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Contents

1 Introduction 2

2 Yang-Mills Matrix Models with Double Mass Deformation 3
2.1 Ansatz and the Effective Action 5
2.2 Fixed Points and Stability Analysis 6

3 Chaotic Dynamics 8
3.1 Dependence of the Largest Lyapunov Exponent on Energy 8
3.2 Temperature Dependence of the Lyapunov Exponent 10
3.3 Another Set of Mass Values 11

4 Conclusions and Outlook 13

1. Introduction

Interest in exploring various aspects of chaotic dynamics emerging from Yang-Mills (YM)
matrix models has been going on well over a decade now [1–14]. It is well-known that investigations
on the chaotic dynamics of Yang-Mills theories goes back to early 80s [15–17]. In the context of the
Banks-Fischler-Shenker-Susskind (BFSS) model [18] the earliest work is due to Arefeva et. al. [19].
A large portion of the recent work on the subject is motivated by a result due Maldacena-Shenker-
Stanford (MSS) [6], which states that the largest Lyapunov exponent (which is a measure of chaos
in both classical and quantum mechanical systems) for quantum chaotic dynamics is controlled by
a temperature dependent bound and given by 𝜆𝐿 ≤ 2𝜋𝑇 . It is conjectured that systems which are
holographically dual to the black holes saturate this bound and therefore they can be deemed to
be maximally chaotic. One such example is the Sachdev-Ye-Kitaev (SYK) matrix model [12], and
it is expected to be so for other matrix models which have a holographic dual such as the BFSS
[18] matrix quantum mechanics. The latter and its massive deformation Berenstein-Maldacena-
Nastase (BMN) model [22] are supersymmetric 𝑆𝑈 (𝑁) gauge theories, describing the dynamics of
𝑁-coincident 𝐷0-branes in the flat and spherical backgrounds, respectively [18, 20–25]. Gravity
dual of the BFSS model describes a phase in which 𝐷0-branes form a so called black-brane, i.e. a
string theoretical black hole [24–26].

As noted in [4], classical dynamics of the BFSS model serves as a good approximation of the
quantum theory in the high temperature limit. Although this regime is distinguished from that in
which the gravity dual is obtained, numerical studies conducted in [27, 28] give no indication of an
occurrence of a phase transition between low and high temperature limits, which makes it plausible
to expect that features like fast scrambling [1] of black holes in the gravity dual could survive at
the high temperature limit too. Also, numerical results supporting fast thermalization is obtained
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for the BMN matrix model in [2]. In [4] classical chaotic dynamics of the BFSS models is studied
and it is found that the largest Lyapunov exponent is given as 𝜆𝐿 = 0.2924(3)𝑇1/4 (setting 𝜆′𝑡 𝐻𝑜𝑜 𝑓 𝑡

to unity after properly scaling all the dimensionful quantities). Since the classical theory is only
good in describing the dynamics in the high temperature regime, it is to be expected that it breaks
down at sufficiently low temperatures. Indeed, it is readily seen that the MSS bound is violated for
𝑇 < 𝑇𝑐 ≈ 0.015 while it remains parametrically smaller than 2𝜋𝑇 for 𝑇 > 𝑇𝑐. Let us also note that
authors of [8] considered fuzzy spheres at matrix levels 𝑁 = 2, 3 to exhibit the presence of chaotic
dynamics., while in [13] some of us focused on a Yang-Mills five matrix models with a mass term
and considering equivariant fluctuations around its fuzzy four sphere [25, 29, 30] solutions examined
the chaotic dynamics of a family of effective models by computing their Lyapunov exponents.

In [14], we have studied chaos in massive deformations of the 𝑆𝑈 (𝑁) Yang-Mills gauge theories
in 0 + 1-dimensions. In this proceeding we report on this work. The model we are interested in has
the same matrix content as that of the bosonic part of the BFSS model but it involves two separate
massive deformation terms, which in two distinct limits lead to the solutions of the classical equations
of motion in the form of fuzzy two- or four-spheres. Since non-trivial 𝐷0-brane dynamics leading
to chaos require non-commutativity [7], fuzzy spheres described by non-commuting matrices may
serve as good candidates for background geometries to probe chaotic behaviour in YM matrix
models. Introducing an ansatz configuration involving fuzzy four- and two-spheres with collective
time dependence, we obtain a family of effective Hamiltonians, 𝐻𝑛 , (𝑁 = 1

6 (𝑛 + 1) (𝑛 + 2) (𝑛 + 3))
and examine their emerging chaotic dynamics. Subsequently, we model the variation of the largest
Lyapunov exponents as a function of the energy, and find that they vary either as ∝ (𝐸 − (𝐸𝑛)𝐹)1/4

or ∝ 𝐸1/4, where (𝐸𝑛)𝐹 stand for the energies of the unstable fixed points of the phase space. Using
the virial and equipartition theorems we derive inequalities that relate energy and temperature
and put upper bounds on the temperature above which the Lyapunov exponents comply with the
Maldacena-Shenker-Stanford (MSS) bound 2𝜋𝑇 , and below which it will eventually be violated.

