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Recommended reading

These lectures notes are moderately self-contained for readers already familiar with the subject
of cosmology. We suggest to consult the textbooks [1–4] for further study. We base our presentation
mainly on [4]; some figures and several parameter estimates are updated with respect to their 2017
values.

1. Hot big bang model

We can define cosmology as the study of Nature at very large scales, ranging from about 1 kpc
(the size of a galaxy) to 1 Mpc (the order of typical inter-galactic distances in the local group of
galaxies), up to thousands of Mpc (roughly corresponding to the farthest observable light source,
the cosmic microwave background).

The galaxy distribution near our local group (∼ tens of Mpc) looks irregular and it is char-
acterized by regions where matter is much more clustered. Patterns of strongly over-dense and
under-dense regions can also be observed at larger scales (∼ hundreds of Mpc) [5]. However, in
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general, observations of the large-scale structure (≳ hundreds of Mpc) suggest that our universe is
homogeneous and isotropic as a first approximation, meaning that its metric properties are the same
at any point in space and in any direction. Such an assumption, known as the cosmological principle,
is supported especially at larger scales (∼ 3000 Mpc) by the cosmic microwave background (CMB).
The CMB is a radiation background of cosmic origin, dating back to more than 13 billion years ago
when matter became transparent to radiation. Today, the CMB has cooled down to a temperature
of 𝑇0 = 2.7255 ± 0.0006 K, with very small fluctuations of order Δ𝑇/𝑇 ∼ 10−5; that is, the early
universe is homogeneous and isotropic up to one part over a hundred thousands.

1.1 Friedmann–Lemaître–Robertson–Walker (FLRW) metric

We can mathematically formalize the cosmological principle in the framework of Einstein’s
theory of General Relativity (GR). The line element of a 4-dimensional isotropic and homogeneous
universe is given in terms of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric as

d𝑠2 = 𝑔`ad𝑥`d𝑥a = −d𝑡2 + 𝑎2(𝑡)𝛾𝛼𝛽d𝑥𝛼d𝑥𝛽 , (1)

where 𝑥0 = 𝑡 is the synchronous or proper time. The spatial line element

𝛾𝛼𝛽d𝑥𝛼d𝑥𝛽 =
d𝑟2

1 − k𝑟2 + 𝑟2 dΩ2
2, (2)

corresponds to a maximally symmetric 3-dimensional space of constant sectional curvature k. For
k = −1, 0, 1, the universe is open, flat, or closed, respectively. In this model of the universe, the
scale factor 𝑎(𝑡) and the spatial curvature sign encode all there is to know about the geometry. It is
sometimes convenient to work in terms of the conformal time 𝜏, defined as

d𝜏 :=
d𝑡
𝑎(𝑡) . (3)

The line element then becomes

d𝑠2 = 𝑎2(𝜏)
(
−d𝜏2 + 𝛾𝛼𝛽d𝑥𝛼d𝑥𝛽

)
, (4)

and, for K = 0, it is conformally equivalent to Minkowski. Distances
computed in terms of the coordinates 𝑥𝛼 are called comoving (because
comoving observers are those at rest with respect to the content of the
universe). The scale factor relates the comoving and proper (physical)
distances according to

(proper distance) = 𝑎(𝑡) × (comoving distance). (5)

1.2 Hubble parameter and 𝐻0 tension

From the observations, we know that the universe is expanding and therefore the scale factor
increases in time, ¤𝑎(𝑡) > 0. Thus, we can introduce the redshift 𝑧 as a relational time:

1 + 𝑧 :=
𝑎0

𝑎
, (6)
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where 𝑎0 := 𝑎(𝑡0) is the scale factor today. Since the scale factor is not physically observable, its
normalization is arbitrary and one typically chooses 𝑎0 = 1. A local observer is at 𝑧 = 0 and distant
objects are at 𝑧 > 0. We define the Hubble parameter as the relative expansion rate of the universe

𝐻 (𝑡) :=
¤𝑎(𝑡)
𝑎(𝑡) . (7)

In the early universe, the inverse Hubble parameter gives an approximate estimate of the particle
radius at time 𝑡, which is the maximal distance of points in causal connection. We call this distance
the Hubble radius (in 𝑐 = 1 units)

𝑅𝐻 (𝑡) :=
1

𝐻 (𝑡) . (8)

The value of the Hubble parameter today, the Hubble constant 𝐻0, is expressed in terms of a
dimensionless parameter ℎ, 𝐻0 = 100ℎ km s−1Mpc−1 = ℎ × (9.778 Gyr)−1 [8]. This parameter
has been estimated in several independent ways [6, 7], which can be grouped into two clusters:1

• Small-𝑧, late-time measurements: time delays in gravitational lensing of quasars (ℎ =

0.733+0.017
−0.018 [9], assuming a ΛCDM model), distance-ladder measurements using extra-

galactic Cepheids (ℎ = 0.7403 ± 0.0142 [10], model independent) or the calibration of the
tip of the red giant branch (ℎ = 0.698 ± 0.008 (stat) ± 0.17(syst) [11], model independent),
and geometric distance measurements to megamaser-hosting galaxies (ℎ = 0.739 ± 0.030 at
the 68% CL [12], assuming a ΛCDM model).

• Large-𝑧, early-universe measurements: baryon acoustic oscillations in large-scale structure
(ℎ = 0.6820±0.081 at the 68% CL [13], assuming a ΛCDM model) and CMB measurements
from Planck (ℎ = 0.6736 ± 0.0054 at the 68% CL [14], assuming a ΛCDM model) and the
Atacama Cosmology Telescope (ℎ = 0.676 ± 0.011 at the 68% CL [15], assuming a ΛCDM
model).

While the measurements at high redshift all agree, there is a mismatch between these and small-
redshift measurements, ranging between 4.0 and 5.7 standard deviations. The source of this
so-called 𝐻0 tension [6, 7] is not known. A conservative explanation might lie in an inadequate
treatment of systematic errors but there is the possibility of a failure of the ΛCDM model and the
need of a dynamical dark-energy component or, in the most extreme case, new physics beyond GR
or beyond the Standard Model of particles.

The inverse of the Hubble constant provides an estimate of the age of the universe 𝑡0 ≃ 𝐻−1
0 =

9.778ℎ−1 Gyr ≃ 13.2 − 14.5 Gyr, depending on the value of ℎ. A more accurate calculation taking
into account the different phases of the cosmic evolution, from radiation domination to matter
domination to dark-energy domination, yields a similar range of values.

1CL: confidence level. ΛCDM: standard model of the universe which assumes GR, cold dark matter and a cosmological
constant Λ.
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1.3 Action and Einstein equations

Consider the following conventions for the Levi-Civita connection, the Riemann and Ricci
tensors and the Ricci scalar:

Γ
𝜌
`a :=

1
2
𝑔𝜌𝜎

(
𝜕`𝑔𝑣𝜎 + 𝜕a𝑔`𝜎 − 𝜕𝜎𝑔`a

)
, (9)

𝑅
𝜌
`𝜎a := 𝜕𝜎Γ

𝜌
`a − 𝜕aΓ𝜌

`𝜎 + Γ𝜏
`aΓ

𝜌
𝜎𝜏 − Γ𝜏

`𝜎Γ
𝜌
a𝜏 , (10)

𝑅`a := 𝑅𝜌
`𝜌a , (11)

𝑅 := 𝑅`a𝑔
`a . (12)

In GR, we can derive the equations of motion from the action

𝑆 = 𝑆𝑔 + 𝑆m, (13)

where
𝑆𝑔 =

1
2^2

∫
d4𝑥

√︁
|𝑔 | (𝑅 − 2Λ), (14)

𝑔 := det(𝑔`a), ^2 = 8𝜋𝐺 and Λ is the cosmological constant. The action 𝑆𝑔 is the Einstein–Hilbert
action for the gravitational field, while 𝑆m is the matter action. Applying the variational principle,
one obtains the Einstein equations

𝐺`a + 𝑔`aΛ = ^2𝑇`a , (15)

where
𝐺`a := 𝑅`a −

1
2
𝑔`𝑣𝑅 (16)

is the Einstein tensor and

𝑇`a := − 2√︁
|𝑔 |

𝛿𝑆m

𝛿𝑔`a
= −2

𝜕Lm

𝜕𝑔`a
+ 𝑔`aLm (17)

is the stress-energy tensor of matter. In the case of a perfect fluid,

𝑇`a = (𝜌 + 𝑃)𝑢`𝑢𝑣 + 𝑃𝑔`a , (18)

where 𝑃 is the isotropic pressure, 𝜌 is the energy density and 𝑢` is the velocity of the fluid
constituents along their world-lines. In the comoving reference frame, the 3-velocity of such
constituents is zero by definition, so that

𝑢` =

(
|𝑔00 |−1/2, 0, 0, 0

)`
. (19)

A real scalar field 𝜙 with potential 𝑉 (𝜙) is a specific example of perfect fluid. The Lagrangian
density reads

Lm = L𝜙 = −1
2
𝜕`𝜙𝜕

`𝜙 −𝑉 (𝜙). (20)

One can easily show that the energy density and isotropic pressure on a homogeneous background
are given by

𝜌𝜙 =
¤𝜙2

2
+𝑉, (21)

𝑃𝜙 =
¤𝜙2

2
−𝑉, (22)
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respectively, with ¤𝜙 := 𝜕𝑡𝜙. The equation of motion takes then the form

2𝜙 −𝑉,𝜙 = 0, (23)

where 2𝜙 := 1√
|𝑔 |
𝜕`

(√︁
|𝑔 |𝜕`𝜙

)
. On a FLRW background, if the field only depends on the time

coordinate, the equation turns into
¥𝜙 + 3𝐻 ¤𝜙 +𝑉,𝜙 = 0. (24)

When 𝑉 = 𝑚2𝜙2/2, (24) is the equation for a harmonic oscillator with a background-dependent
friction term 3𝐻 ¤𝜙.

