. In terms of the above
identifications, the above algebra leads to the following commutation relations:

[𝑋𝜇, 𝑋𝜈] =𝑖
𝜆2

ℏ
Θ𝜇𝜈 , [𝑃𝜇, 𝑃𝜈] = 4𝑖

ℏ

𝜆2Θ𝜇𝜈 , (37)

[𝑋𝜇, 𝑃𝜈] =𝑖ℏ𝛿𝜇𝜈ℎ, [𝑋𝜇, ℎ] = 𝑖
𝜆2

ℏ
𝑃𝜇, (38)

[𝑃𝜇, ℎ] = 4𝑖
ℏ

𝜆2 𝑋𝜇 . (39)

From the above first two relations, it is clear that the coordinates and momenta both close to an
𝑆𝑂 (4) subalgebra of the total 𝑆𝑂 (6). The rest of the commutation relations, which correspond to
the spacetime transformations, are:

[Θ𝜇𝜈 ,Θ𝜌𝜎] = 𝑖ℏ(𝛿𝜇𝜌Θ𝜈𝜎 + 𝛿𝜈𝜎Θ𝜇𝜌 − 𝛿𝜈𝜌Θ𝜇𝜎 − 𝛿𝜇𝜎Θ𝜈𝜌, (40)
[𝑋𝜇,Θ𝜈𝜌] = 𝑖ℏ(𝛿𝜇𝜌𝑋𝜈 − 𝛿𝜇𝜈𝑋𝜌), (41)
[𝑃𝜇,Θ𝜈𝜌] = 𝑖ℏ(𝛿𝜇𝜌𝑃𝜈 − 𝛿𝜇𝜈𝑃𝜌) (42)

[ℎ,Θ𝜇𝜈] = 0. (43)

From the first one, the establishment of the 𝑆𝑂 (4) subalgebra of rotations is understood, while from
the second and third ones the vector-like transformation of the coordinates and the momenta, under
rotational transformations, is described.

Last, by inspection of the relation between the coordinates and momenta, first one of eq.(38),
the underlying quantum structure of the noncommutative space is manifested. This is a crucial
observation, that a Heisenberg-like relation is part of this picture, which, along with the fact that
the participating generators of the algebra are represented by matrices of finite dimensions, allows
the noncommutative space to admit the interpretation of a finite quantum system, hence motivating
us to use it as the space on which the four-dimensional gravity model is constructed.
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Gauge Group and Representation

As discussed in the previous subsection, the noncommutative framework includes the anti-
commutators of the generators, as they do not vanish like in the continuous case. The solution that
we choose, as explained above, is the extension of the initial symmetry and the fixing of a specific
representation, in order that the new operators to be included as generators and produce a finite-
dimensional algebra that is closing. In our case, the extension of 𝑆𝑂 (5) leads to the 𝑆𝑂 (6) ×𝑈 (1)
gauge group with its generators being represented by 4 × 4 matrices:

𝑀𝑎𝑏 = − 𝑖
4
[Γ𝑎, Γ𝑏], 𝐾𝑎 =

1
2
Γ𝑎, 𝑃𝑎 = − 𝑖

2
Γ𝑎Γ5, 𝐷 = −1

2
Γ5, I4, (44)

where the Γ matrices are the 4 × 4 gamma matrices in the Euclidean signature and form the
anticommutation relation {Γ𝑎, Γ𝑏} = 2𝛿𝑎𝑏I4, where 𝑎, 𝑏 = 1, ..., 4 and Γ5 = Γ1Γ2Γ3Γ4. The full
algebra of the generators of the extended gauge group, along with their anticommutators is:

[𝐾𝑎, 𝐾𝑏] = 𝑖𝑀𝑎𝑏, [𝑃𝑎, 𝑃𝑏] = 𝑖𝑀𝑎𝑏,

[𝑃𝑎, 𝐷] = 𝑖𝐾𝑎, [𝐾𝑎, 𝑃𝑏] = 𝑖𝛿𝑎𝑏𝐷, [𝐾𝑎, 𝐷] = −𝑖𝑃𝑎,

[𝐾𝑎, 𝑀𝑏𝑐] = 𝑖 (𝛿𝑎𝑐𝐾𝑏 − 𝛿𝑎𝑏𝐾𝑐),
[𝑃𝑎, 𝑀𝑏𝑐] = 𝑖 (𝛿𝑎𝑐𝑃𝑏 − 𝛿𝑎𝑏𝑃𝑐),
[𝑀𝑎𝑏, 𝑀𝑐𝑑] = 𝑖 (𝛿𝑎𝑐𝑀𝑏𝑑 + 𝛿𝑏𝑑𝑀𝑎𝑐 − 𝛿𝑏𝑐𝑀𝑎𝑑 − 𝛿𝑎𝑑𝑀𝑏𝑐),
[𝐷, 𝑀𝑎𝑏] = 0,

{𝑀𝑎𝑏, 𝑀𝑐𝑑} =
1
8
(𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑏𝑐𝛿𝑎𝑑) I4 −

√
2

4
𝜖𝑎𝑏𝑐𝑑𝐷,

{𝑀𝑎𝑏, 𝐾𝑐} =
√

2𝜖𝑎𝑏𝑐𝑑𝑃𝑑 , {𝑀𝑎𝑏, 𝑃𝑐} = −
√

2
4
𝜖𝑎𝑏𝑐𝑑𝐾𝑑 ,

{𝐾𝑎, 𝐾𝑏} =
1
2
𝛿𝑎𝑏I4, {𝑃𝑎, 𝑃𝑏} =

1
8
𝛿𝑎𝑏I4, {𝐾𝑎, 𝐷} = {𝑃𝑎, 𝐷} = 0,

{𝑃𝑎, 𝐾𝑏} = {𝑀𝑎𝑏, 𝐷} = −
√

2
2
𝜖𝑎𝑏𝑐𝑑𝑀𝑐𝑑 .

(45)

Action and Equations of Motion

The action we begin with is the following:

S = Tr
( [
𝑋𝜇, 𝑋𝜈

]
− 𝜅2Θ𝜇𝜈

) ( [
𝑋𝜌, 𝑋𝜎

]
− 𝜅2Θ𝜌𝜎

)
𝜖 𝜇𝜈𝜌𝜎 . (46)

In order to extract the field equations, we make variations of this action with respect to the 𝑋 and
Θ fields. The equations produced respectively are the following:

𝜖 𝜇𝜈𝜌𝜎
[
𝑋𝜈 ,

[
𝑋𝜌, 𝑋𝜎

]
− 𝜅2Θ𝜌𝜎

]
= 0 , 𝜖 𝜇𝜈𝜌𝜎

( [
𝑋𝜌, 𝑋𝜎

]
− 𝜅2Θ𝜌𝜎

)
= 0 . (47)

We can already observe through the second equation that, when 𝜅2 = 𝑖𝜆2

ℏ
, the noncommutativity of

the space is being recovered and consequently the first one is trivially satisfied.
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Now, we move on with examining a dynamical version of the above action. In order to check the
analogy with the commutative case, we need to express the action in terms of the curvature field
strength tensor. To accomplish it, we introduce the gauge fields treating them as fluctuations of the
𝑋 and Θ fields:

S = Trtr 𝜖 𝜇𝜈𝜌𝜎
( [
𝑋𝜇 + 𝐴𝜇, 𝑋𝜈 + 𝐴𝜈

]
− 𝜅2 (

Θ𝜇𝜈 + B𝜇𝜈

) )
·
( [
𝑋𝜌 + 𝐴𝜌, 𝑋𝜎 + 𝐴𝜎

]
− 𝜅2 (

Θ𝜌𝜎 + B𝜌𝜎

) )
,

(48)

where a trace over the gauge algebra has been included as well.

Now, for later convenience, we define:

• X𝜇 = 𝑋𝜇 + 𝐴𝜇, as the covariant coordinate of the noncommutative gauge theory, where 𝐴𝜇

is the gauge connection,

• Θ̂𝜇𝜈 = Θ𝜇𝜈 + B𝜇𝜈 , as the covariant noncommutative tensor, where B𝜇𝜈 is a 2-form field,

• R𝜇𝜈 =
[
X𝜇,X𝜈

]
− 𝜅2Θ̂𝜇𝜈 , as the field strength tensor of the theory.