2. Yang-Mills Matrix Models with Double Mass Deformation

In this section, we introduce a Yang-Mills (YM) matrix models with two distinct mass
deformation terms, which may be contemplated as a double mass deformation of the bosonic
part of the BFSS model. The action for this model can be written as

𝑆𝑌𝑀𝑀 = 𝑁

∫
𝑑𝑡 𝐿𝑌𝑀𝑀 := 𝑁

∫
𝑑𝑡 𝑇𝑟

(
1
2
(𝐷0𝑋𝐼 )2 + 1

4
[𝑋𝐼 , 𝑋𝐽 ]2 − 1

2
𝜇2

1𝑋
2
𝑎 −

1
2
𝜇2

2𝑋
2
𝑖

)
, (1)

where the indices 𝐼, 𝐽 = 1, .., 9, while 𝑎 and 𝑖 take on the values 𝑎 = 1, .., 5 and 𝑖 = 6, 7, 8,
respectively. 𝑋𝐼 are 𝑁 × 𝑁 Hermitian matrices transforming under the adjoint representation of
𝑈 (𝑁) as

𝑋𝐼 → 𝑈†𝑋𝐼𝑈 , 𝑈 ∈ 𝑈 (𝑁) , (2)

and the covariant derivatives are given by

𝐷0𝑋𝐼 = 𝜕0𝑋𝐼 − 𝑖[𝐴0, 𝑋𝐼 ] . (3)

𝐴0 is the𝑈 (𝑁) gauge field transforming as

𝐴0 → 𝑈†𝐴0𝑈 + 𝑖𝑈†𝜕0𝑈. (4)

3
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𝑆𝑌𝑀𝑀 is invariant under the 𝑈 (𝑁) gauge symmetry. In (1) the terms proportional to 𝜇2
1 and 𝜇2

2
are the quadratic deformations terms. In the absence of the latter the action reduces to the bosonic
sector of the BFSS model and is invariant under rigid 𝑆𝑂 (9) rotations

𝑋𝐼 → 𝑋 ′
𝐼 = 𝑅𝐼 𝐽𝑋𝐽 , 𝑅 ∈ 𝑆𝑂 (9) , (5)

of the matrices 𝑋𝐼 among themselves. Massive deformation terms breaks this global symmetry to
𝑆𝑂 (5) × 𝑆𝑂 (3) × Z2

⊗9, where the discrete group factor is due to the 𝑋𝐼 → −𝑋𝐼 symmetry.
We will work in the ’t Hooft limit, introducing 𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡 = 𝑔2𝑁 with 𝑁 taken large and 𝑔2

small, so that the ’t Hooft coupling 𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡 is held fixed. 𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡 has units of Length−3 and
without loss of generality it can be set to unity by scaling all the dimensionful quantities in the
action in units of 𝜆1/3. The action in (1) is already written in the ’t Hooft limit with 𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡 set to
unity. It is always possible to restore back 𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡 by the scalings 𝑋𝑖 → 𝜆−1/3𝑋𝑖 , 𝐴𝑡 → 𝜆−1/3𝐴𝑡 ,
𝑡 → 𝜆1/3𝑡, 𝜇2

𝑖
→ 𝜆−2/3𝜇2

𝑖
, if needed.

Let us consider the scaling transformation

𝑋𝐼 → 𝜌−1 𝑋𝐼 , 𝑡 → 𝜌 𝑡 , (6)

where 𝜌 is an arbitrary positive constant. Under this transformation the conjugate momenta
𝑃𝐼 := 𝑁𝜕0𝑋𝐼 scales as 𝑃𝐼 → 𝜌−2𝑃𝐼 . In the massless limit the potential scales as 𝑉 | (𝜇1,𝜇2=0) →
𝜌−4𝑉 | (𝜇1,𝜇2=0) , indicating that the energy scales as 𝐸 → 𝜌−4𝐸 . Since the Lyapunov exponent has
the dimensions of inverse time, we see that, it should scale as 𝜆𝐿 ∝ 𝐸1/4 in the massless limit.
These considerations will be of use in the following sections.

Fixing the gauge to 𝐴0 = 0 yields the equations of motion for the matrices 𝑋𝐼 ’s in the form

¥𝑋𝑎 + [𝑋𝐼 , [𝑋𝐼 , 𝑋𝑎]] + 𝜇2
1𝑋𝑎 = 0 , (7a)

¥𝑋𝑖 + [𝑋𝐼 , [𝑋𝐼 , 𝑋𝑖]] + 𝜇2
2𝑋𝑖 = 0 , (7b)

¥𝑋9 + [𝑋𝐼 , [𝑋𝐼 , 𝑋9]] = 0 , (7c)

and they are supplemented by the equation of motion for the gauge field 𝐴0, which is nothing but
the Gauss law constraint

[𝑋𝐼 , 𝑃𝐼 ] = 0 . (8)

This is a constraint on the matrices 𝑋𝐼 and in the quantum theory it enforces that the physical states
are 𝑆𝑈 (𝑁)-singlets.

BMN matrix model [22], is a particular massive deformation of the BFSS model, which
preserves the maximal amount of the supersymmetry and it has the fuzzy two-spheres and their
direct sums as possible vacuum configurations. In what follows our focus will be directed at the
emergent chaotic dynamics from the Yang-Mills matrix models. For this purpose, it will prove
useful have YM matrix models that could carry not only fuzzy two-sphere configurations but also
higher dimensional fuzzy spheres, in particular a fuzzy four-sphere, as possible vacuum solutions.
The specific massive deformation introduced (1) is distinct from that of the BMN model and serves
precisely for this purpose, since in two distinct limiting cases, the equations of motion (7) can be
solved either with fuzzy two-sphere or fuzzy four-sphere configurations. These are as follows:

4
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For, 𝑋𝑖 = 0 = 𝑋9, (7b) and (7c) are satisfied identically, while (7a) takes the form

¥𝑋𝑎 + [𝑋𝑏, [𝑋𝑏, 𝑋𝑎]] + 𝜇2
1𝑋𝑎 = 0 , (9)

which is satisfied by the fuzzy four-sphere configurations 𝑋𝑎 ≡ 𝑌𝑎 for 𝜇2
1 = −16. The latter is

described by the 𝑁×𝑁 matrices𝑌𝑎 carrying the (0, 𝑛) UIR of 𝑆𝑂 (5) with 𝑁 = 1
6 (𝑛+1) (𝑛+2) (𝑛+3),

i.e. the dimension of the UIR (0, 𝑛). They satisfy the defining properties

𝑌𝑎𝑌𝑎 =
1
4
𝑛(𝑛 + 4)1𝑁 ,

𝜖𝑎𝑏𝑐𝑑𝑒𝑌𝑎𝑌𝑏𝑌𝑐𝑌𝑑 = (𝑛 + 2)𝑌𝑒 , (10)

A quick summary for the construction of the fuzzy four-sphere is given in the appendix of [13],
while more detailed accounts may be found in the original papers [25, 29, 30].