1.4 Friedmann equations

The Einstein equations on a homogeneous, isotropic setting reduce to the Friedmann equations.
Given the FLRW metric, the only non-vanishing components of the Levi-Civita connection are

Γ0
𝛼𝛽 = 𝐻𝑔𝛼𝛽, Γ

𝛽

𝛼0 = 𝐻𝛿
𝛽
𝛼, Γ_

𝛼𝛽 = Γ_
𝛼𝛽

[
𝛾𝛼𝛽

]
, (25)

where 𝛼, 𝛽 = 1, 2, 3 and Γ_
𝛼𝛽

[
𝛾𝛼𝛽

]
is the Levi-Civita connection of the three-dimensional, maxi-

mally symmetric manifold Σ with metric 𝛾𝛼𝛽. The non-vanishing components of the Ricci tensor
are

𝑅00 = −3
(
𝐻2 + ¤𝐻

)
= −3

¥𝑎
𝑎
, (26)

𝑅𝛼𝛽 =

(
2k
𝑎2 + 3𝐻2 + ¤𝐻

)
𝑔𝛼𝛽 . (27)

We can express the Ricci scalar in terms of 3𝑅, the three-dimensional Ricci scalar of the manifold
Σ, as

𝑅 = 3𝑅 + 3
(
4𝐻2 + 2 ¤𝐻

)
. (28)

Recalling the form of 𝑇 `a for a perfect fluid, we can now write the Friedmann equations as

𝐻2 =
^2

3
𝜌 + Λ

3
− k
𝑎2 , (29)

¥𝑎
𝑎

= − ^
2

6
(𝜌 + 3𝑃) + Λ

3
. (30)

The first Friedmann equation (29), which is the 00 component of Einstein equations (15), contains
a term proportional to the energy density, a term proportional to the cosmological constant and a
pure GR term (which we cannot obtain in a Newtonian derivation) proportional to spatial curvature.
Equation (30), given by the combination of the 00 component and the trace of Einstein equations,
is about the acceleration in the expansion of the universe. We see that the cosmological constant
term gives a positive contribution to ¥𝑎. To solve these equations, we need to specify the equation
of state 𝑃 = 𝑃(𝜌).

Let us only consider the equation of state of a barotropic fluid, whose pressure is proportional
to the energy density (such a simplification, as we will see, is suitable to describe the content of our
universe):

𝑃 = 𝑤𝜌, (31)

7
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where 𝑤 is a constant referred to as the barotropic index. We can find exact solutions to the
Friedmann equations in the power-law form

𝑎 = 𝑡 𝑝, (32)

where 𝑝 = 2/[3(1 + 𝑤)]; the Hubble parameter scales as the inverse of proper time, 𝐻 = 𝑝/𝑡.
Notice that, for such solutions, when 𝑡 → 0, 𝑎 → 0, the metric becomes degenerate and 𝐻 → ∞.
Since also 𝑅 → ∞, we have a physical divergence. This singularity is known as the big bang and
its existence in GR, argued in several focussing and singularity theorems, is called the big bang
problem.

1.5 Content of the universe

We define the critical energy density 𝜌crit as the one we would have in a spatially flat universe,

𝜌crit :=
3𝐻2

^2 . (33)

Let us introduce the density parameter Ω, defined as the ratio between the total energy density and
the critical energy density:

Ω :=
𝜌

𝜌crit
. (34)

Since the energy density is an additive quantity, we can write the density parameter as

Ω = Ωr +Ωm +ΩΛ +Ωk, (35)

where Ωk := −k/(𝑎2𝐻2) is the deviation from flatness and ΩΛ := Λ/(3𝐻2) is the contribution from
the cosmological constant. The Ωr and Ωm are the density parameters associated with radiation and
pressure-less matter (dust), respectively.

These components are described by the following barotropic indices and the evolution of their
energy densities:

• Cosmological constant:

𝑤 = −1, 𝜌Λ =
Λ

^2 = const . (36)

• Radiation (ultra-relativistic particles):

𝑤 =
1
3
, 𝜌𝑟 (𝑧) = 𝜌r,0(1 + 𝑧)4. (37)

• Pressure-less matter (non-relativistic particles):

𝑤 = 0, 𝜌m(𝑧) = 𝜌m,0(1 + 𝑧)3. (38)

Radiation density decreases faster than matter density during the expansion (𝑧 → 0). Therefore,
the radiation component dominates over matter at early times, but matter eventually takes over. The
moment 𝑧eq at which the two densities coincide is called equality and by requiring 𝜌r(𝑧eq) = 𝜌m(𝑧eq)
we find 𝑧eq ≈ 3400.

8
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Lastly, we also notice that the first Friedmann equation can be recast as the constraint

Ωr +Ωm +ΩΛ +Ωk = 1. (39)

What are the values of such densities today? For the radiation component, the only contribution
comes from photons (given the universe temperature, there is no other ultra-relativistic particle)
and Ωr,0 is negligible. For the matter component, we have three contributions:

Ωm,0 = Ωb,0 +Ωa,0 +Ωnb,0, (40)

respectively baryons, neutrinos and non-baryonic matter. In particular, the latter is also known
as dark matter, since it does not interact with photons and thus we can observe it only indirectly.
Evidence favors dark matter being made of particles moving at non-relativistic speed and lying
outside the Standard Model of particle physics. The neutrino contribution is negligible today, while
Ωb,0 ∼ 0.05 and Ωnb,0 ∼ 0.25.

From observations, we know that our universe is going through a phase of accelerated expan-
sion. Consider the second Friedmann equation

¥𝑎
𝑎
= −1

2
𝐻2(1 + 3𝑤)Ω = −1

2
𝐻2(1 + 3𝑤). (41)

In order to have ¥𝑎 > 0, the expansion must be driven by an energy component with 𝑤 < −1/3. This
component is called dark energy and, from observational constraints, it accounts for ∼ 70% of the
total energy budget of our universe. These results allow one to conclude that Ωk ≈ 0.

The standard cosmological model with a cosmological constant, cold dark matter and zero
curvature is called flat ΛCDM and is the reference model for many parameter estimations.

1.6 Acceleration

In order to describe cosmic acceleration, it is convenient to introduce the first slow-roll param-
eter

𝜖 := −d ln𝐻
d ln 𝑎

= −
¤𝐻
𝐻2 = 1 − ¥𝑎

𝑎𝐻2 = 1 + 1
2
(1 + 3𝑤)Ω =

3
2
(1 + 𝑤). (42)

To have acceleration, we must require 𝜖 < 1 (which in turn implies 𝑤 < −1/3). According to the
value of 𝜖 , we can distinguish three different acceleration regimes

super-acceleration: 𝜖 < 0 ⇐⇒ 𝑤 < −1, (43)

de Sitter acceleration: 𝜖 = 0 ⇐⇒ 𝑤 = −1, (44)

sub-acceleration: 0 < 𝜖 < 1 ⇐⇒ − 1 <𝑤 < −1
3
. (45)

The above expressions hold for a universe filled by a single perfect fluid with barotropic index 𝑤.
The dark-energy component dominates at late times, but only by two thirds of the total density.
Assuming that 𝑤 = 𝑤0 is redshift-independent, the Planck+lensing+SNe+BAO estimate for the
equation of state of dark energy is [14]

𝑤0 = −1.028 ± 0.031 (68% CL) , (46)

compatible with a cosmological-constant-dominated universe and the ΛCDM model. Recall,
however, that a pure cosmological constant leads to tensions in the estimate of 𝐻0.

