
P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
0
5

Twisted geometry for submanifolds of R𝒏

Gaetano Fiore𝑎,𝑏,∗ and Thomas Weber𝑐,𝑑
𝑎Dip. di Matematica e Applicazioni, Universitá di Napoli “Federico II”, Complesso Universitario MSA,
Via Cintia, 80126 Naples, Italy

𝑏I.N.F.N., Sezione di Napoli, Complesso Universitario MSA, Via Cintia, 80126 Naples, Italy
𝑐Dipartimento di Scienze e Innovazione Tecnologica, Universitá degli Studi del Piemonte Orientale
“Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy

𝑑I.N.F.N., Sezione di Torino, Via P. Giuria 1, 10125 Turin, Italy

E-mail: gaetano.fiore@unina.it, thomas.weber@uniupo.it

This is a friendly introduction to our recent general procedure for constructing noncommutative
deformations of an embedded submanifold 𝑀 of R𝑛 determined by a set of smooth equations
𝑓 𝑎 (𝑥) = 0. We use the framework of Drinfel’d twist deformation of differential geometry pioneered
in [Aschieri et al., Class. Quantum Gravity 23 (2006), 1883]; the commutative pointwise product
is replaced by a (generally noncommutative) ★-product induced by a Drinfel’d twist.

Corfu Summer Institute 2021 "School and Workshops on Elementary Particle Physics and Gravity"
29 August - 9 October 2021
Corfu, Greece

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:gaetano.fiore@unina.it
mailto:thomas.weber@uniupo.it
https://pos.sissa.it/


P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
0
5

Twisted geometry for submanifolds of R𝑛 Gaetano Fiore

Contents

1 Introduction 2

2 Twisted Riemannian geometry 4
2.1 Hopf ∗-algebras and their representations 4
2.2 Drinfel’d twists and twisted representations 5
2.3 Twisted Cartan calculus 7
2.4 Twisted Riemannian geometry 8

3 Twist deformation of smooth submanifolds of R𝑛 9
3.1 Twisted differential calculus on algebraic submanifolds by generators and relations 12
3.2 Twisted quadrics in R3 14

1. Introduction

Nowadays noncommutative Geometry (NCG) [9, 23–26, 31] is a broad research field aiming,
among other things, at formulating candidate frameworks for the quantization of gravity (see e.g.
[3, 11]) or the unification of fundamental interactions (see e.g. [5, 8, 10]). It is natural to ask
whether and to what extent the notion of a submanifold, which is ubiquitous in mathematics and
physics (think e.g. of: equipotential hypersurfaces; wavefronts for wave equations; submanifolds
where to impose initial or boundary conditions for fields defined on the encompassing manifold;
ADS/CFT correspondence and the holographic principle; lightcones, event horizons and other null
hypersurfaces in general relativity, etc.) can be generalized from classical differential geometry to
NCG. So far these questions have been answered by making sense of many special examples of
noncommutative (NC) submanifolds1, but have not received sufficient general treatment, except in
few articles (see e.g. [18, 19, 21, 27, 30]). This proceeding summarizes the contributions to the
topic of Ref. [18, 19], which address the above questions systematically within the framework of
deformation quantization [6], in the particular approach based on Drinfel’d twisting [12] of Hopf
algebras, for embedded submanifolds 𝑀 of R𝑛 consisting of points of 𝑥 fulfilling a set of equations

𝑓 𝑎 (𝑥) = 0, 𝑎 = 1, 2, ..., 𝑘 < 𝑛. (1)

Here 𝑓 ≡ ( 𝑓 1, ..., 𝑓 𝑘) : R𝑛 → R𝑘 are smooth functions such that the Jacobian matrix 𝐽 = 𝜕 𝑓 /𝜕𝑥
is of rank 𝑘 on all R𝑛; or, more generally, where 𝑓 is well-defined and 𝐽 is of rank 𝑘 on an
open subset D 𝑓 ⊂ R𝑛, and 𝑀 consists of the points of D 𝑓 fulfilling (1). In fact, in [18, 19] one

1For instance, the noncommutative algebra A “of functions on the quantum group 𝑆𝑈𝑞 (𝑛)" is obtained from the one
on the quantum group 𝑈𝑞 (𝑛) by imposing that the so-called 𝑞-determinant be 1, as in the 𝑞 = 1 commutative limit, and
one can construct various differential calculi on A [31].
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obtains NC deformations of the geometry on a whole 𝑘-parameter family of embedded submanifolds
𝑀𝑐 := 𝑓 −1(𝑐) ⊂ D 𝑓 [with 𝑐 ≡ (𝑐1, ..., 𝑐𝑘) ∈ 𝑓

(
D 𝑓

)
, 𝑀0 = 𝑀] of dimension 𝑛−𝑘; each 𝑀𝑐 is

the level set of 𝑓 consisting of points 𝑥 such that 𝑓 𝑎𝑐 (𝑥) := 𝑓 𝑎 (𝑥) − 𝑐𝑎 = 0 for all 𝑎 = 1, . . . , 𝑘 .
Embedded submanifolds 𝑁 ⊂ 𝑀 can be obtained by adding more equations to (1).

In deformation quantization [6] the commutative algebra A = C∞(R𝑛) of smooth functions
on a smooth manifold R𝑛 is replaced by a star product algebra A★ = (C∞(R𝑛) [[𝜈]], ★), modelled
on the formal power series C∞(R𝑛) [[𝜈]] in a deformation parameter 𝜈. ★ deforms the pointwise
product 𝑚( 𝑓 ⊗ 𝑔) = 𝑓 𝑔 of functions 𝑓 , 𝑔 ∈ A, 𝑓 ★ 𝑔 = 𝑓 𝑔 + O(𝜈), while staying associative and
unital. In the case of Drinfel’d twist deformation quantization [3, 12] any normalized 2-cocycle

F = 1 ⊗ 1 + O(𝜈) ∈ (𝑈Ξ ⊗ 𝑈Ξ) [[𝜈]] (2)

(a twist) on the enveloping algebra 𝑈Ξ of the Lie algebra Ξ of vector fields (identified with first
order differential operators) on R𝑛 induces a twist star product★ := 𝑚 ◦F −1(▷⊗▷) on R𝑛, where ▷
is the extension of the Lie derivative. This process is functorial [7], i.e. F deforms A = C∞(R𝑛)-
modules into A★-modules, and A-linear operations into A★-linear operations. In particular, the
A-bimodules of vector fields Ξ and differential forms Ω on R𝑛 are deformed into A★-bimodules.
★-Lie derivatives are twisted derivations and one obtains a twisted Cartan calculus [3]. The guiding
idea of the notion of NC submanifolds in this setting is best explained by the commutativity of the
diagram

A = C∞(R𝑛) B = C∞(𝑀)

A★ = (C∞(R𝑛) [[𝜈]], ★) B★ = (C∞(𝑀) [[𝜈]], ★′)

Submanifold Projection

Quantization Quantization
Submanifold Projection

(3)

In words, we induce a quantization of a submanifold 𝑀 via a quantization of the manifold R𝑛,
given the commutativity of (3). As said, in [18, 19] we are interested in the situation when 𝑀

is a submanifold given in terms of generators (𝑥1, . . . , 𝑥𝑛) and relations (1). We show that, in
case the deformation A★ is obtained by a twist F based on the Lie algebra Ξ𝑡 of vector fields
tangent to all the 𝑀𝑐, the twist star product on 𝑀 makes the diagram (3) commute. If F is even
based on vector fields in Ξ𝑡 that are Killing2 for a given (pseudo)Riemannian metric on R𝑛, the
twist deformation extends to the level of (pseudo)Riemannian geometry so that quantization and
submanifold projection commute. Furthermore, in the case of quadrics 𝑀 embedded in R𝑛, we give
explicit descriptions of both star product algebras A★, B★, as well as of the corresponding twisted
vector fields and differential forms, via twisted generators and relations. Examples of codimension
2 twisted submanifold will appear in [20]. Note that the presented procedure is a global approach,
i.e. we consider the algebra of global functions or bimodules of global sections of a bundle and
deform them as such. One way to take locality into account is given by the sheaf-theoretic approach
to NC calculi on subalgebras proposed in [4].

The proceeding is organized as follows. In Chapter 2 we recall the notions of Hopf ∗-algebras
and their representations (Section 2.1), of their twist deformations (Section 2.2), of twisted Cartan
calculus (Section 2.3) and Riemannian geometry (Section 2.4). The first part of Chapter 3 concerns

2This restriction might be relaxed by adopting the more general framework recently introduced in [1].
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the twist deformation of submanifolds of R𝑛, as discussed above; in Section 3.2 we present an
explicit treatment of twisted quadrics of R3, focusing on the family of hyperboloids and cone,
especially the circular ones in R3 endowed with Minkowski metric.

2. Twisted Riemannian geometry

2.1 Hopf ∗-algebras and their representations

In the followingK denotes the field or real numbers or the field of complex numbers. Fix a Hopf
∗-algebra (𝐻,Δ, 𝜖 , 𝑆, ∗) with coproduct Δ : 𝐻 → 𝐻 ⊗ 𝐻, counit 𝜖 : 𝐻 → K, antipode 𝑆 : 𝐻 → 𝐻

and ∗-involution ∗ : 𝐻 → 𝐻. The latter is an antilinear, involutive, anti-algebra map satisfying

(∗ ⊗ ∗) ◦ Δ = Δ ◦ ∗, 𝜖 ◦ ∗ = ◦ 𝜖, 𝑆 ◦ ∗ ◦ 𝑆 ◦ ∗ = id𝐻 , (4)

where : 𝐻 → 𝐻 denotes the complex conjugation. The main class of examples we are interested
in is that of the universal enveloping algebra𝑈g of a ∗-Lie algebra g. Here (g, [·, ·]) is a Lie algebra
together with an antilinear, involutive map ∗ : g → g such that [𝑥, 𝑦]∗ = [𝑦∗, 𝑥∗] for all 𝑥, 𝑦 ∈ g.
After extension as an anti-algebra homomorphism ∗ constitutes a ∗-involution on 𝑈g, compatible
with the usual coproduct, counit and antipode on 𝑈g, which are determined on primitive elements
𝑥 ∈ g via

Δ(𝑥) = 𝑥 ⊗ 1 + 1 ⊗ 𝑥, 𝜖 (𝑥) = 0, 𝑆(𝑥) = −𝑥. (5)

The representation theory of a Hopf ∗-algebra concerns 𝐻-∗-modules, namely left 𝐻-modules
(M,▷) together with a ∗-involution on M, denoted by the same symbol for simplicity, such that