For, 𝑋𝑎 = 0 = 𝑋9 on the contrary, the only remaining non-trivial equation of motion is

¥𝑋𝑖 + [𝑋 𝑗 , [𝑋 𝑗 , 𝑋𝑖]] + 𝜇2
2𝑋𝑖 = 0 , (11)

and for 𝜇2
2 = −2 it is solved by fuzzy two-sphere configurations 𝑋𝑖 ≡ 𝑍𝑖 or their direct sums. In

this case, 𝑍𝑖 are 𝑁 × 𝑁 matrices carrying the spin 𝑗 = 𝑁−1
2 UIR of 𝑆𝑂 (3) ≈ 𝑆𝑈 (2). A detailed

account on the fuzzy two-spheres and their applications is [31] which also provides an extensive
list of references to the original literature.

In the ensuing section we consider an ansatz configuration involving fuzzy two- and four-
spheres with collective time dependence. The latter implies that the Gauss law constraint (8) is
easily satisfied as we shall shortly see. Tracing over the fuzzy two- and four-sphere configurations
yields reduced models with only four phase space degrees of freedom and their dynamics is readily
accessible for numerical study.

2.1 Ansatz and the Effective Action

A simple, yet non-trivial configuration involving fuzzy four- and two-sphere matrices with
collective time-dependence is

𝑋𝑎 = 𝑟 (𝑡)𝑌𝑎 , 𝑋𝑖 = 𝑦(𝑡) 𝑍𝑖 , 𝑋9 = 0 , (12)

where 𝑟 (𝑡) and 𝑦(𝑡) are real functions of time. In this ansatz, we consider a single spin- 𝑗 = 𝑁−1
2

IRR of 𝑆𝑈 (2) as the fuzzy 𝑆2 configuration, Although 𝑍𝑖 exists at every matrix level, 𝑌𝑎 do
not. Fuzzy four spheres exists at the matrix levels 4, 10, 20 · · · as given by the dimension 𝑁 =
1
6 (𝑛 + 1) (𝑛 + 2) (𝑛 + 3) of the IRR (0, 𝑛) of 𝑆𝑂 (5). Accordingly we take the fuzzy two spheres at
the matching matrix levels with that of the fuzzy four sphere. In what follows, we will focus on two
distinct set of mass values which are (𝜇2

1 = −16, 𝜇2
2 = −2) and (𝜇2

1 = −8, 𝜇2
2 = 1). The former are

the mass values required for the static solutions of fuzzy two- or four-spheres when either the 𝑋𝑎’s
or the 𝑍𝑖’s are set to zero, respectively, while the latter is an possible example, among many, of
mass values leading to a single trivial fixed point for the reduced Hamiltonians. which will shortly
follow.

5
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Substituting the configuration (12) in the action (1) and tracing oover the fuzzy four- and
two-sphere matrices at the matrix levels 𝑁 = 1

6 (𝑛 + 1) (𝑛 + 2) (𝑛 + 3) for 𝑛 = 1, 2, · · · , 6, we obtain
the family of Lagrangians of the reduced models in the form

𝐿𝑛 = 𝑁2(𝑐1 ¤𝑟2 + 𝑐2 ¤𝑦2 − 8𝑐1𝑟
4 − 𝑐2𝑦

4 − 𝑐1𝜇
2
1𝑟

2 − 𝑐2𝜇
2
2𝑦

2 − 𝑐3𝑟
2𝑦2) , (13)

where the coefficients 𝑐𝛽 = 𝑐𝛽 (𝑛) (𝛽 = 1, 2, 3) depend on 𝑛 and their values (given up to one digit
after the decimal point at most) for 𝑛 = 1, 2, · · · , 6 are listed in the table 1. We suppress the label 𝑛
of the coefficients 𝑐𝛽 (𝑛) in (13) in order not to clutter the notation.

𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6
𝑐1 2.5 6 10.5 16 22.5 30
𝑐2 1.9 12.4 49.9 153 391.9 881.9
𝑐3 21 207.7 1080 3970 11691 29493

Table 1: Numerical values of coefficients 𝑐𝛽 (𝑛).