9
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1.7 Hot big bang model

The CMB has a Planckian, quasi-isotropic distribution. This observation indicates that the
early universe was in thermal equilibrium and that the CMB is the remnant of an initial very hot
phase. For this reason, we can describe the expansion of our universe using its temperature 𝑇 as a
relational time. Thus, we can express all the relevant physical quantities in terms of 𝑇 . In particular,
the generalized Stefan–Boltzmann law for the radiation-dominated era reads

𝜌𝑟 =
𝜋2

30
𝑔∗(𝑇) 𝑇4, (47)

where 𝑔∗(𝑇) accounts for the different species of particles that are relativistic at temperature 𝑇 .
This relation allows us to express 𝑇 in terms of the redshift:

𝑇 (𝑧) ≃ 3.24

𝑔
1/4
∗

(1 + 𝑧) . (48)

In Tab. 1, we report the main events of the universe thermal history. In the first seconds after the
big bang, the temperature was around 1016 K and there were no atomic structures in the universe.
After some minutes, the first nuclei started to form, a process known as big bang nucleosynthesis
(BBN). The BBN plays a crucial role in putting several constraints on the cosmological parameters
using the present abundances of atomic nuclei. When the universe was about 70,000 years old,
radiation-matter equality was established and, from that moment on, matter became dominant. The
CMB was formed at 𝑡 ≈ 3.8×105 years, at a temperature of about 3, 000 K, i.e., one thousand times
hotter than today. First stars formed when the universe was 108 years old and the corresponding
size of causal correlation was around 110 Mpc, which is of the same order of magnitude of the
typical length scale of galaxy clusters.

𝑇 ( K) 𝑇 (eV) 𝑡 𝑧 𝑅p Event
1016 1012 10−12 s 1016 0.2 mm Highest energy probed in laboratory (LHC).
1010 105 2 s 1010 105 km Formation and destruction of nuclei begins.
109 104 200 s 109 107 km Nucleosynthesis of light ions.
108 3 × 103 20 min 108 109 km BBN ends.
104 1 7.0 × 104yr 3400 39kpc Radiation-matter equality. Matter domination begins.
3000 0.3 3.8 × 105yr 1090 289kpc Decoupling of matter and radiation. CMB forms.
100 10−2 108yr 25 110Mpc First stars.
3 3 × 10−4 14 × 109yr 0 14.2Gpc Today.

Table 1: Timeline of the universe thermal history. The table reports the temperature in K and eV, the
corresponding cosmological time and redshift for each event. The particle horizon 𝑅p is computed too.

2. Cosmological perturbations and gravitational waves

The cosmological principle allows us to describe the properties of our universe when averaging
over𝑂 (Mpc) distances. As we have already mentioned, the universe looks strongly inhomogeneous
at smaller scales, with matter concentrated in gravitationally bound structures. Inhomogeneous
settings may require a more realistic description than the FLRW background. A first step in that

10
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direction, which works extraordinarily well in all situations where deviations from the cosmological
principle are small, is to allow for tiny perturbations of the FLRW background. The metric takes
the form

𝑔`𝑣 = �̃�`a + ℎ`a , (49)

where �̃�`a is the background and ℎ`a is the cosmological perturbation. We can classify perturba-
tions into three sectors according to their properties under spatial coordinate transformations: the
scalar, vector and tensor perturbations. We will not focus on the vector sector because the vector
perturbations are typically damped away in the early universe.

2.1 Linear tensor perturbations (gravitational waves)

We first consider tensor perturbations in the linear regime. This approach means that we neglect
any term of order𝑂 (ℎ2) in our equations. In order to simplify our description, we can get rid of the
non-physical degrees of freedom, making use of invariance under spacetime diffeomorphisms. In
particular, we ask the perturbation tensor not to have mixed time-space components, to have zero
divergence and zero trace:

ℎ`0 = 0, 𝜕aℎ`a = 0, ℎ = ℎ
`
` = 0. (50)

This is called the transverse-traceless gauge. The perturbed metric takes form

d𝑠2 = 𝑎2(𝜏)
[
−d𝜏2 +

(
𝛿𝛼𝛽 + ℎ𝛼𝛽

)
d𝑥𝛼d𝑥𝛽

]
, (51)

where 𝛼, 𝛽 = 1, 2, 3 are spatial indices. We are working with conformal time and considering a
spatially flat background. Since we are in a transverse gauge, the gravitational wave ℎ𝛼𝛽 reduces to
a 2 × 2 traceless symmetric matrix. Thus we are only left with two degrees of freedom. Assuming,
without loss of generality, that 𝑥3 is the propagation direction, ℎ𝛼𝛽 can be decomposed in the
(𝑥1, 𝑥2) plane into two independent polarization scalar modes ℎ+(𝑥) and ℎ× (𝑥)

ℎ𝛼𝛽 (𝑥) = ℎ+(𝑥)𝑒+𝛼𝛽 + ℎ× (𝑥)𝑒×𝛼𝛽 , (52)

where the two polarization matrices are given as

𝑒+ =

(
1 0
0 −1

)
, 𝑒× =

(
0 1
1 0

)
. (53)

One can show that, in the transverse-traceless gauge, the linear perturbations to the Ricci tensor and
scalar are given as

𝛿𝑅`a = −1
2
2̃ℎ`a , 𝛿𝑅 = 0, (54)

respectively. In order to obtain first-order equations of motion, we can perturb the action at second
order:

𝛿 (2)𝑆ℎ =
1

4^2

∑︁
_=+,×

∫
d4𝑥

√︁
|�̃� |

(
ℎ_2̃ℎ_ − 2Λℎ2

_

)
. (55)

We now consider, separately, the two polarization modes. Calling ℎ_ = 𝜑 and 𝑚2 = 2Λ, in a flat
FLRW background we have to solve the following equation in momentum space:

𝜑′′k + 2H𝜑′k +
(
𝑘2 + 𝑚2𝑎2

)
𝜑k = 0, (56)

11
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where the prime stands for the derivative with respect to the conformal time 𝜏 and H := 𝜕𝜏𝑎/𝑎.
We first consider the asymptotic solutions in the two limits for large and small values of the product
𝑘 |𝜏 |, where 𝑘 = |k| is the comoving wavenumber. At very small scales (𝑘 |𝜏 | ≫ 1), spacetime
curvature is negligible and one can ignore the Hubble friction term 2H𝜑′k. The perturbation is well
inside the horizon and it obeys the harmonic oscillator equation

𝜑′′k + 𝑘2𝜑k ≃ 0. (57)

Incoming and outgoing plane waves give the independent solutions

𝜑k ≃ 𝐴𝑘e±i𝑘𝜏 . (58)

On the other hand, outside the horizon (𝑘 |𝜏 | ≪ 1), the effective mass term can be ignored and,
assuming Λ = 0, the perturbation is approximately constant:

𝜑k ≃ 𝐶𝑘 . (59)

The perturbation freezes when it crosses the horizon and then it keeps the constant value 𝐶𝑘

determined by the continuity condition at horizon crossing. In order to obtain the full analytic
solutions, consider the rescaling of the field 𝑤𝑘 := 𝑎𝜑k. Equation (56) becomes

𝑤′′
𝑘 +

(
𝑘2 − 𝑀2

)
𝑤𝑘 = 0 , (60)

with 𝑀2 =

[
2 − 𝑚2

𝐻2

]
1
𝜏2 . This is called the Mukhanov–Sasaki equation and 𝑤𝑘 is called the

Mukhanov–Sasaki variable. On a de Sitter background, the general solution is a superposition of
Bessel functions

𝑤𝑘 = 𝐶1
√︁
𝑘 |𝜏 |𝐽a (𝑘 |𝜏 |) + 𝐶2

√︁
𝑘 |𝜏 |𝑌a (𝑘 |𝜏 |), (61)

which reproduces the previous asymptotic behaviors.

2.2 Linear scalar perturbations

Let us now focus on the scalar sector. We can write the most general perturbed metric as

d𝑠2 = 𝑎2(𝜏)
{
−(1 + 2Φ)d𝜏2 + 2 (𝜕𝛼𝐵) d𝑥𝛼d𝜏 +

[
(1 − 2Ψ)𝛿𝛼𝛽 + 2𝜕𝛼𝜕𝛽𝐸

]
d𝑥𝛼d𝑥𝛽

}
, (62)

where Φ, Ψ, 𝐵 and 𝐸 are scalar perturbations of the metric components. These perturbations are
generated by fluctuations of the matter content of the universe. Therefore, we need to account for
the correspondent perturbations in the stress-energy tensor

𝜌 = �̃� + 𝛿𝜌, 𝑃 = �̃� + 𝛿𝑃. (63)

In this case, it is convenient to work with a gauge-invariant quantity, called curvature perturbation
on uniform density hypersurfaces

Z = −Ψ − 𝐻 𝛿𝜌¤𝜌 . (64)

With the appropriate background-dependent rescaling, following the same steps as in the previous
case, one ends up again with a Mukhanov–Sasaki equation. In theories beyond GR, tensor and
scalar perturbations may still obey a Mukhanov–Sasaki equation but with different variable, mass
term and propagation speed.