Finally we make the replacement 𝜅2 = 𝑖𝜆2

ℏ
and get the following expression of the action:

S = Trtr
( [
X𝜇,X𝜈

]
− 𝑖𝜆

2

ℏ
Θ̂𝜇𝜈

) ( [
X𝜌,X𝜎

]
− 𝑖𝜆

2

ℏ
Θ̂𝜌𝜎

)
𝜖 𝜇𝜈𝜌𝜎 := TrtrR𝜇𝜈R𝜌𝜎𝜖

𝜇𝜈𝜌𝜎 . (49)

The above expression is a noncommutative analogue of the four-dimensional Chern-Simons action,
in terms of its structure. Performing variations with respect to X and B fields, we are lead to the
field equations:

𝜖 𝜇𝜈𝜌𝜎R𝜌𝜎 = 0 , 𝜖 𝜇𝜈𝜌𝜎
[
X𝜈 ,R𝜌𝜎

]
= 0 . (50)

The first equation implies the vanishing of the curvature tensor. The second one can be interpreted
as the noncommutative counterpart of the Bianchi identity.

Before we proceed with the spontaneous symmetry breaking of the action we need to write down
some expressions and specifically the field strength tensor’s decomposition on the generators,

R𝜇𝜈 (𝑋) = �̃�𝜇𝜈
𝑎 ⊗ 𝑃𝑎 + 𝑅𝜇𝜈

𝑎𝑏 ⊗ 𝑀𝑎𝑏 + 𝑅𝜇𝜈
𝑎 ⊗ 𝐾𝑎 + �̃�𝜇𝜈 ⊗ 𝐷 + 𝑅𝜇𝜈 ⊗ I4 (51)

and the explicit expressions of its component tensors:

13
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�̃�𝜇𝜈
𝑎 =

[
𝑋𝜇 + 𝑎𝜇, 𝑒𝜈𝑎

]
−

[
𝑋𝜈 + 𝑎𝜈 , 𝑒𝜇𝑎

]
− 𝑖

2
{
𝑏𝜇

𝑎, �̃�𝜈
}
+ 𝑖

2
{
𝑏𝜈

𝑎, �̃�𝜇
}

−
√

2
2

( [
𝑏𝜇

𝑏, 𝜔𝜈
𝑐𝑑

]
−

[
𝑏𝜈

𝑏, 𝜔𝜇
𝑐𝑑

] )
𝜖𝑎𝑏𝑐𝑑 − 𝑖

{
𝜔𝜇

𝑎𝑏, 𝑒𝜈𝑏
}
+ 𝑖

{
𝜔𝜈

𝑎𝑏, 𝑒𝜇𝑏
}
− 𝑖𝜆

2

ℏ
�̃�𝜇𝜈

𝑎 ,

𝑅𝜇𝜈
𝑎𝑏 =

[
𝑋𝜇 + 𝑎𝜇, 𝜔𝜈

𝑎𝑏
]
−

[
𝑋𝜈 + 𝑎𝜈 , 𝜔𝜇

𝑎𝑏
]
+ 𝑖

2
{
𝑏𝜇

𝑎, 𝑏𝜈
𝑏
}
+
√

2
4

( [
𝑏𝜇

𝑐, 𝑒𝜈
𝑑
]
−

[
𝑏𝜈

𝑐, 𝑒𝜇
𝑑
] )
𝜖𝑎𝑏𝑐𝑑

−
√

2
4

( [
�̃�𝜇, 𝜔𝜈

𝑐𝑑
]
−

[
�̃�𝜈 , 𝜔𝜇

𝑐𝑑
] )
𝜖𝑎𝑏𝑐𝑑 + 2𝑖

{
𝜔𝜇

𝑎𝑐, 𝜔𝜈
𝑏
}
+ 𝑖

2
{
𝑒𝜇

𝑎, 𝑒𝜈
𝑏
}
− 𝑖𝜆

2

ℏ
𝐵𝜇𝜈

𝑎𝑏 ,

𝑅𝜇𝜈
𝑎 =

[
𝑋𝜇 + 𝑎𝜇, 𝑏𝜈𝑎

]
−

[
𝑋𝜈 + 𝑎𝜈 , 𝑏𝜇𝑎

]
+ 𝑖

{
𝑏𝜇𝑏, 𝜔𝜇

𝑎𝑏
}
− 𝑖

{
𝑏𝜈𝑏, 𝜔𝜇

𝑎𝑏
}

− 𝑖

2
{
�̃�𝜇, 𝑒𝜈

𝑎
}
+ 𝑖

2
{
�̃�𝜈 , 𝑒𝜇

𝑎
}
+
√

2
8
𝜖𝑎𝑏𝑐𝑑

( [
𝑒𝜇

𝑏, 𝜔𝜈
𝑐𝑑

]
−

[
𝑒𝜈

𝑏, 𝜔𝜇
𝑐𝑑

] )
− 𝑖𝜆

2

ℏ
𝐵𝜇𝜈

𝑎 ,

�̃�𝜇𝜈 =
[
𝑋𝜇 + 𝑎𝜇, �̃�𝜈

]
−

[
𝑋𝜈 + 𝑎𝜈 , �̃�𝜇

]
+ 𝑖

2
{
𝑏𝜇𝑎, 𝑒𝜈

𝑎
}
− 𝑖

2
{
𝑏𝜈𝑎, 𝑒𝜇

𝑎
}

−
√

2
8
𝜖𝑎𝑏𝑐𝑑

[
𝜔𝜇

𝑎𝑏, 𝑚𝜔𝜈
𝑐𝑑

]
− 𝑖𝜆

2

ℏ
�̃�𝜇𝜈 ,

𝑅𝜇𝜈 =
[
𝑋𝜇, 𝑎𝜈

]
−

[
𝑋𝜈 , 𝑎𝜇

]
+

[
𝑎𝜇, 𝑎𝜈

]
+ 1

4
[
𝑏𝜇

𝑎, 𝑏𝜈𝑎
]
+ 1

4
[
�̃�𝜇, �̃�𝜈

]
+ 1

8
[
𝜔𝜇

𝑎𝑏, 𝜔𝜈𝑎𝑏

]
+ 1

16
[
𝑒𝜇𝑎, 𝑒𝜈

𝑎
]
− 𝑖𝜆

2

ℏ
𝐵𝜇𝜈 .

Spontaneous Symmetry Breaking of the Noncommutative Action

The action (49) breaks spontaneously after being modified by the introduction of a scalar field,
Φ, along with a dimensionful parameter, 𝜆. After this modification, the action becomes:

S = Trtr𝐺 𝜆Φ(𝑋)R𝜇𝜈R𝜌𝜎𝜖
𝜇𝜈𝜌𝜎 + 𝜂

(
Φ(𝑋)2 − 𝜆−2I𝑁 ⊗ I4

)
, (52)

where 𝜂 is a Lagrange multiplier. In the on-shell case, the following condition holds:

Φ2(𝑋) = 𝜆−2I𝑁 ⊗ I4. (53)

In this case the above action, (52), coincides with the dynamic action earlier introduced, (49).
Variation of the latter with respect to the Lagrange multiplier results to the above constraint equation
as a field equation.

Considering that the scalar field, Φ, consists only of the symmetric part of the decomposition
on the generators, it can be expressed as:

Φ(𝑋) = 𝜙𝑎 (𝑋) ⊗ 𝑃𝑎 + 𝜙𝑎 (𝑋) ⊗ 𝐾𝑎 + 𝜙(𝑋) ⊗ I4 + 𝜙(𝑋) ⊗ 𝐷 .

In order for the breaking to occur, we make the following gauge fixing of the scalar field Φ,
picking a gauge in the direction of the generator 𝐷:

Φ(𝑋) = 𝜙(𝑋) ⊗ 𝐷 | �̃�=−2𝜆−1 = −2𝜆−1I𝑁 ⊗ 𝐷.