The corresponding Hamiltonian is

𝐻𝑛 (𝑟, 𝑦, 𝑝𝑟 , 𝑝𝑦) =
𝑝𝑟

2

4𝑐1𝑁2 +
𝑝𝑦

2

4𝑐2𝑁2 + 𝑁2(8𝑐1 𝑟
4 + 𝑐2 𝑦

4 + 𝑐1 𝜇
2
1𝑟

2 + 𝑐2 𝜇
2
2𝑦

2 + 𝑐3 𝑟
2𝑦2) ,

=:
𝑝𝑟

2

4𝑐1𝑁2 +
𝑝𝑦

2

4𝑐2𝑁2 + 𝑁2𝑉𝑛 (𝑟, 𝑦) , (14)

where 𝑉𝑛 (𝑟, 𝑦) stands for the potential and defined by the relevant terms in the first line of (14).
Hamilton’s equations of motion take the form

¤𝑟 − 𝑝𝑟

2𝑐1𝑁2 = 0 , ¤𝑦 −
𝑝𝑦

2𝑐2𝑁2 = 0 , (15a)

¤𝑝𝑟 + 𝑁2(32𝑐1𝑟
3 + 2𝑐1𝜇

2
1𝑟 + 2𝑐3𝑟𝑦

2) = 0 , ¤𝑝𝑦 + 𝑁2(4𝑐2𝑦
3 + 2𝑐2𝜇

2
2𝑦 + 2𝑐3𝑟

2𝑦) = 0 . (15b)

Case of 𝑛 = 1 does not lead to Chaotic dynamics and will not be considered in the ensuing sections.
Details pertaining to this case may be found in [14].

Let us also note in passing that in the massless limit (𝜇1 , 𝜇2) → (0, 0), we have 𝐻𝑛 → 𝜌−4𝐻𝑛

under the scaling (𝑟 , 𝑦) → (𝜌−1 𝑟 , 𝜌−1 𝑦) and 𝑡 → 𝜌 𝑡, as can be readily expected in view of the
discussion given in the previous section.

2.2 Fixed Points and Stability Analysis

To investigate the dynamics of the models described by the Hamiltonian’s 𝐻𝑛, it is useful to
start by determining the fixed points in the phase space and subsequently inspect their stability at the
linear order. Fixed points in the phase space can be determined by solving the equations [32–35],

( ¤𝑟, ¤𝑦, ¤𝑝𝑟 , ¤𝑝𝑦) ≡ (0, 0, 0, 0) . (16)

Using (16) in (15) leads to four algebraic equations, two of which are immediately solved by
(𝑝𝑟 , 𝑝𝑦) ≡ (0, 0). This means that all the fixed points are on the (𝑝𝑟 , 𝑝𝑦) ≡ (0, 0) plane in the

6
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phase space. Taking the mass parameter values as 𝜇2
1 = −16 & 𝜇2

2 = −2, the remaining two
equations are

−32𝑐1𝑟
3 + 32𝑐1𝑟 − 2𝑐3𝑟𝑦

2 = 0 ,
−4𝑐2𝑦

3 + 4𝑐2𝑦 − 2𝑐3𝑟
2𝑦 = 0 , (17)

Only real solutions of (17) are physically acceptable. The fixed points are

(𝑟, 𝑦, 𝑝𝑟 , 𝑝𝑦) ≡ {(0, 0, 0, 0), (±1, 0, 0, 0) , (0,±1, 0, 0)) ,
(±ℎ1(𝑛),±ℎ2(𝑛), 0, 0) , (±ℎ1(𝑛),∓ℎ2(𝑛), 0, 0)} , (18)

where ℎ1 and ℎ2 are given in terms of 𝑐𝛽 as

ℎ1 = −
√

2𝑖
√
−𝑐2𝑐3 + 16𝑐1𝑐2√︃
𝑐2

3 − 32𝑐1𝑐2

, ℎ2 = −4𝑖
√

2𝑐1𝑐2 − 𝑐1𝑐3√︃
𝑐2

3 − 32𝑐1𝑐2

. (19)

with the numerical values are presented in the table 2 below. Energies at these fixed points are

𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6
ℎ1 0.26 0.28 0.27 0.26 0.24
ℎ2 0.6 0.38 0.25 0.17 0.12

Table 2: Numerical values of ℎ1 and ℎ2.

readily evaluated and they are

𝐸𝐹 (0, 0, 0, 0) = 0 , 𝐸𝐹 (±1, 0, 0, 0) = −8𝑁2𝑐1 , 𝐸𝐹 (0,±1, 0, 0) = −𝑁2𝑐2 , (20)

while the values of 𝐸𝐹 (±ℎ1 (𝑛) ,±(∓)ℎ2 (𝑛) ,0,0)
𝑁2 are presented in 3. Same table also lists minimum values

of the potentials 𝑉𝑛 for ease in comparison. Let us note that the critical points of the potential 𝑉𝑛

𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6
𝐸𝐹 (±ℎ1 (𝑛) ,±(∓)ℎ2 (𝑛) ,0,0)

𝑁2 −8.6 −13.8 −18.4 −23 −27.7
𝑉(𝑛) ,𝑚𝑖𝑛

𝑁2 −48 −84 −153 −391.9 −881.9

Table 3: Numerical values for 𝐸𝐹/𝑁2 at the critical points (±ℎ1 (𝑛),±(∓)ℎ2 (𝑛), 0, 0) and the minimum
values of 𝑉𝑛.

are also determined by the solutions of (17) . From the eigenvalues of the matrix 𝜕2𝑉𝑛

𝜕𝑔𝑖𝜕𝑔 𝑗
, (with

the notation (𝑔1, 𝑔2) ≡ (𝑟, 𝑦)), we see that (±1, 0) and (0 ,±1) are local minima, (0, 0) is a local
maximum, and (±ℎ1(𝑛),±ℎ2(𝑛)), (±ℎ1(𝑛),∓ℎ2(𝑛)) are all saddle points. Evaluating 𝑉𝑛 at the
local minima, we find 𝑉𝑛 (±1, 0) = −8𝑐1 and 𝑉𝑛 (0,±1) = −𝑐2. These give the absolute minimum
of 𝑉𝑛 at (±1, 0) for 𝑛 = 1, 2, 3 and at (0,±1) for 𝑛 = 4, 5, 6. We may also note that minimum of 𝑉𝑛
are negative in general. This is expected, due to the presence of the massive deformation terms.