(ℎ ▷ 𝑠)∗ = 𝑆(ℎ)∗ ▷ 𝑠∗ (6)

for all ℎ ∈ 𝐻 and 𝑠 ∈ M. Morphisms of left 𝐻-∗-modules are left 𝐻-module morphisms that
intertwine the ∗-involutions. A left 𝐻-module ∗-algebra is a ∗-algebra A endowed with a left
𝐻-∗-module structure ▷ : 𝐻 ⊗ A → A such that for all 𝑎, 𝑏 ∈ A and ℎ ∈ 𝐻

ℎ ▷ (𝑎𝑏) = (ℎ (1) ▷ 𝑎) (ℎ (2) ▷ 𝑏), ℎ ▷ 1A = 𝜖 (ℎ)1A , (7)

where we utilize Sweedler’s summation Δ(ℎ) =: ℎ (1) ⊗ ℎ (2) . For a left 𝐻-module ∗-algebra
(A, ∗,▷) we call an A-bimodule M an 𝐻-equivariant A-∗-bimodule if M is a left 𝐻-∗-module
such that

ℎ ▷ (𝑎 · 𝑠 · 𝑏) = (ℎ (1) ▷ 𝑎) · (ℎ (2) ▷ 𝑠) · (ℎ (3) ▷ 𝑏), (𝑎 · 𝑠 · 𝑏)∗ = 𝑏∗ · 𝑠∗ · 𝑎∗ (8)

for all ℎ ∈ 𝐻, 𝑎, 𝑏 ∈ A and 𝑠 ∈ M. By a slight abuse of notation we denoted the left 𝐻-module
action and ∗-involution on M the same way as for A, while we used · for the left and right module
action of A on M. The notions of left 𝐻-∗-module, left 𝐻-module ∗-algebra and 𝐻-equivariant
A-∗-bimodule extend to N0-graded vector spaces by demanding the corresponding actions and
∗-involutions to be graded maps.

If 𝐻 is cocommutative, i.e. Δop = Δ, the category of left 𝐻-∗-modules admits a symmetric
monoidal structure, where we endow the tensor product M ⊗ N of two left 𝐻-∗-modules M,N
with the left 𝐻-action and ∗-involution

ℎ ▷ (𝑠 ⊗ 𝑡) := (ℎ (1) ▷ 𝑠) ⊗ (ℎ (2) ▷ 𝑡), (𝑠 ⊗ 𝑡)∗ := 𝑠∗ ⊗ 𝑡∗ (9)

4
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defined for all ℎ ∈ 𝐻, 𝑠 ∈ M and 𝑡 ∈ N . The isomorphism 𝜏 : M ⊗ N → N ⊗ M defined by
𝜏(𝑠 ⊗ 𝑡) = 𝑡 ⊗ 𝑠, is the corresponding symmetric braiding.

In case A is a commutative left 𝐻-module ∗-algebra for 𝐻 cocommutative we structure the
category of symmetric 𝐻-equivariant A-∗-bimodules as a symmetric monoidal category using the
tensor product ⊗A . Let M,N be such symmetric 𝐻-equivariant A-∗-bimodules. Here, symmetric
means that 𝑎 · 𝑠 = 𝑠 · 𝑎 for all 𝑎 ∈ A and 𝑠 ∈ M. The left 𝐻-module action and ∗-involution on
M ⊗A N are induced from (9) and again the braiding is given by the tensor flip.

For anyK-vector space𝑉 the formal power series𝑉 [[𝜈]] in a formal parameter 𝜈 are aK[[𝜈]]-
module and we can extend anyK-linear map 𝑓 : 𝑉 → 𝑊 to aK[[𝜈]]-linear map𝑉 [[𝜈]] → 𝑊 [[𝜈]],
denoted by the same symbol 𝑓 . As a consequence any Hopf ∗-algebra 𝐻 over K can be extended to
a Hopf ∗-algebra 𝐻 [[𝜈]] over K[[𝜈]], where we have to employ the completed tensor product in
the 𝜈-adic topology.

2.2 Drinfel’d twists and twisted representations

Fix a Hopf ∗-algebra𝐻. A (Drinfel’d) twist on𝐻 is an elementF = 1⊗1+O(𝜈) ∈ (𝐻⊗𝐻) [[𝜈]]
satisfying 2-cocycle and normalization condition

(F ⊗ 1) (Δ ⊗ id) (F ) =(1 ⊗ F )(id ⊗ Δ) (F ),
(𝜖 ⊗ id) (F ) =1 = (id ⊗ 𝜖) (F ).

(10)

We frequently use leg notation F = F1 ⊗ F2 and similarly F = F 1 ⊗ F 2 for the inverse F of
F . If several copies of F or its inverse appear we write F = F 1′ ⊗ F 2′ for the second copy, et
cetera, to distinguish the different summations. For any twist we define 𝛽 := F1𝑆(F2) ∈ 𝐻 [[𝜈]]
and 𝛽−1 := 𝑆(F 1)F 2 ∈ 𝐻 [[𝜈]]. One can show that 𝛽−1 is in fact the inverse of 𝛽. A twist F is
said to be

• real if F ∗
1 ⊗ F ∗

2 = 𝑆(F2) ⊗ 𝑆(F1) [3] and

• unitary if F ∗
1 ⊗ F ∗

2 = F 1 ⊗ F 2 [17] .

Assume that the Hopf ∗-algebra 𝐻 is cocommutative. Consider a commutative left 𝐻-module
∗-algebra A and a symmetric 𝐻-equivariant A-∗-bimodule M. In the following we deform the
given data using a real or unitary twist F on 𝐻. First we construct the twisted Hopf algebra 𝐻F as
the algebra 𝐻 [[𝜈]] with extended counit, but coproduct and antipode given by

ΔF (ℎ) := FΔ(ℎ)F and 𝑆F (ℎ) := 𝛽𝑆(ℎ)𝛽−1 (11)

for all ℎ ∈ 𝐻. If F is real the Hopf algebra 𝐻F becomes a Hopf ∗-algebra with respect to the
∗-involution ℎ∗F = 𝛽ℎ∗𝛽−1 for all ℎ ∈ 𝐻F . For a unitary twist 𝐻F is a Hopf ∗-algebra with respect
to the undeformed ∗-involution.

The twist deformation A★ of A is theK[[𝜈]]-module A[[𝜈]] endowed with the same unit and
deformed product 𝑎 ★ 𝑏 := (F 1 ▷ 𝑎) (F 2 ▷ 𝑏) for all 𝑎, 𝑏 ∈ A★. It is a left 𝐻F-module algebra, i.e.

ℎ ▷ (𝑎 ★ 𝑏) = (ℎ (̂1) ▷ 𝑎) ★ (ℎ (̂2) ▷ 𝑏), (12)

5
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where we denoted the twisted product by ΔF (ℎ) =: ℎ (̂1) ⊗ ℎ (̂2) . In addition, A★ is twisted
commutative, i.e. 𝑏 ★ 𝑎 = (R1 ▷ 𝑎) ★ (R2 ▷ 𝑏), where R = R1 ⊗ R2 is the inverse of the braiding
R := R1 ⊗ R2 := F2F 1′ ⊗ F1F 2′ ∈ 𝐻F ⊗ 𝐻F . If A is N0-graded and graded-commutative, i.e.
𝑎𝑏 = (−1) |𝑎 | · |𝑏 |𝑏𝑎, where |𝑎 |, |𝑏 | denote the degrees of 𝑎, 𝑏 ∈ A, then A★ is twisted graded-
commutative, i.e. 𝑏★𝑎 = (−1) |𝑎 | · |𝑏 | (R1 ▷ 𝑎)★ (R2 ▷ 𝑏) for all 𝑎, 𝑏 ∈ A★. The braiding R satisfies
R2 ⊗ R1 = R and the hexagon equations

(ΔF ⊗ id) (R) = R1 ⊗ R1′ ⊗ R2R2′ and (id ⊗ ΔF) (R) = R1R1′ ⊗ R2′ ⊗ R2. (13)

For real twists R∗F
1 ⊗ R∗F

2 = R, while for unitary twists R∗
1 ⊗ R∗

2 = R. If F is real then A★ is a
left 𝐻F-module ∗-algebra with respect to the undeformed ∗-involution (while we have to twist the
∗-involution of 𝐻F). On the other hand, if F is unitary (i.e. the ∗-involution of 𝐻F is undeformed)
A★ becomes a left 𝐻F-module ∗-algebra via 𝑎∗★ := 𝑆(𝛽) ▷ 𝑎∗ for all 𝑎 ∈ A★.

Similarly, the twist deformation M★ of M is described as theK[[𝜈]]-module M[[𝜈]] together
with the A★-module actions

𝑎 ★ 𝑠 := (F 1 ▷ 𝑎) · (F 2 ▷ 𝑠) and 𝑠 ★ 𝑎 := (F 1 ▷ 𝑠) (F 2 ▷ 𝑎) (14)

for all 𝑎 ∈ A★ and 𝑠 ∈ M[[𝜈]]. Together with the K[[𝜈]]-linearly extended left 𝐻F-action M★ is
an 𝐻★-equivariant A★-bimodule. Furthermore, it is twisted symmetric, i.e.

𝑠 ★ 𝑎 = (R1 ▷ 𝑎) ★ (R2 ▷ 𝑠) (15)

for all 𝑠 ∈ M★ and 𝑎 ∈ A★. If F is real then M★ is an 𝐻F-equivariant A★-∗-bimodule with
respect to the undeformed ∗-involution, while if F is unitary M★ becomes an 𝐻F-equivariant
A★-∗-bimodule via 𝑠∗★ := 𝑆(𝛽) ▷ 𝑠∗ for all 𝑠 ∈ M★.

For two left 𝐻-modulesM,N the twisted tensor product M★⊗★N★ is given by (M⊗N)[[𝜈]],
where 𝑠 ⊗★ 𝑡 := (F 1 ▷ 𝑠) ⊗ (F 2 ▷ 𝑡) for all 𝑠 ∈ M and 𝑡 ∈ N . It follows that M★ ⊗★ N★ is a left
𝐻F-module and one can show that the left 𝐻F-module isomorphism

𝜎M,N : M★ ⊗★ N★ ∋ (𝑠 ⊗★ 𝑡) ↦→ (R1 ▷ 𝑡) ⊗★ (R2 ▷ 𝑠) ∈ N★ ⊗★ M★ (16)

determines a symmetric braiding on the monoidal category of twisted left 𝐻-modules. If F is real
(respectively unitary) we structure M★ ⊗★ N★ as a left 𝐻F-∗-module via

(𝑠 ⊗★ 𝑡)∗ = (R1 ▷ 𝑠∗) ⊗★ (R2 ▷ 𝑡
∗), respectively (𝑠 ⊗★ 𝑡)∗★ = (R1 ▷ 𝑠∗★) ⊗★ (R2 ▷ 𝑡

∗★). (17)

Similar results hold for symmetric 𝐻-equivariant A-bimodules M,N , using M★ ⊗A★
N★.