12
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2.3 Astrophysical gravitational waves

The formalism we are using to deal with cosmological perturbations is very general and we
can apply it to different backgrounds to treat other kinds of perturbations. In GR, we describe
weak gravitational signals propagating as transverse waves at the speed of light, called gravitational
waves (GWs). Astrophysical GWs were detected for the first time in September 2015 by the Laser
Interferometer Gravitational-wave Observatory (LIGO) and Virgo [16, 17] and, since then, several
GW events from the merger of compact objects have been observed.

We consider the case of tensor perturbations again, but this time we linearize the Einstein
equations (15) in the presence of matter; for a Minkowski background with Λ = 0, we find

2[ℎ`a = −2^2𝑆`a , (65)

where 𝑆`a = 𝑇`a − (1/2)[`a𝑇 𝜌
𝜌 . The solution is the convolution of the source term with the

retarded Green’s function:

ℎ`a (𝑥) = −2^2
∫

𝑑4𝑥′𝑆`a (𝑥′) Gret (𝑥 − 𝑥′) , (66)

2[Gret (𝑥 − 𝑥′) = 𝛿𝐷 (𝑥 − 𝑥′) , (67)

Gret��
𝑡<𝑡 ′ = 0. (68)

We can solve the problem in the local wave-zone, that is, at distances much larger than the char-
acteristic wave-length 𝑟 ≫ _ (so that we are quite far from the source) but much shorter than
cosmological distances (so that we do not need to account for cosmological effects in the propaga-
tion). The retarder Green’s function then takes the form

Gret(𝑡, 𝑟) ≃ 𝐶 𝛿(𝑡 − 𝑟)
𝑟

, (69)

where 𝐶 is a constant. The GW amplitude decreases as the inverse distance from the source.

2.4 Luminosity distance

When dealing with cosmological scales, the expansion of the universe affects signal propa-
gation. As a consequence, in cosmology, we have different definitions of distances that are not
equivalent. We now introduce the concept of luminosity distance, which is an actual observable.
Consider a source of electromagnetic waves with intrinsic luminosity L and let F be the flux
measured at Earth. The luminosity distance 𝑑em

𝐿
is then defined by inverse-square-distance law

F =:
L

4𝜋
(
𝑑em
𝐿

)2 . (70)

We call standard candles sources of known intrinsic luminosity whose properties do not change
with the redshift. Standard candles allow us to measure the luminosity distance of close-by objects
and host galaxies. One can show that the luminosity distance is a rescaling of the comoving distance
𝑟 [18]:

𝑑em
𝐿 =

𝑎2
0
𝑎
𝑟 = (1 + 𝑧)

∫ 𝑡0

𝑡 (𝑧)

𝑑𝑡

𝑎
= (1 + 𝑧)

∫ 1

𝑎 (𝑧)

𝑑𝑎

𝐻𝑎2 = (1 + 𝑧)
∫ 𝑧

0

𝑑𝑧

𝐻
, (71)
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where we expressed the ratio 𝑎0/𝑎 in terms of the redshift and we used the definition of comoving
distance.

On the other hand, we can consider sources of gravitational waves and give an analogous
definition of luminosity distance 𝑑gw

𝐿
, referring this time to the GW signal. Equivalently, the inverse

of the amplitude ℎ`a is defined to be proportional to the GW luminosity distance. Schematically

ℎ =:
1
𝑑gw
𝐿

. (72)

Sources of both electromagnetic and gravitational waves are called standard sirens.
For standard sirens, we can measure the ratio

𝑑gw
𝐿

(𝑧)
𝑑em
𝐿
(𝑧) , (73)

which can give us important information about the cosmic expansion and possible deviations from
GR or the standard model of cosmology [19–21]. In fact, one can show that (again, schematically)

ℎ =
1
𝑑em
𝐿

in GR, (74)

which can be guessed by combining (66), (69) and (71). Therefore, in GR the ratio (73) is equal to
1. Notice that (74) is the result of a calculation [142], while (72) is a definition.

2.5 Primordial stochastic GW background (SGWB)

So far, interferometers have detected only GWs coming from individual sources. However,
primordial perturbations in the tensor sector should give rise to a stochastic background of super-
posing GWs, filling our universe together with the CMB. The energy density associated to such a
background is given by the average of the kinetic term of tensor perturbations:

𝜌gw :=
𝑀2

Pl
8𝑎2

〈(
𝜕𝜏ℎ𝛼𝛽

)2 +
(
∇ℎ𝛼𝛽

)2
〉
=
𝑀2

Pl
4

∫
d ln 𝑘

(
𝑘

𝑎

)2
𝑘3

𝜋2

∑︁
_

��ℎ_𝑘 ��2 , (75)

where 𝑀Pl = ^−1 is the reduced Planck mass. During the radiation- and matter-dominated eras,
the primordial tensor spectrum Pt(𝑘), which is the two-point correlation function of the tensor
perturbation in comoving momentum space, evolves into a stochastic background ΩGW(𝑘, 𝜏). This
process can be encoded into a transfer function T (𝑘, 𝜏0), which describes the deformation of the
primordial spectrum by the evolution of the tensor modes after horizon crossing:

Ωgw(𝑘, 𝜏0) :=
1
𝜌crit

d𝜌gw

d ln 𝑘
=

𝑘2

12𝑎2
0𝐻

2
0
Pt(𝑘)T 2(𝑘, 𝜏0). (76)

As we will see, primordial perturbations naturally arise in the context of inflation and, for the tensor
sector, one predicts a very small amplitude. This smallness can explain why the current generation
of interferometers has not detected any SGWB yet.
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3. Cosmic microwave background

One second after the big bang, the universe was a hot plasma of matter and radiation in thermal
equilibrium. Since there were no atomic structures, free electrons and baryons could interact with
photons and among themselves. As the universe expanded, the plasma started to cool down and
the recombination process began. After the atomic structures formed, the density of diffusion
centers decreased and the universe became transparent to radiation. The CMB is a snapshot of our
universe at this matter-radiation decoupling. The surface from which we receive the CMB photons
is called the last-scattering sphere and it represents the horizon for electromagnetic observations of
our universe. No photons from earlier epochs can come through to us. In contrast GWs can filter
through the CMB and become a valuable probe of the very early universe.

The CMB was discovered by chance in 1964. The signal was found consistent with a black-body
spectrum at a temperature of about 3 K. Further investigations inaugurated by COBE [22] confirmed
the black-body spectrum and found tiny anisotropies in an otherwise highly isotropic background.
We entered the so-called era of precision cosmology thanks to the space observatories WMAP
[23–25] and Planck [26], the latter having reached the highest sensitivity as far as temperature
mapping is concerned (Fig. 1).
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Figure 1: The 2018 Planck map of the temperature anisotropies of the CMB. The gray outline shows the
extent of the confidence mask (©ESA and the Planck Collaboration [26]).

3.1 Temperature spectrum

In order to describe the temperature fluctuations of the CMB, it is convenient to introduce polar
coordinates on the last-scattering surface 𝑆2. We can, then, decompose the fluctuations in spherical
harmonics 𝑌ℓ𝑚(𝜗, 𝜑) defined as

𝑌ℓ𝑚(𝜗, 𝜑) = (−1)
𝑚+|𝑚|

2

√︄
2ℓ + 1

4𝜋
(ℓ − |𝑚 |)!
(ℓ + |𝑚 |)!𝑃ℓ |𝑚 | (cos 𝜗) ei𝑚𝜑 , (77)

15



P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
1
7

Lectures on classical and quantum cosmology Gianluca Calcagni

where the 𝑃ℓ |𝑚 | (𝑦) are the associated Legendre polynomials of degree ℓ. In particular, ℓ is called
multipole moment of the expansion. The temperature fluctuation (with respect to the mean value
𝑇0) observed in the direction of the unit vector e whose tip lies on the sphere 𝑆2 of comoving radius
𝜒 centered at the observer is given by

𝛿𝑇 (e𝜒)
𝑇0

=

+∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑎ℓ𝑚𝑌ℓ𝑚(𝜗, 𝜑), (78)

where 𝑎ℓ𝑚 are the coefficients of the expansion. Since 𝛿𝑇 (e𝜒)/𝑇0 is a real quantity, using the
properties of spherical harmonics, one can easily prove that 𝑎ℓ0 is real. Let us assume that the
anisotropies come from a random process with a Gaussian distribution (the inflationary paradigm
predicts this). Under these assumptions, the real and imaginary part of the 𝑎ℓ𝑚 coefficients are
independent. Now consider for each ℓ the (2ℓ + 1)-dimensional set{