A first order stability analysis around the fixed points of 𝐻𝑛 can be readily given. Together
with the Lyapunov spectrum that will be determined in the next section, this analysis will allow us

7
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to comment on the onset of chaos, i.e. to estimate the energies at and above which chaotic orbits
will start to dominate the assocaited phase spaces of 𝐻𝑛. Using the notation

(𝑔1, 𝑔2, 𝑔3, 𝑔4) ≡ (𝑟, 𝑦, 𝑝𝑟 , 𝑝𝑦) , (21)

the Jacobian matrix may be given as

𝐽𝛼𝛽 ≡ 𝜕 ¤𝑔𝛼
𝜕𝑔𝛽

, (22)

Eigenvalues of 𝐽𝛼𝛽 at the fixed points are easily evaluated and allows us to decide on their stability.
General criterion for the latter states that [32–35] a fixed point is stable if all the real eigenvalues of
the Jacobian are negative, unstable if the Jacobian has at least one real positive eigenvalue, and of
borderline type if all the eigenvalues are purely imaginary1. Accordingly, we find that (0, 0, 0, 0)
and (ℎ1(𝑛), ℎ2(𝑛), 0, 0) are all unstable fixed points, while we find that (±1, 0, 0, 0) and (0,±1, 0, 0)
are borderline type. We are not going to explore the structure of the latter, since we expect that their
impact on the chaotic dynamics be rather small compared to those of the unstable fixed points. Our
results on the Lyapunov spectrum presented in the next section corroborates with this expectation.

3. Chaotic Dynamics

3.1 Dependence of the Largest Lyapunov Exponent on Energy

In order to probe the presence and analyze the structure of chaotic dynamics of the models
described by the Hamiltonians 𝐻𝑛, we examine their Lyapunov exponents. The latter, and in
particular the largest, Lyapunov exponent give a measure on the exponential growth in perturbations
and therefore serve as a quantitative means to establish the presence of chaos in a dynamical system
[33–35]. In order to obtain the Lyapunov exponents for our models we run a Matlab code, which
numerically solves the Hamilton’s equations of motion given in (15) for all𝐻𝑛 (2 ≤ 𝑛 ≤ 6) at several
different values of the energy. We run the code 40 times with randomly selected initial conditions
satisfying a given energy and calculate the mean of the time series from all runs for each of the
Lyapunov exponents at each value of 𝑛. Details in this regard and a simple approach we developed
to give certain effectiveness to the random initial condition selection process are presented in [14].
Here we directly focus on the profile of the Largest Lyapunov exponents as a function of the 𝐸/𝑁2.

In order to see the dependence of the mean largest Lyapunov exponent, 𝜆𝑛, to energy, we
compute the latter at a large span of energy values, which suits best to observe the onset and
development of the chaotic dynamics. The energies determined for the unstable fixed points in the
previous section are of central importance here. From set of data presented in figure 1, we see
that chaotic dynamics starts to develop only after the energy of systems exceeds the unstable fixed
point energies (𝐸𝑛)𝐹 of the models at the fixed points (±ℎ1(𝑛),±(∓)ℎ2(𝑛), 0, 0). As we keep on
increasing the energy, 𝜆𝑛 tend to grow as is easily observed from the figure 1. Error bars at each
data point is found by evaluating mean square error using the average and the individual largest
Lyapunov exponent values for each of the 40 runs of the code.

1That is, the first order analysis is inconclusive and higher order considerations are necessary to decide if the system
is stable or unstable at such a fixed point.
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(a) 𝜆2 vs. 𝐸/𝑁2 (b) 𝜆3 vs. 𝐸/𝑁2 (c) 𝜆4 vs. 𝐸/𝑁2

(d) 𝜆5 vs. 𝐸/𝑁2 (e) 𝜆6 vs. 𝐸/𝑁2

Figure 1: MLLE vs. 𝐸/𝑁2 for 𝜇2
1 = −16 and 𝜇2

2 = −2

In view of the expectation that 𝜆𝑛 ∝ 𝐸1/4 due to the scaling symmetry of the models 𝐻𝑛 in the
massless limit and the fact that the reduced models do not develop any appreciable chaos up until
the critical energies (𝐸𝑛)𝐹 < 0 are well exceeded. We examine the best fit curves of the form

𝜆𝑛 = 𝛼𝑛

(
𝐸

𝑁2 − (𝐸𝑛)𝐹
𝑁2

)1/4
, (23)

to the 𝜆𝑛 versus 𝐸

𝑁2 data in figure 1. Let us also note that at level 𝑛, (𝐸𝑛)𝐹 is determined by the
values of the masses 𝜇2

1, 𝜇2
2, and therefore (23) involves the dependence of 𝜆𝑛 on these additional

dimensionful parameters through (𝐸𝑛)𝐹 . This is in contrast to the pure BFSS model, whose only
dimensionful parameter is 𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡 . Coefficients 𝛼𝑛 for (23) are listed in table 4 below:

𝑛 𝛼𝑛 𝑇𝑐 𝛽𝑛

2 0.3017 0.0832 0.4567
3 0.3313 0.1029 0.5015
4 0.3168 0.1046 0.4795
5 0.3016 0.1045 0.4565
6 0.2505 0.0911 0.3791

Table 4: 𝛼𝑛 values for the best fit curves (23), Upper bounds for 𝑇𝑐 and 𝛽𝑛 values for the inequality (27).