One can complete [3, 22] the 𝐻F-module algebra (𝐻 [[𝜈]], ★) itself into a triangular Hopf algebra
𝐻★= (𝐻 [[𝜈]], ★,Δ★, 𝜖 , 𝑆★,R★) isomorphic to 𝐻F = (𝐻 [[𝜈]], ·,ΔF , 𝜖 , 𝑆F ,R) (cf. also [14, 15, 17]).

Examples of unitary twists on 𝑈g for a ∗-Lie algebra g are

• abelian twists F = exp(i𝜈𝑃), where 𝑃 = 1
2
∑

𝑖 (𝑒𝑖 ⊗ 𝑓𝑖− 𝑓𝑖 ⊗ 𝑒𝑖) [29] is a finite sum of pairwise
commuting (anti-)Hermitian elements 𝑒𝑖 , 𝑓𝑖 ∈ g and

• Jordanian twists F = exp
( 1

2𝐻 ⊗ log(1 + i𝜈𝐸)
)

[28], where 𝐻, 𝐸 ∈ g are anti-Hermitian
elements such that [𝐻, 𝐸] = 2𝐸 .

The abelian twist is real, in addition.

6
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2.3 Twisted Cartan calculus

Let us substantiate the previous twist deformation procedure via the concrete example of the
tensor algebra of a smooth manifold 𝑀 . For the rest of the article we operate in this framework.
The algebra X := C∞(𝑀) of smooth K-valued functions on 𝑀 is a commutative ∗-algebra with
respect to the pointwise product and the ∗-involution 𝑓 ∗(𝑝) := 𝑓 (𝑝), where 𝑓 ∈ X and 𝑝 ∈ 𝑀 ,
given by complex conjugation. Vector fields Ξ := Γ∞(𝑇𝑀) on 𝑀 form a Lie ∗-algebra with respect
to the ∗-involution L𝑋∗ 𝑓 := −(L𝑋 𝑓 ∗)∗ for all 𝑓 ∈ X, where L𝑋 denotes the Lie derivative of
𝑋 ∈ Ξ. This amplifies to the Hopf ∗-algebra 𝐻 := 𝑈Ξ, the latter acting on X via the Lie derivative,
structuring X as a commutative left 𝐻-module ∗-algebra. More in general, the tensor algebra
T :=

⊕
𝑝,𝑟∈N0

T 𝑝,𝑟 , where

T 𝑝,𝑟 := Ω ⊗X . . . ⊗X Ω︸             ︷︷             ︸
𝑝-times

⊗X Ξ ⊗X . . . ⊗X Ξ︸            ︷︷            ︸
𝑟-times

(18)

andΩ := Γ∞(𝑇∗𝑀), is a symmetric 𝐻-equivariantX-∗-bimodule. TheΞ-action on T 𝑝,𝑟 is obtained
by the Lie derivative

𝑋 ▷ (𝜔1⊗X . . . ⊗X 𝜔𝑝 ⊗X 𝑌1 ⊗X . . . ⊗X 𝑌𝑟 )
=L𝑋(1)𝜔1 ⊗X . . . ⊗X L𝑋(𝑝)𝜔𝑝 ⊗X L𝑋(𝑝+1)𝑌1 ⊗X . . . ⊗X L𝑋(𝑝+𝑟 )𝑌𝑟 ,

(19)

where 𝜔1, . . . , 𝜔𝑝 ∈ Ω, 𝑋,𝑌1, . . . , 𝑌𝑟 ∈ Ξ and L𝑋𝜔𝑖 = (i𝑋 ◦ d + d ◦ i𝑋)𝜔𝑖 , L𝑋𝑌𝑖 = [𝑋,𝑌𝑖]. We
extend (19) as an 𝑈Ξ-action by L𝑋𝑌 = L𝑋L𝑌 and L1K = id for all 𝑋,𝑌 ∈ Ξ.

A unitary or real twist F on 𝐻 induces a twisted commutative left 𝐻F-module ∗-algebra X★

and a twisted symmetric 𝐻F-equivariant X★-∗-bimodule T★ according to the previous section. In
more detail, T★ =

⊕
𝑝,𝑟∈N0

T 𝑝,𝑟
★ is defined by

T 𝑝,𝑟
★ := Ω★ ⊗X★

. . . ⊗X★
Ω★︸                   ︷︷                   ︸

𝑝-times

⊗X★
Ξ★ ⊗X★

. . . ⊗X★
Ξ★︸                  ︷︷                  ︸

𝑟-times

(20)

and the 𝐻F-action is given by (19), where we replace Δ by ΔF . Above, Ω★ denotes the X★-
bimodule of twisted 1-forms, i.e. Ω★ = Ω[[𝜈]] as K[[𝜈]]-modules and we endow the former
with the X★-actions 𝑓 ★ 𝜔 = (F 1 ▷ 𝑓 ) · (F 2 ▷ 𝜔) and 𝜔 ★ 𝑓 = (F 1 ▷ 𝜔) · (F 2 ▷ 𝑓 ) for all
𝑓 ∈ X★ and 𝜔 ∈ Ω★. Similarly Ξ is structured as an X★-bimodule and all the bimodules are twisted
symmetric. We understand the tensor product ⊗X★

with respect to this X★-bimodule structure, i.e.
(𝑇1★ 𝑓 )⊗X★

𝑇2 = 𝑇1⊗X★
( 𝑓 ★𝑇2) for all 𝑓 ∈ X★ and𝑇1, 𝑇2 ∈ T★. The dual pairing ⟨·, ·⟩ : Ξ⊗XΩ → X

deforms into an X★-bilinear operation

⟨·, ·⟩★ := ⟨·, ·⟩ ◦ F▷ : Ξ★ ⊗X★
Ω★ → X★. (21)

We choose ★-dual frames {𝑒𝑖} ⊂ Ξ★ and {𝜃𝑖} ⊂ Ω★, i.e. ⟨𝑒𝑖 , 𝜃 𝑗⟩★ = 𝛿
𝑗

𝑖
c.f. [3]. Employing the

twisted Lie derivative LF
𝜉
𝑇 := LF1▷𝜉

(F 2 ▷ 𝑇) for all 𝜉 ∈ 𝐻F and 𝑇 ∈ T★ we obtain a deformed
action of 𝐻F on T★. In particular, Ξ★ becomes a twisted Lie algebra via

[𝑋,𝑌 ]★ := LF
𝑋
𝑌 = [F 1 ▷ 𝑋, F 2 ▷ 𝑌 ] = 𝑋 ★𝑌 − (R1 ▷ 𝑌 ) ★ (R2 ▷ 𝑋), (22)

i.e. [𝑌, 𝑋]★ = −[R1 ▷ 𝑋,R2 ▷ 𝑌 ]★ and [𝑋, [𝑌, 𝑍]★]★ = [[𝑋,𝑌 ]★, 𝑍]★ + [R1 ▷ 𝑌, [R2 ▷ 𝑋, 𝑍]★]★
for all 𝑋,𝑌, 𝑍 ∈ Ξ★. The entirety of those structures is referred to as the twisted Cartan calculus,
see [3, 30] for more information.
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2.4 Twisted Riemannian geometry

The process of twist deformation turns out to be functorial, i.e. module morphisms extend to
morphisms of the twisted modules. As an instance of this fact let us consider twisted covariant
derivatives [2] onX★. Those are leftX★-linear maps ∇F : Ξ★⊗K[ [𝜈 ] ]T★ → T★ which are compatible
with the ⊗X★

tensor product structure in the sense that

∇F
𝑋
(𝑇1 ⊗X★

𝑇2) = [R1▷∇F
R2′▷𝑋

(R2′′ ▷𝑇1)] ⊗X★
[(R2R1′R1′′)▷𝑇2] + (R1▷𝑇1) ⊗X★

∇F
R2▷𝑋

𝑇2 (23)

for all 𝑋 ∈ Ξ★ and 𝑇1, 𝑇2 ∈ T★. We further require that ∇F
𝑋
𝑓 = LF

𝑋
𝑓 and

∇F
𝑋
⟨𝑌, 𝜔⟩★ = ⟨R1 ▷ ∇F

R2′▷𝑋
(R2′′ ▷ 𝑌 ), (R2R1′R1′′) ▷ 𝜔⟩★ + ⟨R1 ▷ 𝑌,∇F

R2▷𝑋
𝜔⟩★ (24)

for all 𝑋,𝑌 ∈ Ξ★, 𝜔 ∈ Ω★ and 𝑓 ∈ X★, meaning that ∇F should respect the underlying twisted
Cartan calculus. We define torsion and curvature of a twisted covariant derivative as the left
X★-linear maps TF

★ : Ξ★ ⊗X★
Ξ★ → Ξ★ and RF

★ : Ξ★ ⊗X★
Ξ★ ⊗X★

Ξ★ → Ξ★ such that

TF
★ (𝑋,𝑌 ) :=∇F

𝑋
𝑌 − ∇F

R1▷𝑌
(R2 ▷ 𝑋) − [𝑋,𝑌 ]★,

RF
★ (𝑋,𝑌, 𝑍) :=∇F

𝑋
∇F
𝑌
𝑍 − ∇F

R1▷𝑌
∇F
R2▷𝑋

𝑍 − ∇F
[𝑋,𝑌 ]★𝑍

(25)

for all 𝑋,𝑌, 𝑍 ∈ Ξ★. One proves that TF
★ (𝑋,𝑌 ) = −TF

★ (R1 ▷ 𝑌,R2 ▷ 𝑋) and RF
★ (𝑋,𝑌, 𝑍) =

−RF
★ (R1 ▷ 𝑌,R2 ▷ 𝑋, 𝑍). In other words, torsion and curvature are completely determined by

elements TF ∈ Ω2
★ ⊗X★

Ξ★ and RF ∈ Ω★ ⊗X★
Ω2
★ ⊗X★

Ξ★ with

T F
★ (𝑋,𝑌 ) = ⟨𝑋 ⊗X★

𝑌,TF⟩★, RF
★ (𝑋,𝑌, 𝑍) = ⟨𝑋 ⊗X★

𝑌 ⊗X★
𝑍,RF⟩★ (26)

for all 𝑋,𝑌, 𝑍 ∈ Ξ★. A metric is a left X★-linear non-degenerate map g★ : Ξ★ ⊗X★
Ξ★ → X★ such

that g★(𝑌, 𝑋) = g★(R1▷ 𝑋,R2▷𝑌 ) for all 𝑋,𝑌 ∈ Ξ★. Each metric g★ induces a braided-symmetric
tensor g = g𝑎 ⊗X g𝑎 = g𝐴 ⊗X★

g𝐴 ∈ Ω★ ⊗X★
Ω★ by

g★(𝑋,𝑌 ) = ⟨𝑋 ★ ⟨𝑌, g𝐴⟩★, g𝐴⟩★. (27)

A twisted covariant derivative ∇F is said to be Levi-Civita with respect to a metric g★ if ∇Fg = 0
and TF

★ = 0. As in the classical setting we define the Ricci tensor as the contraction RicF★ (𝑋,𝑌 ) :=
⟨𝜃𝑖 ,RF

★ (𝑒𝑖 , 𝑋,𝑌 )⟩′★, where ⟨𝜔, 𝑋⟩′★ := ⟨R1 ▷ 𝑋,R2 ▷ 𝜔⟩★ for all 𝑋,𝑌 ∈ Ξ★ and 𝜔 ∈ Ω★. Note that
RicF★ is independent of the choice of dual ★-frames {𝑒𝑖}, {𝜃𝑖}.