𝛼ℓ,�̄� | �̄� = 1, 2, . . . , 2ℓ + 1
}

:=
{
𝑎ℓ0,

√
2 Re (𝑎ℓ𝑚) ,

√
2 Im (𝑎ℓ𝑚) | 1 ⩽ 𝑚 ⩽ ℓ

}
. (79)

We can then define for each ℓ the temperature angular spectrum 𝐶𝑇𝑇
ℓ

as the square of the half width
of the Gaussian distribution

𝑓ℓ
[
𝛼ℓ,�̄�

]
=

1√︃
2𝜋𝜎2

ℓ

e
−

𝛼2
ℓ,�̄�

2𝜎2
ℓ , (80)

where 𝜎2
ℓ

is the variance of the distribution 𝑓ℓ defined as

𝜎2
ℓ := 𝐶𝑇𝑇

ℓ =
1

(2ℓ + 1)
〈
𝑎2
ℓ

〉
, 𝑎2

ℓ :=
ℓ∑︁

𝑚=−ℓ
|𝑎ℓ𝑚 |2 , (81)

and
〈
𝑎2
ℓ

〉
is the average over an ensemble of skies, i.e., a collection of skies observed at different

points in the universe for a given ℓ. The temperature angular spectrum is related to the primordial
spectrum P𝛿𝑇 (𝑘) (the two-point correlation function of temperature fluctuations in comoving
momentum space) by the following integration:

𝐶𝑇𝑇
ℓ = 4𝜋

∫ +∞

0

d𝑘
𝑘
P𝛿𝑇 (𝑘) 𝑗2ℓ (𝑘𝜏0) , (82)

where 𝑗ℓ is the spherical Bessel function of degree ℓ. Since, for the time being, we can only
observe the universe from one point, we cannot average over all skies. Let us assume the ergodic
hypothesis, which implies that the average over the ensemble of all possible skies is equivalent to
spatial averages over one sky

⟨O⟩ = ⟨O⟩sky :=
1

4𝜋

∫
𝑆2

dΩ2 O. (83)

The ergodic hypothesis only works for random fields with a continuous spectrum, while the angular
spectrum 𝐶𝑇𝑇

ℓ
is labeled on a discrete set. For this reason, our assumption implies a theoretical

error that can be estimated. For small angular scales, we can average over a large number of pairs
of independent directions separated by the same angle. In fact, for ℓ ≫ 1, we have many modes
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labeled by 𝑚, so that the theoretical error will be smaller. On the contrary, at large scales, we have
a large intrinsic error. This effect is called cosmic variance and it prevents us from performing
complete measurements of our theoretical quantities. The cosmic variance can be computed as

𝜎2
𝐶ℓ

:=
〈
(𝐶obs

ℓ − 𝐶ℓ)2〉 = 〈
𝐶obs 2
ℓ

〉
− 𝐶2

ℓ =
2

2ℓ + 1
𝐶2
ℓ . (84)

From equation (84), we see that the higher the multipole moment ℓ, the lower the cosmic variance.
This means that, if we wanted to use CMB data to test a cosmological model alternative to the
standard one and this model predicted deviations at low multipoles, such deviations should be larger
than cosmic variance.

From the CMB data, we can extract important information to estimate the cosmological
parameters of models of the early universe. We briefly illustrate the necessary steps. First of all,
from our instruments, one gets a set of time-ordered data that can be compressed into sky maps
at different frequencies to minimize the noise. Then, one extracts a single map, from which one
reconstructs the angular power spectrum. Lastly, one can constrain the cosmological parameters
from the power spectrum features.

Let us roughly sketch the main features of the observed spectrum reported in the top panel of
Fig. 2. At low multipoles (ℓ ≪ 100), the spectrum shows a plateau behavior. The plateau is caused
by primordial scalar perturbations of the metric affecting gravitational potential experienced by
photons traveling from the last-scattering surface to the observer. This is called the Sachs–Wolfe
effect and it dominates the CMB anisotropies at low multipoles. It is possible to show that the
asymptotic power spectrum in this regime takes the power-law form

P𝛿𝑇 (𝑘) ≃ 𝐴(𝜏0𝑘)𝑛. (85)

If the primordial spectrum is scale invariant (Harrison–Zel’dovich spectrum) or almost scale invari-
ant, which means 𝑛 = 0 or 𝑛 ≈ 0, then we can explain the plateau. However, why should we have
an almost scale-invariant primordial spectrum? This condition poses a fine-tuning problem which
is solved in the context of inflation.

Other features to consider are those related to acoustic peaks. Because of density fluctuations,
the baryonic matter distribution presents potential wells. Photons coming from the last-scattering
surface go through these wells and the interaction can be described via a harmonic-oscillator model.
This process gives rise to acoustic peaks in the power spectrum.

Amplitude, number and position of the peaks are strongly dependent on the cosmological
parameters (Fig. 3). For instance, if we move from the flat spatial model to the open-universe case,
we get a higher amplitude of the first peak and a spectrum shift to the right. Moreover, the pattern
and size of hot and cold spots in the CMB map also depends on spatial curvature. For a closed
universe, we would see a thick-grain structure. These considerations allow us to conclude that
observations are consistent with a spatially flat universe. From these examples, the reader can get
an intuitive notion of how much CMB data can constrain alternative cosmological models.

The effect of the curvature of the universe is shown in simulated patches of the CMB map in
Fig. 4. A non-zero curvature would bend the CMB photon geodesics and make the observer see a
more coarse-grained or fine-grained pattern of hot and cold temperature spots. Observations favour
the flat universe.
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Figure 2: The 2018 Planck CMB power spectra Dℓ = ℓ(ℓ + 1)𝐶ℓ/(2𝜋) for temperature (𝑇𝑇 , top), the
temperature-polarization cross-spectrum (𝑇𝐸 , middle), the E mode of polarization (𝐸𝐸 , bottom left) and the
lensing potential (𝜙𝜙 bottom right). Within ΛCDM these spectra contain the majority of the cosmological
information available from Planck and the blue lines show the best-fit model. The uncertainties of the 𝑇𝑇
spectrum are dominated by sampling variance at all scales below about ℓ = 1800, a scale at which the CMB
information is essentially exhausted within the framework of the ΛCDM model. The 𝑇𝐸 spectrum is about
as constraining as the 𝑇𝑇 one, while the 𝐸𝐸 spectrum still has a sizeable contribution from noise. The
anisotropy power spectra are plotted here with a multipole axis that goes smoothly from logarithmic at low
ℓ to linear at high ℓ (©ESA and the Planck Collaboration [26]).

3.2 Scalar and tensor spectra

We saw that we need an almost scale-invariant primordial spectrum of scalar perturbations
to explain the low-multipole plateau in the CMB power spectrum. To be more quantitative, we
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Figure 3: Dependence of the temperature power spectrum on different cosmological parameters. Setting
k = −1, one gets higher amplitudes of the acoustic peaks and the whole spectrum is shifted to the right.
Similarly, if we increase Λ the first two peaks gets higher. Lastly, also the value of the baryon density 𝑛e is
strongly constrained by the first peak amplitude (Credit: NASA/WMAP Science Team [27]).

now introduce some parameters to describe both primordial scalar and tensor spectra. We recall
that the scalar spectrum is the two-point function of the curvature perturbation on uniform density
hypersurfaces Z ,

Ps(𝑘) := PZ (𝑘). (86)

The scalar spectral index is defined as the logarithmic variation of Ps with respect to the comoving
wavenumber 𝑘 ,

𝑛s − 1 :=
d ln Ps

d ln 𝑘
. (87)

For a power-law spectrum 𝑛s is constant and, in particular, 𝑛s = 1 if the spectrum is scale invariant.
However, if we want to account for deviations from the power-law behaviour we can introduce the
running of the spectral index and the parametrization

𝛼s :=
d𝑛s

d ln 𝑘
=⇒ Ps(𝑘) = 𝐴s

(
𝑘

𝑘0

)𝑛s (𝑘0 )−1+ 1
2 ln

(
𝑘
𝑘0

)
𝛼s (𝑘0 )

, (88)
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Figure 4: Anisotropy distortion from geometry. Simulated CMB features are characterized by, respectively,
larger/smaller angular scales in a closed/open universe (Credit: NASA/WMAP Science Team [27]).

where 𝐴s is the amplitude parameter and 𝑘0 is the pivot scale, which depends on the features of the
experiment (𝑘0 = 0.05 Mpc−1 for the Planck experiment). In the case of the tensor spectrum, we
can proceed analogously. Recall that we now have two independent polarization modes,

Pt(𝑘) :=
∑︁
_=+,×

Pℎ_ (𝑘) = 2Pℎ_ (𝑘). (89)