Substituting to the modified action, (52), and calculating the trace over the algebra, we get the
broken symmetry bearing action:

Sbr = Tr

(√
2

4
𝜖𝑎𝑏𝑐𝑑𝑅𝜇𝜈

𝑎𝑏𝑅𝜌𝜎
𝑐𝑑 − 4𝑅𝜇𝜈 �̃�𝜌𝜎

)
𝜖 𝜇𝜈𝜌𝜎 . (54)
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Due to the fact that we considered the scalar field consisting of only the symmetric part of its
decomposition in terms of the generators of 𝑆𝑂 (6) and, thus, not being charged under 𝑈 (1), the
resulting gauge symmetry of the broken action is 𝑆𝑂 (4) ×𝑈 (1). In other words, seven of the initial
sixteen generators remain unbroken. These are: a) the translations’ generators, 𝑃𝑎, which lead to
the torsionless condition, �̃�𝜇𝜈

𝑎 = 0 that results to relation between 𝜔, 𝑒 and �̃�, b) the 𝐾𝑎 generators,
which lead to 𝑅𝜇𝜈

𝑎 = 0 that implies a proportionality relation between 𝑒, 𝑏 gauge fields, and c) the
𝐷 generator which requires the gauge fixing of �̃�𝜇 = 0 [80]. In conclusion, the remaining symmetry
of the spontaneously broken action is 𝑆𝑂 (4) ×𝑈 (1) and the only remaining independent fields are
the 𝑒 and 𝑎 gauge fields. Finally, the resulting expression of the component tensor 𝑅𝜇𝜈

𝑎𝑏, after the
replacements �̃�𝜇 = 0 and 𝑏𝜇𝑎 = 𝑖

2𝑒𝜇
𝑎, is

𝑅𝜇𝜈
𝑎𝑏 =

[
𝑋𝜇 + 𝑎𝜇, 𝜔𝜈

𝑎𝑏
]
−

[
𝑋𝜈 + 𝑎𝜈 , 𝜔𝜇

𝑎𝑏
]
+ 𝑖

{
𝜔𝜇

𝑎𝑐, 𝜔 𝑏
𝜈 𝑐

}
− 𝑖

{
𝜔𝜇

𝑏𝑐, 𝜔𝜈𝑐
𝑎
}

+ 3𝑖
8

{
𝑒𝜇

𝑎, 𝑒𝜈
𝑏
}
− 𝑖𝜆

2

ℏ
𝐵𝜇𝜈

𝑎𝑏 .

The Commutative Limit

Naturally, in order for the theory to be valid, we need to examine the behaviour of the con-
structed gravity model in the commutative limit. In other words, in the low-energy regime where
noncommutativity becomes negligible, the predictions of the model must coincide with the ones of
GR. Although such an assumption is not completely realistic, as noncommutativity-related effects
would still have an effect even at low-energy scales, it is important for the consistency of the theory
its results to agree with the ones of GR when one considers noncommutativity to be vanishing.
Because of that, we are going to examine now the theory at the level of the vanishing of all its
noncommutative-related features. In order to do that, firstly we choose the noncommutative space
to have Lorentzian signature, which implies that we work in the fuzzy 𝑑𝑆4 space. Following, we
make some considerations:

a The 2-form field B𝜇𝜈 and the 𝑎𝜇 must decouple, because the first one is related with the
preservation of covariance of the noncommutative space and the second one is related with
the extension of the group for the anticommutators of the generators to be closing;

b When the noncommutativity vanishes, the commutators of functions vanish as well, [ 𝑓 (𝑥), 𝑔(𝑥)] →
0, and their anticommutators become double products, { 𝑓 (𝑥), 𝑔(𝑥)} → 2 𝑓 (𝑥)𝑔(𝑥);

c The inner derivation coincides with the simple derivative:
[
𝑋𝜇, 𝑓

]
→ 𝜕𝜇 𝑓 and the traces

with integrations,
√

2
4 Tr →

∫
𝑑4𝑥;

d In the fixed gauge of the spontaneous symmetry breaking, the 𝐷-related component tensor
�̃�𝜇𝜈 of the field strength tensor reduces to:

�̃�𝜇𝜈 = −
√

2
8
𝜖𝑎𝑏𝑐𝑑

[
𝜔𝜇

𝑎𝑏, 𝜔𝜈
𝑐𝑑

]
− 𝑖𝜆

2

ℏ
�̃�𝜇𝜈 .