We recall from [19] how to twist deform a classical covariant derivative ∇ : Ξ ⊗K Ξ → Ξ into
a twisted covariant derivative. First consider the following Lie subalgebra

e := {𝑍 ∈ Ξ | L𝑍∇𝑋𝑌 = ∇[𝑍,𝑋]𝑌 + ∇𝑋 [𝑍,𝑌 ] for all 𝑋,𝑌 ∈ Ξ} (28)

of Ξ, called the equivariance Lie algebra of ∇. It follows that 𝜉 ▷ ∇𝑋𝑌 = ∇𝜉(1)▷𝑋 (𝜉 (2) ▷ 𝑌 ) for all
𝜉 ∈ 𝑈e and 𝑋,𝑌 ∈ Ξ. Consider a twist F on 𝑈e. Then, according to [19] Proposition 2, the twist
deformation

∇F
𝑋
𝑌 := ∇F1▷𝑋

(F 2 ▷ 𝑌 ), 𝑋,𝑌 ∈ Ξ★ (29)

8
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extends to a twisted covariant derivative ∇F : Ξ★ ⊗K[ [𝜈 ] ] T★ → T★ on X★. Moreover, ∇F is 𝑈eF-
equivariant, i.e. 𝜉 ▷ ∇F

𝑋
𝑇 = ∇F

𝜉(̂1)▷𝑋
(𝜉 (̂2) ▷ 𝑇) and the compatibility conditions (23) and (24)

simplify to the expressions

∇F
𝑋
(𝑇1 ⊗X★

𝑇2) =∇F
𝑋
𝑇1 ⊗X★

𝑇2 + (R1 ▷ 𝑇1) ⊗X★
∇F
R2▷𝑋

𝑇2,

∇F
𝑋
⟨𝑌, 𝜔⟩★ =⟨∇F

𝑋
𝑌, 𝜔⟩★ + ⟨R1 ▷ 𝑌,∇F

R2▷𝑋
𝜔⟩★

(30)

for all 𝜉 ∈ 𝑈e, 𝑋,𝑌 ∈ Ξ★,𝑇,𝑇1, 𝑇2 ∈ T★ and𝜔 ∈ Ω★. For a classical (pseudo-)Riemannian manifold
(𝑀, g) with Levi-Civita covariant derivative ∇ : Ξ ⊗K Ξ → Ξ a further specification is obtained via
the Lie algebra of Killing vector fields k ⊆ e ⊆ Ξ, defined by

k := {𝑍 ∈ Ξ | L𝑍g(𝑋,𝑌 ) = g( [𝑍, 𝑋], 𝑌 ) + g(𝑋, [𝑍,𝑌 ]) for all 𝑋,𝑌 ∈ Ξ}. (31)

In Proposition 3 of [19] it is proven that for a twist F on 𝑈k the X★-bilinear metric (27) reduces
to g★(𝑋,𝑌 ) = g(F 1 ▷ 𝑋, F 2 ▷ 𝑌 ), and the twist deformation (29) of the Levi-Civita connection ∇
of (𝑀, g) is the unique twisted Levi-Civita covariant derivative for the g★. The curvature RF of
∇F is undeformed. Summarizing, in order to provide twist deformations of (Levi-Civita) covariant
derivatives we have to determine Drinfel’d twists based on the Lie algebra of (Killing) equivariant
vector fields.

3. Twist deformation of smooth submanifolds of R𝑛

In this section we examine twisted differential geometry on a codimension 𝑘 submanifold 𝑀

of the type (1). Actually, the same constructions with the same twist hold for each submanifold
𝑀𝑐 := 𝑓 −1

𝑐 ({0}) in the 𝑘-parameter family introduced there. We write X := C∞(D 𝑓 ) and

X𝑀𝑐 := X/C𝑐 = {[𝑔] := 𝑔 + C𝑐 | 𝑔 ∈ X}, (32)

whereC𝑐 ⊆ X denotes the ideal of smooth functions vanishing on 𝑀𝑐. It is proven in [19] Theorem 1
that C𝑐 =

⊕𝑘

𝑎=1 X · 𝑓 𝑎𝑐 =
⊕𝑘

𝑎=1 𝑓 𝑎𝑐 · X, i.e. C𝑐 is spanned by the components of 𝑓𝑐. A similar
result (Theorem 1 in [18]) holds in the setting of algebraic submanifolds of R𝑛, i.e. if the 𝑓 𝑎 (𝑥)
are polynomial functions and we define X as the algebra of polynomial functions on R𝑛. The Lie
algebra of vector fields on D 𝑓 is denoted by Ξ := {𝑋 𝑖𝜕𝑖 | 𝑋 𝑖 ∈ X}, where we abbreviate 𝜕𝑖 =

𝜕
𝜕𝑥𝑖

.
There are two Lie subalgebras and X-sub-bimodules ΞCC𝑐 ⊆ ΞC𝑐 ⊆ Ξ, defined by

ΞC𝑐 := {𝑋 ∈ Ξ | 𝑋 (C𝑐) ⊆ C𝑐} and ΞCC𝑐 := {𝑋 ∈ Ξ | 𝑋 (X) ⊆ C𝑐}, (33)

respectively. Furthermore ΞCC𝑐 =
⊕𝑘

𝑎=1 𝑓 𝑎𝑐 · Ξ is a Lie ideal in ΞC𝑐 and thus the quotient Lie
algebra

Ξ𝑀𝑐 := ΞC𝑐/ΞCC𝑐 := {[𝑋] := 𝑋 + ΞCC𝑐 | 𝑋 ∈ ΞC𝑐 } (34)

is an X𝑀𝑐 -bimodule, identified with the vector fields on 𝑀𝑐. In case 𝑐 = 0 we suppress the index
and simply write X𝑀 , Ξ𝑀 , et cetera. We further define

Ξ𝑡 := {𝑋 ∈ Ξ | 𝑋 ( 𝑓 𝑎) = 0 for all 𝑎 = 1, . . . , 𝑘} (35)

9
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the Lie subalgebra and X-sub-bimodule of vector fields that are tangent not only to 𝑀 , but to all
submanifolds 𝑀𝑐 (in fact 𝑋 ( 𝑓 𝑎𝑐 ) = 0 for all 𝑋 ∈ Ξ𝑡 and 𝑐 ∈ 𝑓 (D 𝑓 )). By Proposition 6 in [19],
each element [𝑋] ∈ Ξ𝑀𝑐 contains a representative 𝑋𝑡 ∈ Ξ𝑡 , the tangential projection of 𝑋 . The
requirement that the algebras in both vertical columns of (3) are isomorphic as K[[𝜈]]-modules
- i.e. the basic requirement of deformation quantization applied to both the algebra of functions
on R𝑛 and that on 𝑀 - and the commutativity of the diagram (3) can be satisfied if the Drinfel’d
twist F is based on 𝑈Ξ𝑡 , i.e if Ξ𝑡 replaces Ξ in (2); as a bonus, the same holds for all other
𝑀𝑐. In fact, then 𝛼 ★ 𝑓 𝑎 = 𝛼 𝑓 𝑎 = 𝑓 𝑎 ★ 𝛼 for all 𝛼 ∈ X and 𝑎 = 1, .., 𝑘 , implying that also
C★, C[[𝜈]] are isomorphic as K[[𝜈]]-modules3. (On the contrary, using a twist based on 𝑈Ξ𝑀

would only lead to 𝛼 ★ 𝑓 𝑎 −𝛼 𝑓 𝑎 ∈ C, 𝑓 𝑎 ★ 𝛼− 𝑓 𝑎𝛼 ∈ C, which is not sufficient to obtain
the same results.) Adopting a twist F based on 𝑈Ξ𝑡 , we obtain deformations of all previously
defined spaces. Namely, ΞCC𝑐★ ⊆ ΞC𝑐★ ⊆ Ξ★ and Ξ𝑡 ,★ are ★-Lie algebras and 𝑈ΞF

𝑡 -equivariant
X★-bimodules, while Ξ

𝑀𝑐

★ is a ★-Lie algebra and an 𝑈ΞF
𝑡 -equivariant X𝑀𝑐

★ -bimodule. There is an
isomorphism Ξ

𝑀𝑐

★ � ΞC𝑐★/ΞCC𝑐★ of K[[𝜈]]-modules, i.e. deforming commutes with taking the
submanifold quotient (c.f. [19] Proposition 9). As described in the previous section, we obtain the
𝑈ΞF

𝑡 -equivariant X★-bimodule Ω★ and the 𝑈ΞF
𝑡 -equivariant X𝑀𝑐

★ -bimodule Ω𝑀𝑐★, ★-dual to Ξ★

and Ξ𝑀𝑐★, respectively. Moreover, the ★-orthogonal module corresponding to tangent vector fields
is the 𝑈ΞF

𝑡 -equivariant X★-sub-bimodule Ω⊥★ ⊆ Ω★ defined by

Ω⊥★ := {𝜔 ∈ Ω★ | ⟨Ξ𝑡★, 𝜔⟩★ = 0}, (36)

which is characterized by Ω⊥★ =
⊕𝑘

𝑎=1 X★★ d 𝑓 𝑎 =
⊕𝑘

𝑎=1 d 𝑓 𝑎 ★X★.
Given a (pseudo-)Riemannian metric g = g𝛼 ⊗ g𝛼 ∈ Ω ⊗X Ω on D 𝑓 (by definition g is

non-degenerate and flip-symmetric) we can further consider the g-orthogonal spaces

Ξ⊥ := {𝑋 ∈ Ξ | g(𝑋,Ξ𝑡 ) = 0} and Ω𝑡 := {𝜔 ∈ Ω | g−1(𝜔,Ω⊥) = 0}, (37)

where g−1 = g−1𝛼 ⊗ g−1
𝛼 ∈ Ξ ⊗X Ξ is the inverse metric and Ω⊥ denotes the classical limit of