A number of comments are in order. We see that the 𝛼𝑛 values are close to each other for
2 ≤ 𝑛 ≤ 5 and the quality of the fitting curves are quite good, while it is smaller for 𝑛 = 6 and there
is a visible decrease in the quality of the fitting curves. It may be argued that the improved quality of
the fits for 𝑛 = 4 and 𝑛 = 5 are due to the more detailed analysis of the data. In fact, at these matrix

9
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levels, some of the randomly picked initial values lead to vanishing Lyapunov exponents for a range
of the energy values and they correspond to quasi-periodic orbits in the phase space. For these range
of the energies, we evaluated the mean 𝜆𝑛 by excluding the initial conditions that lead to vanishing
Lyapunov exponents. The results obtained in this manner are given in the plots in the figures 1c and
1e with blue error bars as with the rest of the data, while those points with error bars in yellow color
represent the mean 𝜆𝑛 including those initial conditions leading to vanishing Lyapunov exponents.
The latter are kept in the same plots for comparison. Nevertheless, such an analysis is not suitable
for 𝑛 = 6 due to the scattered distribution of the relatively lower Lyapunov exponent values to almost
the entire energy range of interest. A more sophisticated initial condition selection procedure, for
instance by confining to small hyper-volumes of phase space, and averaging the LLE data over such
hyper-volumes may help to decrease fluctuations on the data and subsequently enhance the quality
of the fits too, but this is out of the scope of our present work.2

3.2 Temperature Dependence of the Lyapunov Exponent

Chaotic dynamics of the BFSS models was examined at the classical level in [4] in a real
time formalism3. There, the authors found that the largest Lyapunov exponent varies as a function
of the temperature in the form 𝜆 = 0.2924(3) (𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡𝑇)1/4. A simple dimensional analysis
yields 𝜆 in units of Length−1 as it should, since 𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡 and 𝑇 have the units Length−3 and
Length−1, respectively. Let us note that, scaling transformation in (6) is exact for the BFSS model
and hence the Lyapunov exponents should scale with energy as 𝜆 ∝ 𝐸1/4 and subsequently gets
related to the temperature via the use of the virial and equipartition theorems. To be more precise,
for a purely quartic potential the latter yields, 〈𝐾〉 = 2〈𝑉〉 = 1

2𝑛𝑑.𝑜. 𝑓𝑇 (In units 𝑘𝐵 = 1) and
𝐸 = 〈𝐾〉 + 〈𝑉〉 = 3

4𝑛𝑑.𝑜. 𝑓𝑇 , where 𝑛𝑑.𝑜. 𝑓 stands for the total number of degress of freedom. For
the BFSS model, this is evaluated to be [4] , 𝑛𝑑.𝑜. 𝑓 = 8(𝑁2 − 1) − 36 after properly accounting
for constraints and symmetries. The result 𝜆 = 0.2924𝑇1/4 (setting 𝜆′𝑡𝐻𝑜𝑜 𝑓 𝑡 to unity) of [4] is
parametrically smaller than the MSS bound, 𝜆 ≤ 2𝜋𝑇 , on quantum chaos for sufficiently large 𝑇 ,
but violates it below the temperature ( 0.292

2𝜋 ) 4
3 = 0.015. This is expected, since the classical theory

is good in approximating the quantum dynamics only in the high temperature regime.
From the perspective and results outlined in the previous paragraph, we proceed with the

following strategy to model the variation of the Lyapunov exponents, 𝜆𝑛, with temperature. Due to
the massive deformation terms we introduced in the matrix model, the potential is not a polynomial
of homogeneous degree in the matrices 𝑋𝐼 any longer, and therefore the virial theorem does not
allow us to express the kinetic ,〈𝐾〉, and the potential, 〈𝑉〉, energies as a multiple of each other.
However, expressing the Lagrangian in (1) as 𝐿𝑌𝑀𝑀 = 𝐾 − 𝑉 and applying the virial theorem, we

2Approach of some of the LLE values to zero implies that the systems’ development in time, starting from these
initial conditions are of either periodic or quasi-periodic type and not chaotic. We note that the mean largest Lyapunov
exponent is still quite large and also demonstrated in [14] that the sample Poincaré section taken at one of these energies
are densely chaotic, showing no sign of Kolmogorov-Arnold-Moser(KAM) tori, which would have signaled the presence
of appreciable amount of quasi-periodic orbits. Therefore, we think that such periodic or quasi-periodic orbits occur in
considerably small regions of the phase space.

3This is in contrast to several earlier as well as some recent studies on the BFSS model and its deformations mainly
targeting to explore their phase structure, which resort to the imaginary time formalism with period 𝛽, the inverse
temperature [36–41].
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find

2〈𝐾〉 = 2〈𝑉〉 − 2𝑇𝑟
1
4
[𝑋𝐼 , 𝑋𝐽 ]2 ,

= 4〈𝑉〉 − 2𝑇𝑟
1
2
𝜇2

1𝑋
2
𝑎 − 2𝑇𝑟

1
2
𝜇2

2𝑋
2
𝑖 . (24)

Here, the first equality implies that 〈𝑉〉 < 〈𝐾〉 is always satisfied, since 𝑇𝑟 [𝑋𝐼 , 𝑋𝐽 ] [𝑋𝐼 , 𝑋𝐽 ]† =

−𝑇𝑟 [𝑋𝐼 , 𝑋𝐽 ]2 ≥ 0 for Hermitian 𝑋𝐼 . Second line implies that 2〈𝑉〉 ≤ 〈𝐾〉 for 𝜇2
1 < 0, 𝜇2