In the tensor case, the spectral index is defined as

𝑛t :=
d ln Pt

d ln 𝑘
. (90)

The spectrum is scale invariant when 𝑛t = 0. In principle, we could also define a tensor running
index, but we can neglect it according to observations, if we limit the discussion to CMB scales.
We then parametrize the spectrum in the following way:

Pt(𝑘) = 𝐴t

(
𝑘

𝑘0

)𝑛t (𝑘0 )
. (91)

However, instead of using the amplitude 𝐴t as a parameter, one typically defines the tensor-to-scalar
ratio

𝑟 :=
𝐴t

𝐴s
. (92)

From observations, we know that the scalar spectrum is deviating by 8𝜎 from the Harrison–Zel’dovich
spectrum [14]:

𝑛s = 0.9649 ± 0.0042 (68% CL) , (93)

assuming 𝛼s = 0. Although we have not observed yet the primordial tensor spectrum, there is an
upper bound on the tensor-to-scalar ratio at 𝑘0 = 0.05 Mpc−1 [28]:

𝑟 < 0.036 (95% CL) . (94)

This small value of 𝑟 has already ruled out many inflationary models.
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4. Inflation

4.1 Problems of hot big bang

The hot big-bang model can explain experimental data using a reduced number of parameters,
about 𝑂 (10). However, this approach presents the following key issues:

• Flatness problem. Why is the universe so close to flatness? We can rephrase the flatness
problem as an initial condition problem. It is simple to prove that, in a decelerating universe
originally filled with radiation and matter,Ωk(𝑧) decreases with the redshift, so that it becomes
large at early times. In contrast, according to the current constraints on Ωk,0, the density
parameter associated to the curvature should have been of order of 10−64 when the universe
had the Planck energy density. This small value implies extreme fine-tuning.

• Horizon problem. Why do we have such a strong correlation between distant regions of the
last-scattering surface? Viewed from Earth, the horizon at last scattering subtends angles
∼1.3◦. Thus, if the universe had been decelerating from the beginning, two regions of the
sky separated by larger angular distances had never been in causal contact when matter and
radiation decoupled. Nevertheless, as we know, temperature fluctuations of the CMB are
tiny everywhere in the sky vault, 𝛿𝑇/𝑇0 ∼ 10−5. This observation would require many
disconnected regions to have the same initial conditions. Once again, this discrepancy
translates into a fine-tuning problem.

• Primordial seeds problem. What originated the anisotropies? We saw in section 3 how we
could explain the CMB spectrum in terms of a primordial scalar spectrum that is almost
scale-invariant. Nevertheless, we have simply assumed that primordial scalar and tensor
perturbations exist. We have offered no mechanism to explain where they originated from or
why scalar perturbations are dominant compared to the tensor ones.

Inflation can solve all these problems.

4.2 Inflation: kinematics

We can define inflation as any phase of accelerated expansion:

¥𝑎 > 0 . (95)

This condition is purely kinematic, since it does not say anything about the origin of acceleration.
As we already know, we can give an equivalent description in terms of the first slow-roll parameter
𝜖 or of the cosmic fluid equation of state. In GR and in the presence of only one fluid,

¥𝑎 > 0 ⇐⇒ 𝜖 < 1 ⇐⇒ 𝑃 < −1
3
𝜌 . (96)

A prototypical background for inflation is de Sitter spacetime. Since in this universe the Hubble
parameter is constant, the scale factor grows exponentially and the first slow-roll parameter is equal
to zero at any time,

𝐻 (𝑡) = 𝐻 =⇒ 𝑎(𝑡) = e𝐻𝑡 =⇒ 𝜖 (𝑡) = 0 . (97)

A quasi-de Sitter acceleration is driven by a cosmological-constant-like fluid with 𝑃 ≃ −𝜌.
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4.3 Solution to the flatness problem

We want to prove that an accelerated expansion phase in the very early universe can solve the
flatness and horizon problem. Recall the definition of Ωk:

|Ωk | =
|k|

(𝑎𝐻)2 =
|k| 𝑅2

𝐻

𝑎2 = |k| 𝑟2
𝐻 , (98)

where we introduce the comoving Hubble radius 𝑟𝐻 = 𝑅𝐻/𝑎. For an accelerating universe, the
Hubble radius 𝑅𝐻 is a reasonable estimate of the particle horizon 𝑅p. We can describe the behaviour
in time of the comoving Hubble radius in terms of the first slow-roll parameter,

¤𝑟𝐻 = − ¥𝑎𝑟2
𝐻 = −1

𝑎
(1 − 𝜖) =⇒ ¤𝑟𝐻 < 0 ⇐⇒ 𝜖 < 1. (99)

The time evolution of the curvature density parameters is shown on Fig. 5. During matter and
radiation domination, 𝑟𝐻 grows in time and so does |Ωk |. However, if we have acceleration (𝜖 < 1),
|Ωk | decreases and, if inflation lasts long enough, it will take a very long time for |Ωk | to grow again.
As a consequence, we could start with an arbitrarily large curvature component, the initial value
would decrease (almost) exponentially and today we would still observe a very small curvature
term.

ti te t0 ?

0.0

0.1

0.2

0.3

0.4

0.5

lnHt L

ÈW K È

Figure 5: Time evolution of the curvature density parameter. |Ωk | decreases almost exponentially until the
end of inflation at 𝑡 = 𝑡e, then it starts to grow slowly. At the present time 𝑡0, we still have |Ωk | ≈ 0. Reprinted
with permission from [4], ©2017 Springer International Publishing Switzerland.

4.4 Solution to the horizon problem

Consider the proper wave-lengths of scalar perturbations. Since these wave-lengths are propor-
tional to the scale factor, they always grow in time with a time-dependent rate. During radiation and
matter domination, as we saw, the Hubble radius grows too, but at a larger rate. A mode crossing
the horizon at the present time is never below the horizon during radiation and matter domination.
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However, the Hubble radius is (almost) constant during inflation, while the accelerated expansion
exponentially stretches the proper wavelengths. Again, requiring that inflation lasts for long enough,
we reach back in time a point at which the mode exits the horizon (see Fig. 6a). Perturbations are
pushed outside the horizon and, when inflation ends, the Hubble radius starts to grow again until
catching up. Perturbations entering the horizon today were already inside the casual patch during
inflation before horizon exit.

ti tet
*

tk

0.5

1.0

1.5

lnHt L
ti tet

*
tk

0.20

0.25
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0.35

0.40

0.45

0.50

0.55

lnHt L

Figure 6: Left: the thin line is the proper wave-length _ = 𝑎(𝑡) _com of scalar perturbations. It grows
proportionally to the scale factor. The thick line is the Hubble radius 𝑅𝐻 . During inflation, the Hubble radius
is almost constant and the mode exits the horizon at 𝑡 = 𝑡∗, to reenter it a a later time 𝑡 = 𝑡𝑘 . Right: the
thin line is the comoving wave-length _com of scalar perturbations, which is constant in time. The thick line
is the comoving Hubble radius 𝑟𝐻 = 𝑅𝐻/𝑎. Introducing an early inflationary phase, the comoving Hubble
radius is shrunk below the comoving wave-length, while it increases during the post-inflationary decelerated
expansion until encompassing the comoving wave-length again. Reprinted with permission from [4], ©2017
Springer International Publishing Switzerland.

Analogously, we can look at the comoving picture that is shown in Fig. 6b. Comoving wave-
lengths are constant, while the comoving Hubble radius increases during the decelerated expansion
and decreases during the accelerated expansion. Inflation shrinks the comoving Hubble radius
below a given wave-length. Then, during radiation and matter domination, the comoving Hubble
radius grows and includes the wave-length again.

The causal patch in the CMB can be seen at larger separations not because we are violating
causality but because those regions were in causal contact at very early times.

4.5 Inflation: dynamics

In order to face the primordial seeds problem, we need to approach inflation from the dynamical
viewpoint and answer the question of what drives inflation. The simplest candidate is a real scalar
field 𝜙 slowly rolling over its potential 𝑉 (𝜙). We saw that a scalar field behaves like a perfect fluid
of barotropic index

𝑤𝜙 =
𝑃𝜙

𝜌𝜙
=

1
2
¤𝜙2 −𝑉 (𝜙)

1
2
¤𝜙2 +𝑉 (𝜙)

. (100)

The extreme slow-roll condition reads
¤𝜙2 ≪ 𝑉, (101)
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so that the kinetic term is subdominant with respect to the potential and with 𝑤𝜙 ≈ −1 we reproduce
the equation of state for the cosmological constant, which determines a quasi-de Sitter expansion.
The field 𝜙 is called the inflaton.