(36). There is a maximal open subset D′
𝑓
⊆ D 𝑓 such that g−1

⊥ := g−1 : Ω⊥ ⊗X Ω⊥ → X is
non-degenerate. Note that D′

𝑓
= D 𝑓 if g is Riemannian. If in the following D′

𝑓
≠ D 𝑓 we restrict

all involved submanifolds to 𝑀𝑐 ⊆ D′
𝑓
, so we can assume D′

𝑓
= D 𝑓 . For a twist F on 𝑈Ξ𝑡 the

deformations of (37) read

Ξ⊥★ := {𝑋 ∈ Ξ★ | g★(𝑋,Ξ𝑡★) = 0} and Ω𝑡 ,★ := {𝜔 ∈ Ω★ | g−1
★ (𝜔,Ω⊥★) = 0}. (38)

According to [19] Proposition 10 we obtain a convenient direct sum decomposition in case F is a
twist based on Killing vector fields 𝑈k: as X★-bimodules

Ξ★ � Ξ𝑡★ ⊕ Ξ⊥★ and Ω★ � Ω𝑡★ ⊕ Ω⊥★ (39)

with ⟨Ξ⊥★,Ω𝑡★⟩★ = {0}, Ξ𝑡★,Ω⊥★,Ξ⊥★,Ω𝑡★ coincide with Ξ𝑡 [[𝜈]],Ω⊥ [[𝜈]],Ξ⊥ [[𝜈]],Ω𝑡 [[𝜈]] as
K[[𝜈]]-modules. Similarly for ★-tensor (and ★-wedge) powers. The projections pr𝑡★ : Ξ★ → Ξ𝑡★,

3In fact, then all 𝛾 ≡ ∑𝑘
𝑎=1 𝑓 𝑎𝛾𝑎 ∈ C (𝛾𝑎 ∈ X) can be written also in the form 𝛾 =

∑𝑘
𝑎=1 𝑓 𝑎 ★ 𝛾𝑎 , so that for all

𝛼 ∈ X, by the associativity of ★, 𝛾 ★𝛼 = (∑𝑘
𝑎=1 𝑓 𝑎 ★ 𝛾𝑎) ★𝛼 =

∑𝑘
𝑎=1 𝑓 𝑎 ★ (𝛾𝑎 ★𝛼) = ∑𝑘

𝑎=1 𝑓 𝑎 (𝛾𝑎 ★𝛼) ∈ C[[𝜈]], as
claimed; and similarly for 𝛼 ★ 𝛾.

10
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pr⊥★ : Ξ★ → Ξ⊥★, pr𝑡★ : Ω★ → Ω𝑡★, pr⊥★ : Ω★ → Ω⊥★, are 𝑈kF-equivariant maps that K[[𝜈]]-
linearly extend their classical limits pr𝑡 , pr⊥; they are uniquely extended to ★-tensor (and ★-wedge)
powers. Furthermore, Ω𝑡★ = {𝜔 ∈ Ω★ | ⟨Ξ⊥★, 𝜔⟩★ = 0}, and the restrictions g𝑡★, g⊥★, g−1

𝑡★ , g−1
⊥★

of the metric and its inverse to tangent and normal vector fields, respectively 1-form, are non-
degenerate. As a consequence, the first fundamental form

gF
𝑡 := (pr𝑡★ ⊗X★

pr𝑡★) (g) = (pr𝑡 ⊗X pr𝑡 ) (g) = g𝑡 (40)

is undeformed.
We continue to describe the dual picture, namely twisted differential 1-forms on the submani-

folds 𝑀𝑐. There we think of tangent vector fields as vector fields on 𝑀𝑐, so with regard to the direct
sum decomposition (39) the following is natural. Setting ΩC𝑐★ := {𝜔 ∈ Ω★ | ⟨Ξ⊥★, 𝜔⟩ ⊆ C𝑐 [[𝜈]]}
and ΩCC𝑐★ :=

⊕𝑘

𝑎=1 Ω★★ 𝑓 𝑎𝑐 =
⊕𝑘

𝑎=1 𝑓 𝑎𝑐 ★Ω★ we obtain

Ω𝑀𝑐★ = ΩC𝑐★/ΩCC𝑐★ = {[𝜔] = 𝜔 +ΩCC𝑐★ | 𝜔 ∈ ΩC𝑐★}. (41)

It turns out, c.f. [19] Proposition 11, that for every 𝑋 ∈ ΞC𝑐★ and 𝜔 ∈ ΩC𝑐★ we have

pr𝑡★(𝑋) ∈ [𝑋] ∈ Ξ𝑀𝑐★ and pr𝑡★(𝜔) ∈ [𝜔] ∈ Ω𝑀𝑐★. (42)

In other words, for every [𝑋] ∈ Ξ𝑀𝑐★ and [𝜔] ∈ Ω𝑀𝑐★ we can find representatives pr𝑡★(𝑋) and
pr𝑡★(𝜔) in Ξ𝑡★ and Ω𝑡★, respectively.

Consider the Levi-Civita connection ∇ on (D 𝑓 , g). In the following we describe the twisted
Riemannian geometry on the 𝑘-parameter family 𝑀𝑐 of codimension 𝑘 smooth submanifolds. We
already mentioned that for a twist F on 𝑈k the twist deformation ∇F is the twisted Levi-Civita
connection with respect to g★. This induces a twisted second fundamental form

ΠF
★ := pr⊥★ ◦ ∇F |Ξ𝑡★⊗X★Ξ𝑡★

: Ξ𝑡★ ⊗X★
Ξ𝑡★ → Ξ⊥★ (43)

and twisted Levi-Civita connection

∇F
𝑡 := pr𝑡★ ◦ ∇F |Ξ𝑡★⊗K[ [𝜈 ] ]Ξ𝑡★

: Ξ𝑡★ ⊗K[ [𝜈 ] ] Ξ𝑡★ → Ξ𝑡★ (44)

on 𝑀𝑐. It is proven in [19] Proposition 12 that the tensors corresponding to the second fundamental
form, curvature, Ricci tensor and Ricci scalar of ∇F

𝑡 remain undeformed, i.e.

ΠF =Π ∈ (Ω𝑡 ⊗X Ω𝑡 ⊗X Ξ⊥) [[𝜈]],
RicF𝑡 =Ric𝑡 ∈ (Ω ⊗X Ω) [[𝜈]],

RF
𝑡 =R𝑡 ∈ (Ω𝑡 ⊗X Ω2

𝑡 ⊗X Ξ𝑡 ) [[𝜈]],
RF =R ∈ X.

(45)

However, the corresponding linear maps combine via the twisted Gauss equation

g★(RF
★ (𝑋,𝑌, 𝑍),𝑊) =g★(RF

𝑡★(𝑋,𝑌, 𝑍),𝑊) + g★(ΠF
★ (𝑋,R1 ▷ 𝑍),ΠF

★ (R2 ▷ 𝑌,𝑊))
− g★(ΠF

★ (R1 (̂1) ▷ 𝑌,R1 (̂2) ▷ 𝑍),ΠF
★ (R2 ▷ 𝑋,𝑊))

(46)

for all 𝑋,𝑌, 𝑍,𝑊 ∈ Ξ𝑡★, c.f. [19] Proposition 13.
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3.1 Twisted differential calculus on algebraic submanifolds by generators and relations

In this section we describe the twisted differential calculus on algebraic submanifolds 𝑀𝑐 in
terms of generators and relations. We choose the convenient description via the differential calculus
algebra, which allows us to describe functions, differential forms, vector fields and their interaction
simultaneously. The construction is divided into two parts, where we first describe the calculus
algebra on R𝑛 and afterwards quotient by an ideal to achieve the description of the submanifolds.
Denote the Cartesian coordinate functions of R𝑛 by 𝑥𝑖 and further abbreviate 𝜉𝑖 = d𝑥𝑖 , 𝜕𝑖 = 𝜕

𝜕𝑥𝑖
.

The unit function is denoted by 𝑥0 = 1 and 𝜂𝑖 ∈ {𝑥𝑖 , 𝜉𝑖 , 𝜕𝑖} can denote the 𝑖-th coordinate function,
1-form or coordinate vector field. Those are the generators of our constructions and consequently
we focus on the subalgebra X := Pol•(R𝑛) ⊆ C∞(R𝑛) of polynomial functions and vector fields
Ξ := {ℎ𝑖𝜕𝑖 | ℎ𝑖 ∈ Pol•(R𝑛)} with polynomial coefficients in this section. Here and in the following
Latin indices 𝑖, 𝑗 , 𝑘, . . . run over 1, . . . , 𝑛, while Greek indices 𝜇, 𝜈, 𝜌, . . . run over 0, 1, . . . , 𝑛. The
differential calculus algebra of R𝑛 is the associative unital ∗-algebra Q• generated by the Hermitian
elements {𝑥0, 𝑥𝑖 , 𝜉𝑖 , i𝜕𝑖} modulo the relations

𝑥0𝜂𝑖 − 𝜂𝑖 = 𝜂𝑖𝑥0 − 𝜂𝑖 = 0

𝑥𝑖𝑥 𝑗 − 𝑥 𝑗𝑥𝑖 = 0

𝜉𝑖𝑥 𝑗 − 𝑥 𝑗𝜉𝑖 = 0

𝜕𝑖𝜕 𝑗 − 𝜕 𝑗𝜕𝑖 = 0

𝜕𝑖𝜉
𝑗 − 𝜉 𝑗𝜕𝑖 = 0

𝜉𝑖𝜉 𝑗 + 𝜉 𝑗𝜉𝑖 = 0

𝜕𝑖𝑥
𝑗 − 𝑥 𝑗𝜕𝑖 − 𝛿

𝑗

𝑖
𝑥0 = 0.