2 < 0.
Thus, we have 𝐸 ≤ 3

4𝑛𝑑.𝑜. 𝑓𝑇 , where now 𝑛𝑑.𝑜. 𝑓 = 7(𝑁2 − 1) − 28, since 𝑋9 is already set to zero
in our model and this decreases the number of d.o.f accordingly. We may take 𝑛𝑑.𝑜. 𝑓 ≈ 7𝑁2 at
large 𝑁 . The ansatz in (12) roughly describes 𝐷0-branes on the fuzzy two- and four-spheres with
open string stretching between them, and the effective action we obtain after tracing model their
collective dynamics. This suggests that, we may consider the energy of the reduced models as being
due to the ≈ 7𝑁2 degrees of freedom of the matrix model and hence consider the inequality

𝐸

𝑁2 ≤ 21
4
𝑇 . (25)

In view of this inequality, we conclude that at zero temperature, 𝐸 ≤ 0, while the mean largest
Lyapunov exponents are non-vanishing until the energies drop below or around (𝐸𝑛)𝐹 as clearly
seen from the data presented in figure 1. This means that already at zero temperature the MSS
bound 𝜆𝐿 ≤ 2𝜋𝑇 is violated by these effective models. Using (25) and (23) together readily yields

𝑇𝑐 as the temperature saturating the inequality 𝛼𝑛
(

21
4 𝑇 − (𝐸𝑛 )𝐹

𝑁2

)1/4
≥ 2𝜋𝑇 . For 𝑛 = 2 , · · · , 6,

numerical values of 𝑇𝑐 are given in table 4 and they are roughly an order of magnitude larger than
the critical temperature 0.015 determined for the BFSS model in [4]. These are the upper bounds
on the temperature below which the MSS bound will eventually be violated. Due to (25), we can
expect that the temperatures at which this actually happens should be less than 𝑇 ′

𝑐’s and therefore
closer to the value determined for the BFSS model. At sufficiently high energies, we may estimate

𝜆𝑛 ≈ 𝛼𝑛
(
1 − 1

4
(𝐸𝑛)𝐹
𝐸

) (
𝐸

𝑁2

)1/4
, for 𝐸 � |(𝐸𝑛)𝐹 | > 0 , (26)

and therefore

𝜆𝑛 ≤ 𝛽𝑛 𝑇
1/4 , 𝛽𝑛 :=

(
21
4

)1/4
𝛼𝑛 , (27)

which is strictly valid in the high temperature regime for non-vanishing values of 𝜆𝑛 and is
parametrically smaller than the MSS bound 2𝜋𝑇 . Numerical values of 𝛽𝑛 are provided in table 4
for easy access.

An important issue that needs to be addressed is how to compute quantum corrections to the
matrix model and to the reduced effective actions presented in this paper or more generally in the
broader context of the BFSS and related matrix models. We remark on some recent developments
employing real time techniques in the conclusions.

3.3 Another Set of Mass Values

We may consider if and how the results of the previous section could get altered if we work
with values of 𝜇2

1 and 𝜇2
2 for which no fixed point of the type (ℎ1(𝑛), ℎ2(𝑛), 0, 0) with negative 𝐸𝐹

11
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is present but only (0, 0, 0, 0) is the unstable fixed point with zero energy at each level 𝑛. Here we
do not plan to present an exhaustive discussion but simply confine ourselves to examine another
choice for the mass values to serve the aforementioned purpose. In particular, we take 𝜇2

1 = −8 and
𝜇2

2 = 1.
With the Lagrangians 𝐿𝑛 and the Hamiltonians 𝐻𝑛 given in the form (13) and (14) and the

corresponding Hamilton’s equations given as in (15), we find that the local minimum of the potential
is at (𝑟, 𝑦) = (± 1√

2
, 0) and the local maximum is at (𝑟, 𝑦) = (0, 0) with the corresponding energies

𝑉(𝑛) ,𝑚𝑖𝑛 = −2𝑐1𝑁
2 and 0, respectively.

Fixed points of the phase space are

(𝑟, 𝑦, 𝑝𝑟 , 𝑝𝑦) = {(0, 0, 0, 0) , (± 1
√

2
, 0, 0, 0)} (28)

with the corresponding energies

𝐸𝐹 (0, 0, 0, 0) = 0 , 𝐸𝐹 (±
1
√

2
, 0, 0, 0) = −2𝑐1𝑁

2 = −𝑛(𝑛 + 4)𝑁2 . (29)

Linear stability analysis demonstrates that (0, 0, 0, 0) is the only unstable fixed point, while
(± 1√

2
, 0, 0, 0) are of the borderline type and does not play a role in the ensuing discussion.

Following the same steps of the numerical analysis for the Lyapunov spectrum outlined
previously in section 3.1, we find that, in this case too, the models exhibit chaotic dynamics
for 𝑛 = 2, 3, 4, 5, 6.The transition to chaos starts to happen around the fixed point energies, i.e. just
above zero energy, as can be clearly seen from these figures.

(a) 𝜆2 vs.𝐸/𝑁2 (b) 𝜆3 vs. 𝐸/𝑁2 (c) 𝜆4 vs. 𝐸/𝑁2

(d) 𝜆5 vs. 𝐸/𝑁2 (e) 𝜆6 vs. 𝐸/𝑁2

Figure 2: MLLE vs.𝐸/𝑁2 for 𝜇2
1 = −8 and 𝜇2

2 = 1
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Since, the unstable fixed point energy is zero at each value of 𝑛, we consider fitting curves of
the form

𝜆𝑛 = 𝛼̃𝑛

(
𝐸

𝑁2

)1/4
. (30)

We see that fits given in figure 2 are quite good, while they predict somewhat lower values of 𝜆𝑛 at
larger energies, except at the level 𝑛 = 2. The latter case displays a sharper increase the Lyapunov
exponent at intermediate energies, which is not captured well by the fit. 𝛼̃𝑛 are provided in the table
5 and happen to be quite close to each other except for 𝛼2. Since 𝜇2