According to this cold big bang model, at its beginning the universe is only filled with the
inflaton field and undergoes an acceleration phase. After reaching a potential well at some point, the
field starts to roll quickly and it decays in ultra-relativistic particles giving rise to a very hot plasma,
thus recovering the evolution of the hot big bang model. This last phase is called reheating. From
observational constraints, we know that it takes place at temperatures of order 1016 GeV (Grand
Unification scales)

𝑇reh ≃
(
30
𝜋2

𝜌reh

106.75

) 1
4

<

(
30
𝜋2

3𝐻2
∗

106.75^2

) 1
4

< 7.6 × 1015GeV, (102)

where 𝜌reh is the energy density at reheating and 𝐻∗ is the Hubble parameter at horizon exit, i.e.,
before reheating.

The duration of inflation is a crucial quantity if we want to solve the horizon and the flatness
problem. We can quantify it in terms of the number of e-foldings. There are two possible definitions
of this number. We can define the total time measured from the beginning until the end of inflation
or from a point when a perturbation mode crosses (exits) the horizon until inflation ends. In general,
it is convenient to use the second definition, which involves the values of the co-moving Hubble
radius at horizon crossing and at the end of inflation:

N𝑘 := Ne − N∗ := ln
𝜏∗
𝜏e

≃ 52 − ln (𝑘𝜏0) −
2
3

ln
1015GeV

𝜌
1/4
e

− 1
3

ln
1010GeV
𝑇reh

. (103)

This expression depends on the reheating temperature. Typically, the duration is assumed to be at
least 50 e-foldings, which is the minimum value required to solve the flatness problem.

We can now consider the condensed timeline of the universe thermal history reported in Tab. 2,
including this very early phase, where we use as a relational time the relative dimensions of the
universe with respect to present time.

𝜌1/4 (GeV) 𝑇 (GeV) 𝑡 (s) 𝑟𝐻 (𝑡0) /𝑟𝐻 (𝑡) Event
∼ 1019 ∼ 0 10−44 > 1052 Cold big bang? Inflation begins at Planck scale?
∼ 1015 ∼ 0 10−36 1024 Inflation ends at GUT scale? Reheating begins?

∼ 1010 10−7 1022 Reheating ends?
10−2 10−2 1010 Latest end of cold big bang model
10−5 200 108 BBN
10−9 1012 100 Radiation-matter equality
10−13 1017 1 Today

Table 2: Condensed timeline of the universe thermal history including inflation. The fourth column reports
the relative comoving size of the universe with respect to present time, which can be used as a relational
time. Events associated with inflation come with question marks. Specifically, the typical energy scales are
strongly model-dependent.

The radiation-matter equality occurred when the universe was about 100 times smaller than
today; the BBN, when it was about 108 times smaller. We know from the BBN constraints that
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the latest time when inflation could end is about 10−2 seconds. The very early phase is strongly
model-dependent. In particular, we expect the universe to start with zero temperature and very high
energy, although the scale of inflation itself depends on the particle physics model we use.

Despite all these question marks, inflation is essential to explain what we observe today, so
that what we might call the standard cosmological model has to include inflation. For the moment,
there are no alternative models capable of explaining as many data as inflation.

4.6 Slow-roll parameters

We saw that we can describe acceleration using the first slow-roll parameter 𝜖 . Analogously, the
second slow-roll parameter [ is useful when we want to account for the duration of the accelerated
expansion phase. In the context of inflation, we can introduce the slow-roll parameters in two ways.
One is in terms of the Hubble parameter and the time derivatives of the field,

𝜖 :=
3 ¤𝜙2

¤𝜙2 + 2𝑉
,

[ := −d ln ¤𝜙
d ln 𝑎

= −
¥𝜙
𝐻 ¤𝜙

.

(104)

The second way, more convenient when we know the details of the inflaton dynamics, is in terms
of the potential,

𝜖𝑉 :=
𝑀2

Pl
2

(
𝑉,𝜙

𝑉

)2
,

[𝑉 := 𝑀2
Pl
𝑉,𝜙𝜙

𝑉
.

(105)

During inflation, the slow-roll parameters take very small values and are almost constant, since their
time derivatives are of second order in the parameters themselves:

𝜖 ≪ 1, |[ | ≪ 1, ¤𝜖 = 2𝐻𝜖 (𝜖 − [), ¤[ = 𝐻

(
𝜖[ − 𝜖2

)
. (106)

The slow-roll parameters define a so-called “tower” because we have leading order terms 𝜖 and [ and,
then, we can define higher-order parameters that are progressively smaller. In this approximation,
we can relate the definitions in equations (104) and (105) as

𝜖 ≃ 𝜖𝑉 and [ ≃ [𝑉 − 𝜖𝑉 . (107)

Lastly, the number of e-folds is given by the integral

N𝑘 ≃ sgn( ¤𝜙)
√

2
𝑀Pl

∫ 𝜙e

𝜙∗

d𝜙√︁
𝜖 (𝜙)

, (108)

where 𝜙∗ is the value of the inflaton at the time the perturbation with comoving wavenumber 𝑘 exits
the horizon. Once a model is chosen, one can compute all these quantities.
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4.6.1 Example 1: monomial potential

As a first example, consider a monomial potential, a simple power law in the form

𝑉 (𝜙) = 𝜎𝑛

𝑛
𝜙𝑛; 𝜎𝑛 > 0, (109)

with 𝑛 = 2, 3, 4, . . . . The first two slow-roll parameters are

𝜖 =
𝑛2

2
𝑀2

Pl
𝜙2 ,

[ =
𝑛(𝑛 − 2)

2
𝑀2

Pl
𝜙2 .

(110)

Further, we can calculate the value of the field at the beginning and the end of inflation as

𝜙2
i =

[
𝑛(8𝜋)2𝑀4

Pl
𝜎𝑛

] 2
𝑛

, (111)

and

𝜙2
e =

𝑛2

2
𝑀2

Pl ≪ 𝜙2
i , (112)

respectively. Lastly, we can integrate to get 𝜙∗ as a function of the number of e-folds,

𝜙2
∗ =

𝑛(4N𝑘 + 𝑛)
2

𝑀2
Pl. (113)

Therefore, we can fix the number of e-folds to some value (typical or minimum), then use it to
calculate the slow-roll parameters. In this way, we get a testable prediction since, as we will see,
the slow-roll parameters enter the primordial power spectra.

4.6.2 Example 2: natural inflation

Natural inflation gives us another interesting example, which is motivated by a symmetry-
breaking mechanism. We have a periodic potential in the form

𝑉 (𝜙) = 𝑀4

2

(
1 + cos

𝜙

𝑓

)
, (114)

where 𝑓 and 𝑀 are mass scales, and again we can calculate the slow parameters

𝜖 ≃ 1
8
𝑀2

Pl
𝑓 2

(
𝜙

𝑓

)2
, (115)

[ ≃ −1
2
𝑀2

Pl
𝑓 2 . (116)

We notice that |[ | ≫ 𝜖 is the main contribution to the power spectra. The values of the field at the
beginning and the end of inflation are given by

𝜙i ≃
(
1 − 64𝜋2𝑀

4
Pl

𝑀4

) 1
2

2 𝑓 , (117)

𝜙e ≃
√

8
𝑓 2

𝑀Pl
, (118)

26



P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
1
7

Lectures on classical and quantum cosmology Gianluca Calcagni

respectively. Then,

𝜙∗ ≃
√

8
𝑓 2

𝑀Pl
exp

(
−
𝑀2

Pl
𝑓 2

N𝑘

2

)
. (119)

4.7 Solution of the primordial seeds problem

We can now discuss the origin of the temperature fluctuations in the CMB. Cosmology is the
area where particle physics and gravity meet. In particular, when studying inflation, we are doing
quantum cosmology because a deeper understanding of the inflaton fluctuations requires quantum
mechanics. By a unique coincidentia oppositorum, a coincidence of opposites, the macrocosm
turns out to be a window on the microcosm of quantum fields. In fact, it is a quantum mechanism
to solve the primordial seeds problem. The inflaton is a scalar field. Therefore, it behaves as a
quantum object and undergoes quantum fluctuations around its vacuum expectation value (VEV).
These fluctuations generate scalar, vector and tensor fluctuations in the background metric and, if
they are small enough, they are compatible with the expected primordial scalar and tensor spectra.
In particular, the classical field 𝜙(𝜏) coincides with the vacuum expectation value of the quantum
field 𝜙(𝜏, x)

⟨𝜙(𝜏, x)⟩ := ⟨0|𝜙(𝜏, x) |0⟩ =: 𝜙(𝜏), (120)

where we assume the vacuum state |0⟩ to be spatially homogeneous and isotropic so that the VEV
only depends on conformal time 𝜏. We can then decompose the quantum field into a classical part
(the VEV) plus a small quantum fluctuation,