(47)

For any Lie subalgebra g ⊆ aff (𝑛) (the affine Lie algebra on R𝑛) we obtain a left𝑈g-module algebra
action on Q•, determined by primitive elements 𝑔 ∈ g on generators by

𝑔 ▷ 𝑥0 = 𝜖 (𝑔)𝑥0, 𝑔 ▷ 𝑥𝑖 = 𝑥𝜇𝜏𝜇𝑖 (𝑔), 𝑔 ▷ 𝜉𝑖 = 𝜉 𝑗𝜏 𝑗𝑖 (𝑔), 𝑔 ▷ 𝜕𝑖 = 𝜏𝑖 𝑗 (𝑆(𝑔))𝜕 𝑗 . (48)

The action is well-defined since aff (𝑛) preserves the ideal (47). A basis of Q• is

B := {𝛽 ®𝑝, ®𝑞,®𝑟 := (𝜉1) 𝑝1 . . . (𝜉𝑛) 𝑝𝑛 (𝑥1)𝑞1 . . . (𝑥𝑛)𝑞𝑛𝜕𝑟1
1 . . . 𝜕𝑟𝑛𝑛 | ®𝑝 ∈ {1, 0}𝑛, ®𝑞, ®𝑟 ∈ N𝑛

0 }. (49)

Introducing the total degrees 𝑝 :=
∑𝑛

𝑖=1 𝑝𝑖 , 𝑞 :=
∑𝑛

𝑖=1 𝑞𝑖 and 𝑟 :=
∑𝑛

𝑖=1 𝑟𝑖 we can define gradings ♮, ♯
on Q• compatible with the ∗-algebra structure of the latter by setting ♮(𝛽 ®𝑝, ®𝑞,®𝑟 ) := 𝑝, ♯(𝛽 ®𝑝, ®𝑞,®𝑟 ) :=
𝑞 − 𝑟 on the elements of B. There are three fundamental subalgebras X =

⊕∞
𝑞=0 X𝑞, Λ• =⊕𝑛

𝑝=0 Λ
𝑝, D =

⊕∞
𝑟=0 D𝑟 of Q•, where X𝑞,Λ𝑝,D𝑟 denote the homogeneous polynomials in,

respectively, 𝑥𝑖 , 𝜉𝑖 and 𝜕𝑖 and we set X0 = Λ0 = D0 = C · 𝑥0. Then X =
⊎∞

𝑞=0 X̃𝑞 and
D =

⊎∞
𝑟=0 D̃𝑟 are filtered with respect to the inhomogeneous polynomials X̃𝑞 :=

⊕𝑞

ℎ=0 X
ℎ and

D̃𝑟 :=
⊕𝑟

ℎ=0 Dℎ, respectively. We further define the left 𝑈g-∗-modules Q 𝑝𝑞𝑟 := Λ𝑝X̃𝑞D̃𝑟 with
basis B 𝑝𝑞𝑟 := {𝛽 ®𝑝, ®𝑞,®𝑟 | 𝑝 =

∑𝑛
𝑖=1 𝑝𝑖 ,

∑𝑛
𝑖=1 𝑞𝑖 ≤ 𝑞,

∑𝑛
𝑖=1 𝑟𝑖 ≤ 𝑟}. Then Q• is 𝑝-graded and filtered

by 𝑞 and 𝑟 with decomposition

Q• =
∞⊕
𝑝=0

∞⊎
𝑞=0

∞⊎
𝑟=0

Q 𝑝𝑞𝑟 . (50)

12



P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
0
5

Twisted geometry for submanifolds of R𝑛 Gaetano Fiore

For a real or unitary twist F on 𝑈g it turns out that the left 𝑈gF-module ∗-algebra Q•
★ is again

described in terms of generators and relations, namely

𝑥0 ★ 𝑥𝑖 − 𝑥𝑖 = 𝑥𝑖 ★ 𝑥0 − 𝑥𝑖 = 0

𝑥0 ★ 𝜉𝑖 − 𝜉𝑖 = 𝜉𝑖 ★ 𝑥0 − 𝜉𝑖 = 0

𝑥0 ★ 𝜕′𝑖 − 𝜕′𝑖 = 𝜕′𝑖 ★ 𝑥0 − 𝜕′𝑖 = 0

𝑥𝑖 ★ 𝑥 𝑗 − 𝑥𝜈 ★ 𝑥𝜇𝑅𝜇𝜈
𝑖 𝑗 = 0

𝜉𝑖 ★ 𝑥 𝑗 − 𝑥𝜈 ★ 𝜉ℎ𝑅ℎ𝜈
𝑖 𝑗 = 0

𝜕′𝑖 ★ 𝜕′𝑗 − 𝑅𝜇𝜈
ℎ𝑘𝜕′𝑘 ★ 𝜕′ℎ = 0

𝜕′𝑖 ★ 𝜉 𝑗 − 𝜉 𝑗 ★ 𝜕′𝑖 = 0

𝜉𝑖 ★ 𝜉 𝑗 + 𝜉𝑘 ★ 𝜉ℎ𝑅ℎ𝑘
𝑖 𝑗 = 0

𝜕′𝑖 ★ 𝑥 𝑗 − 𝑅𝜇𝑖
𝑗𝑘𝑥𝜇 ★ 𝜕′𝑘 − 𝛿

𝑗

𝑖
𝑥0 = 0,

(51)

where 𝜕′
𝑖

:= 𝑆(𝛽) ▷ 𝜕𝑖 = 𝜏𝑖 𝑗 (𝛽)𝜕 𝑗 is the ★-dual frame to 𝜉𝑖 = d𝑥𝑖 , transforming via 𝑔 ▷ 𝜕′
𝑖
=

𝜏𝑖 𝑗 (𝑆F (𝑔))𝜕′𝑗 . We further denoted 𝑅𝜇𝜈
𝑖 𝑗 := (𝜏𝜇𝑖 ⊗ 𝜏𝜈 𝑗) (R). Eq. (51) are the analogue of the

relations defining the quantum group equivariant ‘quantum spaces’ introduced in [13] and the
associated differential calculi algebras (see e.g. formulae (1.10-15) in [16]). As in the untwisted
case, Q•

★ is 𝑝-graded and filtered by 𝑞 and 𝑟 with decomposition

Q•
★ =

∞⊕
𝑝=0

∞⊎
𝑞=0

∞⊎
𝑟=0

Q 𝑝𝑞𝑟
★ , (52)

where Q 𝑝𝑞𝑟
★ := Λ

𝑝
★X̃

𝑞
★ D̃𝑟

★ consists of (in)homogeneous ★-polynomials with basis B 𝑝,𝑞,𝑟
★ . The

∗-involution on Q•
★ is undeformed if F is real and in case F is unitary it is defined on generators by

(𝑥0)∗★ := 𝑥0, (𝑥𝑖)∗★ := 𝑥𝜇𝜏𝜇𝑖 (𝑆(𝛽)), (𝜉𝑖)∗★ := 𝜉 𝑗𝜏 𝑗𝑖 (𝑆(𝛽)), (𝜕′𝑖 )∗★ := −𝜏𝑖 𝑗 (𝛽−1)𝜕′𝑗 , (53)

which follow from the general formula 𝑠∗★ = 𝑆(𝛽) ▷ 𝑠∗. Now we induce a twist quantization of
the submanifolds 𝑀𝑐 corresponding to the common zero sets 𝑓 𝑎𝑐 (𝑥) = 𝑓 𝑎 (𝑥) − 𝑐𝑎 = 0 for all
𝑎 = 1, . . . , 𝑘 . Choose a basis {𝑒1, . . . , 𝑒𝐵} of g and the corresponding structure constants𝐶𝛾

𝛼𝛽
∈ X.

Instead of {𝜕1, . . . , 𝜕𝑛} we can consider {𝑒1, . . . , 𝑒𝐵, 𝑒𝐵+1, . . . , 𝑒𝐵+𝑘} with 𝑒𝐵+𝑎 :=
∑𝑛

𝑖=1
𝜕 𝑓 𝑎

𝜕𝑥𝑖
𝜕𝑖 as

a complete set of vector fields Ξ with relations

𝑒𝐵+𝑎𝑥
ℎ − 𝑥ℎ𝑒𝐵+𝑎 −

𝜕 𝑓 𝑎

𝜕𝑥ℎ
= 0, 𝑎 = 1, . . . , 𝑘

𝑒𝛼𝑥
ℎ − 𝑥ℎ𝑒𝛼 − 𝑥𝜇𝜏𝜇ℎ (𝑒𝛼) = 0, 𝛼 = 1, . . . , 𝐵

𝑡𝛼ℓ 𝑒𝛼 = 0, ℓ = 1, . . . , 𝐵 + 𝑘 − 𝑛

𝑒𝛼𝑒𝛽 − 𝑒𝛽𝑒𝛼 − 𝐶
𝛾

𝛼𝛽
𝑒𝛾 = 0,

𝑒𝛼𝜉
𝑖 − 𝜉𝑖𝑒𝛼 = 0

(54)

for some 𝑡𝛼
ℓ

∈ X. Consider the free algebra A′• generated by 𝑥0, . . . , 𝑥𝑛, 𝜉1, . . . , 𝜉𝑛, 𝑒1, . . . , 𝑒𝐵.
Similarly to the previous discussion one shows that A′• =

⊕∞
𝑝=0

⊎∞
𝑞=0

⊎∞
𝑟=0 A

′𝑝𝑞𝑟 is a 𝑝-graded,
𝑞, 𝑟-filtered algebra. We denote the ideal in A′• generated by the usual relations on 𝑥𝑖 , 𝜉𝑖 , the
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relations (54) for 𝛼 ≤ 𝐵 and 𝑓 𝑎𝑐 (𝑥) = 0 = d 𝑓 𝑎 by I𝑀𝑐
. The corresponding differential calculus

algebra is Q•
𝑀𝑐

:= A′•/I𝑀𝑐
. It is graded and filtered according to

Q•
𝑀𝑐

=

𝑛−1⊕
𝑝=0

∞⊎
𝑞=0

∞⊎
𝑟=0

Q 𝑝𝑞𝑟

𝑀𝑐
(55)

where Q 𝑝𝑞𝑟

𝑀𝑐
:= A′𝑝𝑞𝑟/I 𝑝𝑞𝑟

𝑀𝑐
and I 𝑝𝑞𝑟

𝑀𝑐
:= I𝑀𝑐

∩ A ′𝑝𝑞𝑟 . One shows that Q•
𝑀𝑐

is a left 𝑈g-module
∗-algebra. For a real or unitary twist F on 𝑈g the twisted differential calculus algebra Q•

𝑀𝑐★
on

𝑀𝑐 can be defined as the result of either path of the commuting diagram

(A′•,I𝑀𝑐
) Q•

𝑀𝑐

(A′•
★ ,I𝑀𝑐★) Q•

𝑀𝑐★

F

quotient

F
quotient

(56)

i.e. twist deformation and the quotient procedure commute. It is 𝑝-graded and 𝑞, 𝑟-filtered via the
left 𝑈gF-∗-submodules Q 𝑝𝑞𝑟

𝑀𝑐★
, i.e.

Q•
𝑀𝑐★

=

𝑛−1⊕
𝑝=0

∞⊎
𝑞=0

∞⊎
𝑟=0

Q 𝑝𝑞𝑟

𝑀𝑐★
. (57)

The generators and relations determiningQ•
𝑀𝑐★

are precisely the twist deformations of the generators
and relations of Q•

𝑀𝑐
.