2 = 1 > 0, virial theorem no

𝑛 𝛼̃𝑛 𝑇𝑐 𝛽𝑛

2 0.2147 0.021 0.349
3 0.2747 0.029 0.447
4 0.2963 0.033 0.481
5 0.2927 0.032 0.476
6 0.2815 0.030 0.458

Table 5: 𝛼̃𝑛 values for the best fit curves (30), upper bounds for 𝑇𝑐 and 𝛽𝑛 values for the inequality (32).

longer implies 2〈𝑉〉 ≤ 〈𝐾〉 in general, but 〈𝑉〉 ≤ 〈𝐾〉 is still valid. Thus, we have 𝐸 ≤ 𝑛𝑑.𝑜. 𝑓𝑇 and
therefore, instead of (25), we arrive at the inequality

𝐸

𝑁2 ≤ 7𝑇 , (31)

Data in figure 2 show that all 𝜆𝑛 → 0 as 𝐸 → 0. Thus, as opposed to the previous case with
(𝐸𝑛)𝐹 < 0, there is no violation of the MSS bound at zero temperature. Similar to the previous
case, temperatures saturating the inequality 𝛼̃𝑛 (7𝑇)1/4 ≥ 2𝜋𝑇 , give the 𝑇𝑐’s below which the MSS
bound will eventually be violated. Numerical values of these critical temperatures are given in table
5 and they are significantly lower than those listed in table 4 and closer to 0.015 of the BFSS model.
Finally, we see that

𝜆𝑛 ≤ 𝛽𝑛 𝑇
1/4 , 𝛽𝑛 := 71/4𝛼̃𝑛 , (32)

with 𝛽𝑛 values provided in table 5, and they are all parametrically lower than 2𝜋𝑇 at temperatures
above 𝑇𝑐.

4. Conclusions and Outlook

In this proceeding, we have focused on to describe some of the essential features of our work in
[14]. Interested readers may find the details as well as some other aspects in that article. To briefly
summarize, here we have studied the emergence of chaotic dynamics in a YM theory with the same
matrix content as that of the BFSS model. For this purpose, we have used an ansatz configuration
in the form of fuzzy two- and four- spheres matrices with collective time dependence and obtained
a family of models described by the effective Hamiltonians 𝐻𝑛. Subsequent numerical analysis
allowed us to compute the Lyapunov exponents as well as to inspect how the largest Lyapunov
exponent vary with energy. We found that this variation fits well with 𝜆𝑛 ∝ (𝐸 − (𝐸𝑛)𝐹)1/4 or
𝜆𝑛 ∝ 𝐸1/4, in accord with the power law behavior expected on the grounds of the scaling symmetry
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of the model in the massless limit. Deriving inequalities that relate energy and temperature by
exploiting the virial and equipartition theorems, we have shown that for 𝐻𝑛 at mass values 𝜇2

1 = −16
and 𝜇2

2 = −2, the MSS bound will eventually be violated at temperatures below the 𝑇𝑐’s listed in the
table, this is addition to the violation at zero temperature, the latter being due to the presence of an
unstable fixed point at each 𝑛 in the phase space, whose energy (𝐸𝑛)𝐹 , although being well above
the minimum of the potential is still negative, while 𝜆𝑛 remains non-zero around (𝐸𝑛)𝐹 and hence
at zero temperature due to (25). Similar results are also reached for the models with mass-squared
values 𝜇2

1 = −8 and 𝜇2
2 = 1. However, in this case, the only unstable fixed point of the phase space

is (0, 0, 0, 0) with zero energy at each level 𝑛, implying 𝜆𝑛 → 0 for 𝐸 → 0 and hence there is no
violation of the MSS bound at zero temperature as the distribution of data in figure 2 also confirms.
Critical temperatures 𝑇𝑐 listed in the table 4 for this case are quite smaller than 𝑇𝑐 and closer to the
value obtained in [4] for the BFSS model.

Let us also note that, recently, we have also studied the chaotic dynamics emerging from the
mass deformed ABJM model using similar methods and found that the Lyapunov exponents vary
either 𝜆𝐿 ∝ (𝐸/𝑁2)1/3 or 𝜆𝐿 ∝ (𝐸/𝑁2 − 𝛾𝑁 )1/3, where 𝛾𝑁 (𝑘, 𝜇) is a constant determined in terms
of the parameters of this model. Our results, including the critical temperature in regard to the MSS
bound are presented in the article [42].

The natural next step appears to be going beyond the classical description and devise means of
incorporating the quantum effects given that any direct method of exploration of the full quantum
dynamics involving real-time techniques is not presently available. Recently a real-time method4

involving an approximation using Gaussian states is proposed and thoroughly applied to the BFSS
model [10, 11]. This approach incorporates the quantum corrections by considering a larger but
a truncated set of observables and the Heisenberg equations of motion are obtained upon using
a Gaussian density matrix and extensively employing the Wick’s theorem. Results reported in
[11] indicate that the Lyapunov exponents vanish at finite temperature implying that the quantum
description of the BFSS model within this approximation is in agreement with the MSS inequality.
However, it falls short in providing an explicit saturation of the MSS bound by the Largest Lyapunov
exponent, in contrast to the result for the SYK model obtained in [12] and expected from all models
with holographic duals according to the MSS conjecture.

We think that it may be worthwhile to apply this approach to the family of models reported
in this proceeding to test and expand its validity in a broader sense as well as to further explore
the chaotic dynamics of the mass deformed matrix gauge theories beyond the classical regime. We
hope to report on the new developments along this direction elsewhere.
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