Thus, the second term of the spontaneously broken action, (54), vanishes as it contains the
commutator of the spin connection. Furthermore, because of [a], 𝑎𝜇 will not be included in
the first term of the action.
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e Finally, we make the following reparametrizations:

𝑒𝜇
𝑎 → 𝑖𝑚𝑒𝜇

𝑎, 𝑃𝑎 → − 𝑖

𝑚
𝑃𝑎, �̃�𝜇𝜈

𝑎 → 𝑖𝑚𝑇𝜇𝜈
𝑎

𝜔𝜇
𝑎𝑏 → − 𝑖

2
𝜔𝜇

𝑎𝑏, 𝑀𝑎𝑏 → 2𝑖𝑀𝑎𝑏, 𝑅𝜇𝜈
𝑎𝑏 → − 𝑖

2
𝑅𝜇𝜈

𝑎𝑏,

where𝑚 is an arbitrary, complex constant with dimension [𝐿]−1 introduced for 𝑒𝜇𝑎 to remain
dimensionless in the commutative limit. Its introduction is crucial so that 𝑒𝜇𝑎 can admit the
interpretation of the actual vielbein field.

Adopting all of the above, we take the following expression of the torsion tensor, �̃�𝜇𝜈
𝑎:

𝑇𝜇𝜈
𝑎 = 𝜕𝜇𝑒𝜈

𝑎 − 𝜕𝜈𝑒𝜇𝑎 − 𝜔𝜇
𝑎𝑏𝑒𝜈𝑏 + 𝜔𝜈

𝑎𝑏𝑒𝜇𝑏 = 0,

which totally coincides with the torsionless condition of the first-order formulation of GR, as shown
in [66]. Due to that, the relation between 𝑒 and𝜔 fields will also coincide to the one of the first-order
formulation of GR.

Proceeding with the curvature 2-form, 𝑅𝜇𝜈
𝑎𝑏, we result to the following form:

𝑅𝜇𝜈
𝑎𝑏 = 𝜕𝜇𝜔𝜈

𝑎𝑏 − 𝜕𝜈𝜔𝜇
𝑎𝑏 + 𝜔𝜇

𝑎𝑐𝜔𝜈
𝑏
𝑐 − 𝜔𝜇

𝑏𝑐𝜔𝜈
𝑎
𝑐 +

3
2
𝑚2𝑒𝜇

𝑎𝑒𝜈
𝑏 = 𝑅

(0)
𝜇𝜈

𝑎𝑏 + 3
2
𝑚2𝑒𝜇

𝑎𝑒𝜈
𝑏 .

Again, as shown in [66], the above expression coincides with the one of the first-order formulation
of GR, but, with the exception that it also contains an extra term that involves only the vielbein
fields.

Last, as commented earlier, because of the vanishing of its second term, the action (54), will now
only consist of its first one. In the commutative limit, the action is only Lorentz-invariant, as the
initial symmetry has been spontaneously broken. The final expression of the action is going to be
of a form initially proposed by MacDowell-Mansouri, that finally leads to the Palatini action - the
gauge-theoretic equivalent of the Einstein-Hilbert action.

5. Conclusions

A possible way to resolve the singularities of general relativity was proposed based on the
assumption that the description of space-time using commuting coordinates is not valid above a
certain fundamental scale. Beyond that scale it is assumed that the space-time has noncommutative
structure leading in turn to a resolution of the singularity. Similar aims in Particle Physics Unification
schemes, namely attempts to remove the divergences of the field theoretic, led first to supersymmetric
field theories as the natural playground for solving the problem of quadratic divergences. Then,
requiring complete absence of divergences in GUTs led to all-loop Finite Theories making use of
the idea of reduction of couplings. A remarkable consequence of such theories was the prediction,
among others, of the top and Higgs masses before their discoveries. It would be very exciting if the
four-dimensional noncommutativity, a matrix version of which was discussed in the present article,
could lead to similar results in the gravitational-cosmological predictions.
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Being more realistic it is first worth noting that the dimensional reduction of higher-dimensional
gauge theories over fuzzy manifolds -used as extra dimensions- led to renormalizable four-dimensional
theories [81–84]. Then it is not totally inconceivable to think that the four-dimensional fuzzy Eu-
clidean matrix model of gravity discussed here could have improved UV properties, as compared to
ordinary gravity; it has finite degrees of freedom, as the extra dimensional theories with fuzzy extra
dimensions that were found to be renormalizable. We plan to further explore this possibility and
examine to what extent the, hopefully positive, results can be realised in spaces with Minkowskian
signature too.
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