3.2 Twisted quadrics in R3

The determining function of quadric surfaces of R3 is 𝑓 (𝑥) = 1
2𝑎𝑖 𝑗𝑥

𝑖𝑥 𝑗 + 𝑎0𝑖𝑥
𝑖 + 1

2𝑎00 with
𝑎𝜇𝜈 = 𝑎𝜈𝜇 for 𝜇, 𝜈 = 0, 1, 2, 3. Defining 𝑓𝑖 := 𝜕 𝑓

𝜕𝑥𝑖
= 𝑎𝑖 𝑗𝑥

𝑗 + 𝑎0𝑖 and 𝐿𝑖 𝑗 := 𝑓𝑖𝜕 𝑗 − 𝑓 𝑗𝜕𝑖 gives a
complete set 𝑆𝐿 := {𝐿𝑖 𝑗}𝑖, 𝑗=1,...,𝑛 of tangent vector fields. Since

[𝐿𝑖 𝑗 , 𝐿ℎ𝑘] = 𝑎 𝑗ℎ𝐿𝑖𝑘 − 𝑎𝑖ℎ𝐿 𝑗𝑘 − 𝑎 𝑗𝑘𝐿𝑖ℎ + 𝑎𝑖𝑘𝐿 𝑗ℎ, (58)

𝑆𝐿 is a Lie algebra g, which is acting on X via

𝐿𝑖 𝑗 ▷ 𝑥
ℎ = (𝑎𝑖𝑘𝑥𝑘 + 𝑎0𝑖)𝛿ℎ𝑗 − (𝑎 𝑗𝑘𝑥

𝑘 + 𝑎0 𝑗)𝛿ℎ𝑖 , (59)

i.e. g ⊆ aff (𝑛) is a Lie subalgebra of the affine Lie algebra. Following the procedure of Section 3.1,
starting from the differential calculus algebra Q• of R𝑛 with relations (51) we first obtain the
differential calculus algebra Q•

𝑀
on the quadric surface 𝑀 with relations (56). By an Euclidean

coordinate transformation we can make 𝑎𝑖 𝑗 = 𝑎𝑖𝛿𝑖 𝑗 , 𝑎0𝑖 = 0 if 𝑎𝑖 ≠ 0 (quadrics in canonical form).
Given a twist F on 𝑈g we then get a quantization Q•

𝑀★
of the quadric surface. The latter is

deformed as a ∗-algebra if F is unitary or real. In [18] this is exemplified via Abelian and Jordanian
twist deformations of all quadric surfaces of R3, except the ellipsoid. The results are summarized
in Figure 1.
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𝑎1 𝑎2 𝑎3 𝑎03 𝑎00 𝑟 quadric g ≃ Abelian Jordanian
(a) + 0 0 − 3 parabolic cylinder h(1) Yes No
(b) + + 0 − 4 elliptic paraboloid so(2) ⋉ R2 Yes No

(c) + + 0 0 − 3 elliptic cylinder
so(2)×R2

so(2) × R
Yes
Yes

No
No

(d) + − 0 − 4 hyperbolic paraboloid so(1,1)⋉R2 Yes Yes

(e) + − 0 0 − 3 hyperbolic cylinder
so(1,1)×R2

so(1,1)×R
Yes
Yes

Yes
No

(f) + + − 0 − 4 1-sheet hyperboloid so(2, 1) No Yes
(g) + + − 0 + 4 2-sheet hyperboloid so(2, 1) No Yes
(h) + + − 0 0 3 elliptic cone† so(2,1)×R Yes† Yes
(i) + + + 0 − 4 ellipsoid so(3) No No

Figure 1: Overview of the quadrics in R3: signs of the coefficients of the equations in canonical form (if not
specified, all 𝑎00 ∈ R are possible), rank, associated symmetry Lie algebra g, type of twist deformation; h(1)
stands for the Heisenberg algebra. For fixed 𝑎𝑖 each class gives a family of submanifolds 𝑀𝑐 parametrized by
𝑐, except classes (f), (g), (h), which altogether give a single family; so there are 7 families of submanifolds.
We can always make 𝑎1 = 1 by a rescaling of 𝑓 . The † reminds that the cone (e) is not a single closed
manifold, due to the singularity in the apex.

Twisted differential geometry on the hyperboloids and cone

Let us recall the family of hyperboloids in Minkowski R3 in detail. For positive numbers
𝑎, 𝑏 > 0 and 𝑐 ∈ R we consider the solutions 𝑥 ∈ R3 of the equation

𝑓𝑐 (𝑥) =
1
2
((𝑥1)2 + 𝑎(𝑥2)2 − 𝑏(𝑥3)2) − 𝑐 = 0 (60)

and denote their collection by 𝑀𝑐. 𝑀𝑐>0 is a family of 1-sheet hyperboloids and 𝑀𝑐<0 a family of 2-
sheet hyperboloids. Together they from a foliation {𝑀𝑐}𝑐∈R\{0} ofR3\𝑀0, where 𝑀0 constitutes the
cone4. The submanifolds 𝑀𝑐 have an g = so(2, 1) symmetry with base vectors 𝐿12 = 𝑥1𝜕2 − 𝑎𝑥2𝜕1,
𝐿13 = 𝑥2𝜕3 + 𝑏𝑥3𝜕1 and 𝐿23 = 𝑎𝑥2𝜕3 + 𝑏𝑥3𝜕2. In fact, 𝐻 := 2√

𝑏
𝐿13 and 𝐸± := 1√

𝑎
𝐿12 ± 1√

𝑎𝑏
𝐿23

satisfy
[𝐻, 𝐸±] = ±2𝐸±, [𝐸+, 𝐸−] = −𝐻. (61)

For computational reasons it is convenient to work in the coordinate system given by the eigenvectors
𝑦± := 𝑥1 ±

√
𝑏𝑥3 and 𝑦0 := 𝑥2 of 𝐻 corresponding to the eigenvalues 𝜆± = ±2 and 𝜆0 = 0. The

associated coordinate 1-forms and vector fields are 𝜂± = d𝑦±, 𝜂0 = d𝑦0 and 𝜕± = 𝜕
𝜕𝑦± , 𝜕0 = 𝜕

𝜕𝑦0 . In
this coordinate system we have

𝑓𝑐 (𝑦) =
1
2
𝑦+𝑦− + 𝑎

2
(𝑦0)2 − 𝑐,

𝐻 = 2𝑦+𝜕+ − 2𝑦−𝜕− , 𝐸± =
1
√
𝑎
𝑦±𝜕0 − 2

√
𝑎𝑦0𝜕∓.

(62)

4By removing the origin we consider 𝑀0 as a smooth submanifold of R3 consisting of two disconnected components.
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For later use we also define 𝜕± = 2𝑎𝜕∓ and 𝜕0 = 𝜕0. With this choice of basis the 𝑈g-action on
𝑢𝑖 ∈ {𝑦𝑖 , 𝜕𝑖 , 𝜂𝑖}, 𝑖 = +,−, 0, is determined by

𝐻 ▷ 𝑢𝑖 = 𝜆𝑢𝑖 , 𝐸± ▷ 𝑢𝑖 = 𝛿𝑖0
1
√
𝑎
𝑢± − 𝛿𝑖∓

√
𝑎𝑢0. (63)

We consider the unitary twist F = exp(𝐻/2 ⊗ log(1 + i𝜈𝐸+)) ∈ 𝑈g⊗2 [[𝜈]] and its deformed
Hopf algebra 𝑈gF . The latter coincides with the C[[𝜈]]-linear extension of the algebra 𝑈g, with
C[[𝜈]]-linear extended counit but twisted coproduct ΔF and antipode 𝑆F determined by

ΔF (𝐻) = Δ(𝐻) − i𝜈𝐻 ⊗ 𝐸+

1 + i𝜈𝐸+ , ΔF (𝐸+) = Δ(𝐸+) + i𝜈𝐸+ ⊗ 𝐸+,

ΔF (𝐸−) = Δ(𝐸−) − i𝜈
2
𝐻 ⊗

(
𝐻 + i𝜈𝐸+

1 + i𝜈𝐸+

)
1

1 + i𝜈𝐸+ − i𝜈𝐸− ⊗ 𝐸+

1 + i𝜈𝐸+ − 𝜈2

4
𝐻2 ⊗ 𝐸+

(1 + i𝜈𝐸+)2 ,

𝑆F (𝐻) = 𝑆(𝐻) (1 + i𝜈𝐸+), 𝑆F (𝐸+) = 𝑆(𝐸+)
1 + i𝜈𝐸+ ,

𝑆F (𝐸−) = 𝑆(𝐸−) (1 + i𝜈𝐸+) − i𝜈
2
𝐻 (1 + i𝜈𝐸+)

(
𝐻 + i𝜈𝐸+

1 + i𝜈𝐸+

)
+ 𝜈2

4
𝐻 (1 + i𝜈𝐸+)𝐻𝐸+.

The corresponding twist deformation Q•
★ of the differential calculus algebra of R3 is the free

algebra ★-generated by 𝑢𝑖 ∈ {𝑦𝑖 , 𝜕𝑖 , 𝜉𝑖}, 𝑖 = +,−, 0, with ★-product of 𝑢𝑖 ∈ {𝑦𝑖 , 𝜕𝑖 , 𝜉𝑖} and
𝑤 𝑗 ∈ {𝑦 𝑗 , 𝜕 𝑗 , 𝜉 𝑗}, 𝑖, 𝑗 = +,−, 0, given by

𝑢𝑖 ★𝑤 𝑗 = 𝑢𝑖𝑤 𝑗 + i𝜈(𝛿𝑖− − 𝛿𝑖+)𝑢𝑖
(

1
√
𝑎
𝛿
𝑗

0𝑤
+ − 2

√
𝑎𝛿 𝑗

−𝑤
0
)
+ 𝛿𝑖+𝛿

𝑗
−2𝜈2𝑢+𝑤+. (64)

One can formulate the differential calculus algebra only in terms of these generators and the relations

𝑢+★𝑢0 = 𝑢0★𝑢+− i𝜈
√
𝑎
𝑢+★𝑢+, 𝑢+★𝑢− = 𝑢−★𝑢++2i𝜈

√
𝑎 𝑢0★𝑢++2𝜈2𝑢+★𝑢+,

𝑢0★𝑢− = 𝑢−★𝑢0− i𝜈
√
𝑎
𝑢−★𝑢+, 𝑢+★𝜂+ = 𝜂+★𝑢+, 𝑢+★𝜂0 = 𝜂0★𝑢+ − i𝜈

√
𝑎
𝜂+★𝑢+,

𝑢+★𝜂− = 𝜂−★𝑢+ + 2i𝜈
√
𝑎 𝜂0★𝑢++2𝜈2𝜂+★𝑢+, 𝑢0★𝜂+ = 𝜂+★𝑢0 + i𝜈

√
𝑎
𝜂+★𝑢+,

𝑢0★𝜂0 = 𝜂0★𝑢0, 𝑢0★𝜂− = 𝜂−★𝑢0 − i𝜈
√
𝑎
𝜂−★𝑢+, 𝑢−★𝜂+ = 𝜂+★𝑢− − 2i𝜈

√
𝑎 𝜂+★𝑢0,

𝑢−★𝜂0 = 𝜂0★𝑢− + i𝜈
√
𝑎
𝜂+★𝑢− + 2𝜈2𝜂+★𝑢0,

𝑢−★𝜂− = 𝜂−★𝑢− + 2i𝜈
√
𝑎
(
𝜂−★𝑢0 − 𝜂0★𝑢−

)
+ 2𝜈2 𝜂−★𝑢+

16



P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
0
5

Twisted geometry for submanifolds of R𝑛 Gaetano Fiore

for 𝑢𝑖 = 𝑦𝑖 , 𝜕𝑖 , 𝑖 = +,−, 0. The twisted Leibniz rule for the derivatives read

𝜕+★𝑦+ = 𝑦+★𝜕+, 𝜕0★𝑦+ = 𝑦+★𝜕0 + i𝜈
√
𝑎
𝑦+★𝜕+, 𝜕−★𝑦+ = 2𝑎 + 𝑦+★𝜕− − i2𝜈

√
𝑎𝑦+★𝜕0,

𝜕+★𝑦0 = 𝑦0★𝜕+ − i𝜈
√
𝑎
𝑦+★𝜕+, 𝜕−★𝑦0 = 𝑦0★𝜕− + i2𝜈

√
𝑎 + i𝜈

√
𝑎
𝑦+★𝜕− + 2𝜈2𝑦+★𝜕0,

𝜕0★𝑦0 = 1 + 𝑦0★𝜕0, 𝜕+★𝑦− = 2𝑎 + 𝑦−★𝜕+ + i2𝜈
√
𝑎 𝑦0★𝜕+ + 2𝜈2𝑦+★𝜕+,

𝜕0★𝑦− = 𝑦−★𝜕0 − i𝜈
√
𝑎
𝑦−★𝜕+, 𝜕−★𝑦− = 𝑦−★𝜕− + i2𝜈

√
𝑎
(
𝑦−★𝜕0 − 𝑦0★𝜕− ) + 2𝜈2 𝑦−★𝜕+,

while the twisted wedge products fulfill

𝜂+★𝜂+ = 0, 𝜂0★𝜂0 = 0, 𝜂−★𝜂− = 2i𝜈
√
𝑎 𝜂0★𝜂−,

𝜂+★𝜂0 + 𝜂0★𝜂+ = 0, 𝜂+★𝜂− + 𝜂−★𝜂+ = 2i𝜈
√
𝑎 𝜂+★𝜂0, 𝜂0★𝜂− + 𝜂−★𝜂0 =

i𝜈
√
𝑎
𝜂−★𝜂+.

In terms of star products

𝐻 = 2(𝜕+ ★ 𝑦+ − 1 − 𝑦− ★ 𝜕−), 𝐸± =
1
√
𝑎
𝜕0 ★ 𝑦± − 2

√
𝑎𝑦0 ★ 𝜕∓.

The relations characterizing the 𝑈gF-equivariant ∗-algebra Q•
𝑀𝑐★

become

0 = 𝑓𝑐 (𝑦) ≡
1
2
𝑦− ★ 𝑦+ + 𝑎

2
𝑦0 ★ 𝑦0 − 𝑐,

0 =d 𝑓𝑐 =
1
2
(𝑦− ★ 𝜂+ + 𝜂− ★ 𝑦+) + 𝑎𝑦0 ★ 𝜂0,

0 =𝑦− ★ 𝐸+ − 𝑦+ ★ 𝐸− −
√
𝑎 𝑦0 ★𝐻 + i𝜈𝑦+ ★𝐻 − 2i𝜈(1 + i𝜈)𝑦+ ★ 𝐸+.

The ∗-structures on 𝑈gF , Q•
★,Q•

𝑀𝑐★
remain undeformed except (𝑢−)∗★ = (𝑢−)∗ − 2i𝜈

√
𝑎(𝑢0)∗.

Twisted Riemannian geometry on the circular hyperboloids

Let us consider the Minkowski metric g := d𝑥1 ⊗ d𝑥1 + d𝑥2 ⊗ d𝑥2 − d𝑥3 ⊗ d𝑥3 on R3 with
corresponding constants g(𝜕𝑖 , 𝜕 𝑗) = 𝜂𝑖 𝑗 . This metric is invariant under so(2, 1) and so it is equiv-
ariant under the induced 𝑈so(2, 1)-action. In this last section we specify the previous discussion
on hyperboloids to the family 𝑀𝑐 = 𝑓 −1

𝑐 ({0}) of circular hyperboloids and cone, where

𝑓𝑐 (𝑥) =
1
2
((𝑥1)2 + (𝑥2)2 − (𝑥3)2) − 𝑐, (65)

or equivalently (62) with 𝑎 = 1 in the transformed coordinates. The Lie ∗-algebra symmetry
g � so(2, 1) of 𝑀𝑐 is spanned by 𝐿12, 𝐿13, 𝐿23, or equivalently 𝐻, 𝐸+, 𝐸−. Depending on the
sign of 𝑐, the first fundamental form g𝑡 = g ◦ (pr𝑡 ⊗ pr𝑡 ) structures 𝑀𝑐 as a Riemannian (for
𝑐 < 0) or a Lorentzian (for 𝑐 > 0) manifold. On the cone 𝑀0 there is a degeneracy of g.
Furthermore, for 𝑐 ≠ 0 the second fundamental form is Π(𝑋,𝑌 ) = − 1

2𝑐g(𝑋,𝑌 )𝑉⊥ for 𝑋,𝑌 ∈ Ξ𝑡 ,
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where 𝑉⊥ = (𝜕 𝑗 𝑓𝑐)𝜂 𝑗𝑖𝜕𝑖 = 𝑥𝑖𝜕𝑖 . Choosing a basis 𝑣1, 𝑣2 of Ξ𝑡 and setting g𝛼𝛽 = g(𝑣𝛼, 𝑣𝛽) the
Gauss theorem determines the curvature, Ricci tensor and Ricci scalar on 𝑀𝑐 by

R𝑡
𝛿
𝛼𝛽𝛾 =

g𝛼𝛾𝛿
𝛿
𝛽
− g𝛽𝛾𝛿

𝛿
𝛼

2𝑐
, Ric𝑡 𝛽𝛾 = R𝑡

𝛼
𝛼𝛽𝛾 = −

g𝛽𝛾

2𝑐
, R𝑡 = Ric𝑡 𝛽𝛽 = −1

𝑐
. (66)

This implies that 𝑀𝑐<0 is a de Sitter space 𝑑𝑆2 and 𝑀𝑐>0 consists of two copies of anti-de Sitter
spaces 𝐴𝑑𝑆2. In the limit 𝑐 → 0 the expressions (66) diverge. Now {𝐻, 𝐸±} is a complete
set of vector fields on 𝑀𝑐 with linear dependence relation 𝑦−𝐸+ − 𝑦+𝐸− − 𝑦0𝐻 = 0, where we
employed again the coordinate system 𝑦± := 𝑥1 ±

√
𝑏𝑥3 and 𝑦0 := 𝑥2 of eigenvectors of 𝐻. As

before we consider the twisted differential calculus algebra Q•
𝑀𝑐★

for the unitary Jordanian twist
F = exp(𝐻/2 ⊗ log(1 + i𝜈𝐸+)). Following Section 2.4 the tensors (66) remain undeformed under
the twist, while

ΠF
★ (𝑋,𝑌 ) = − 1

2𝑐
g𝑡★(𝑋,𝑌 )𝑉⊥ = − 1

2𝑐
g𝑡★(𝑋,𝑌 ) ★𝑉⊥

holds using the 𝑈k-invariance of 𝑉⊥. Similarly

RF
𝑡★(𝑋,𝑌, 𝑍) =

(R1 ▷ 𝑌 ) ★ g𝑡★(R2 ▷ 𝑋, 𝑍) − 𝑋 ★ g𝑡★(𝑌, 𝑍)
2𝑐

, RicF𝑡★(𝑌, 𝑍) = −g𝑡★(𝑌, 𝑍)
2𝑐

for all 𝑋,𝑌, 𝑍 ∈ Ξ𝑡★ and we obtain explicit expressions of g𝑡★ on the generating vector fields 𝐻, 𝐸±:

g𝑡★(𝐻, 𝐻) = −8𝑦+𝑦−, g𝑡★(𝐻, 𝐸±) = −2𝑦±𝑦0,

g𝑡★(𝐸+, 𝐸+) = (𝑦+)2, g𝑡★(𝐸+, 𝐸−) = 2𝑐 + (𝑦0)2 − 2i𝜈𝑦+𝑦0 − 2𝜈2(𝑦+)2,

g𝑡★(𝐸+, 𝐻) = −2𝑦+𝑦0 + 2i𝜈(𝑦+)2, g𝑡★(𝐸−, 𝐸+) = 2𝑐 + (𝑦0)2,

g𝑡★(𝐸−, 𝐸−) = (𝑦−)2, g𝑡★(𝐸−, 𝐻) = −2𝑦0𝑦− − 2i𝜈[2𝑐 + (𝑦0)2] + 2i𝜈𝑦0𝑦− .

Furthermore, the twisted Levi-Civita connection is determined by

∇F
𝐸+𝐸

+ = −2𝑦+𝜕−, ∇F
𝐸+𝐸

− = −2𝑦+𝜕+ − 2𝑦0𝜕0 + 4i𝜈𝜕− + 4𝜈2𝑦+𝜕−,

∇F
𝐸+𝐻 = 4𝑦0𝜕− − 4i𝜈𝑦+𝜕−, ∇F

𝐸−𝐸
+ = −2𝑦−𝜕− − 2𝑦0𝜕0,

∇F
𝐸−𝐸

− = −2𝑦−𝜕+ + 4i𝜈𝑦0𝜕+, ∇F
𝐸−𝐻 = −4𝑦0𝜕+ + 4i𝜈(𝑦0𝜕0 + 𝑦−𝜕−),

∇F
𝐻
𝐸+ = 2𝑦+𝜕0, ∇F

𝐻
𝐸− = −2𝑦−𝜕0, ∇F

𝐻
𝐻 = 4𝑦+𝜕+ + 4𝑦−𝜕−

on the generating vector fields 𝐻, 𝐸±.
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