𝜙(𝜏, x) = 𝜙(𝜏) + 𝛿𝜙(𝜏, x). (121)

For convenience, we introduce a rescaled field �̂�(𝜏, x) = 𝑓 (𝜏)𝛿𝜙(𝜏, x), as we did for the metric
perturbations. We can then decompose the new quantum field in terms of creation and annihilation
operators,

�̂�k(𝜏) = 𝑢𝑘 (𝜏)𝑎𝑘 + 𝑢∗𝑘 (𝜏)𝑎
†
−𝑘 . (122)

Since our field lives on a curved background, the vacuum is not unique and neither are the creation
and annihilation operators. Therefore, we need to choose our vacuum according to some criterion.
In particular, it is possible to choose a vacuum state which reduces to Minkowski spacetime
asymptotically (Bunch–Davies vacuum). We then need to find the expression for the modes 𝑢𝑘 (𝜏)
and 𝑢∗

𝑘
(𝜏). With a proper choice of the function 𝑓 (𝜏), our modes are solutions of the Mukhanov–

Sasaki equation (60) for a certain background-dependent mass 𝑀 (𝜏). For small values of 𝑘𝜏,
the modes freeze when leaving the horizon. The primordial power spectrum is nothing but the
two-point correlation function evaluated at horizon crossing,〈

|�̂�k(𝜏) |2
〉

:= ⟨0|�̂�k�̂�
†
k |0⟩ = |𝑢𝑘 (𝜏) |2 , (123)

P̂𝑢 (𝑘) :=
𝑘3

2𝜋2 |𝑢𝑘𝜏≪1 (𝜏∗) |2
��
𝑘=𝑎𝐻

. (124)

According to the inflationary paradigm, we can explain the CMB anisotropies as originated by
quantum fluctuations of the inflaton field. This is consistent with the smallness of temperature
fluctuations, which amount to one part over 105.
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4.8 Inflationary spectra

For the scalar field, the two-point correlation function in the de Sitter background is constant
and it is proportional to the square of 𝐻,

P𝛿𝜙 =

(
𝐻

2𝜋

)2
. (125)

However, we recall from section 2.2 that the observed spectrum of scalar fluctuations is not just
the spectrum of the field fluctuations but of the curvature perturbation on uniform density hyper-
surfaces Z (which is a gauge-invariant combination of energy density fluctuations and scalar metric
perturbations). It turns out that the scalar spectrum is equal to (125) divided by the first slow-roll
parameter

Ps =
1

2𝑀2
Pl

1
𝜖

(
𝐻

2𝜋

)2
. (126)

Since in our model 𝜖 is very small, this quantity is quite large when compared to the tensor spectrum,
which is simply given by the scalar-field spectrum normalized by the Planck mass,

Pt =
8
𝑀2

Pl

(
𝐻

2𝜋

)2
. (127)

We recall that all fluctuations, when conveniently rescaled, satisfy the same Mukhanov–Sasaki
equation in GR. That is why we have the same spectra apart for the normalization. Further, we can
compute the scalar-to-tensor ratio, which is linear in the parameter 𝜖 and, therefore, very small:

𝑟 ≃ 16𝜖 . (128)

We have already seen that this prediction is consistent with our data. We now have a natural
mechanism to explain why scalar perturbations are dominant with respect to the tensor ones.
Moreover, we find that both the scalar and the tensor spectral indices are linearly proportional to
the first-order slow-roll parameters:

𝑛s − 1 ≃ 2[ − 4𝜖, 𝑛t ≃ −2𝜖 . (129)

Therefore, inflation predicts an almost (but, crucially, not exactly) scale-invariant spectrum that is
consistent with observations.

Furthermore, inflation also justifies the assumption we made when describing the CMB spec-
trum. We assumed that the distribution of the multipole coefficients 𝑎ℓ𝑚 is Gaussian, equation
(80). Inflation naturally predicts this property because the smallness of the perturbations allows
one to perturb the Einstein equations (15) at the first order and stop at the linear approximation.
In this case, inflationary fluctuations are Gaussian because the real and imaginary parts of the
Mukhanov–Sasaki variable 𝑢 are linearly independent. This property is called Gaussianity. Thus,
in the linear approximation, inflationary fluctuations have a Gaussian probability distribution and
we can completely describe them using only the power spectrum in momentum space. Higher-order
𝑛-point correlation functions vanish for odd 𝑛, while for even 𝑛 they are functions of the power
spectrum only. All these statistical properties are evaluated in the ensemble of spatial points in the
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sky vault. However, this is not the end of the story, since the Gaussianity assumption only works
at the linear level. At second order in cosmological perturbations, due to self-interactions inflation
also predicts a small non-Gaussian component, which has not been detected yet.

In Fig. 7, we can see which inflationary models are viable according to observational constraints.
Any model falling within the confidence regions for a number of e-folds between 50 and 60 is a
reasonable candidate. In particular, Starobinsky inflation (see below) falls right in the middle of the
likelihood region.
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Figure 7: Marginalized 68% and 95% CL likelihood contours in the plane 𝑟 (tensor-to-scalar ratio, evaluated
at the pivot scale 𝑘0 = 0.002 Mpc−1) versus 𝑛s (scalar spectral index). Regions of different colors correspond
to the joint marginalized constraints from 2018 Planck alone and in combination with other data sets.
Starobinsky inflation is denoted as “𝑅2 inflation” (©ESA and the Planck Collaboration [26]).

Although there are still several models compatible with such constraints, there have been
remarkable steps forward in the last twenty years. For example, the quadratic potential was still
acceptable according to the first-year WMAP data in 2003 [29]. Ten years later, with the Planck
2013 data, this model was almost excluded [30] and was later ruled out. The same happened in
many other inflationary models. Similarly, the tensor-to-scalar ratio was bounded as 𝑟 < 0.9 in
2003 [29], while now this upper limit is more than twenty times smaller, as shown in (94). We
entered the era of precision cosmology.

4.9 Starobinsky inflation

Starobinsky inflation is based on a quadratic modification of the Einstein–Hilbert action so that
the action has the form [144]

𝑆 =
1

2^2

∫
d4𝑥

√︁
|𝑔 |

[
𝑅 + 𝑅2

6𝑚2

]
, (130)

where 𝑚 is a mass scale. Just like any 𝑓 (𝑅) model, this is not a theory of quantum gravity (QG)
because, in general, terms that depend on the Ricci tensor are always generated at loop level if we
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quantize gravity as a perturbative quantum field theory (QFT). Nevertheless, this is one of the best
inflationary models phenomenologically speaking.

If we make a conformal transformation of the metric to the Einstein frame, it can be recast as
standard GR plus a scalar field,

𝑆 =

∫
d4𝑥

√︁
|𝑔 |

[
�̂�

2^2 − 𝜕`𝜙𝜕`𝜙 −𝑉 (𝜙)
]
, (131)

with the potential

𝑉 (𝜙) = 3𝑚2

4^2

(
1 − e−

√︃
2
3 ^ 𝜙

)2

. (132)

Starobinsky inflation is in excellent agreement with the CMB observations because it predicts a
scalar spectral index 𝑛s = 0.967 and a tensor-to-scalar ratio 𝑟 = 𝑂 (10−3), which is well within the
likelihood region of Fig. 7.

4.10 Inflation from particle physics

We conclude with the following list of considerations on how to implement the inflaton field
within particle physics.

Minimally coupled Higgs field
The first idea is to identify the inflaton with the Higgs boson since it is the only fundamental scalar
available in the Standard Model of particle physics. However, if we assume minimal coupling to
the geometry, this approach does not work because the Higgs mass (125 GeV) is much smaller than
the mass we would require to sustain inflation in the early stages of acceleration (𝑚 ∼ 1013 GeV).

Non-minimally coupled Higgs field
If we couple the Higgs non-minimally to gravity, i.e., by considering a term |𝜙 |2𝑅, we obtain a
model that can sustain inflation. However, this approach has unitarity issues and is not satisfactory
[31, 32]. One can rescue Higgs inflation by adding new physics and field couplings [33, 34].
Although this model works, it is not as appealing as the idea of just identifying the inflaton with the
Higgs boson [35].

Supergravity inflation
In supergravity (SUGRA) models, there are plenty of boson fields that are reasonable candidates for
the inflaton, but they are affected by the so-called [-problem: when computing the second slow-roll
parameter [, one typically finds a value close to one. Thus one of the hypotheses behind inflation
is completely spoiled. Several models characterized by supersymmetry breaking on the de Sitter
vacuum state solve this issue in SUGRA inflation, but they also require a number of non-perturbative
ingredients. Reviews on SUGRA inflation with references can be found in [4, 36].

5. Big bang (singularity) problem

The standard cosmological model predicts the big bang. The model, in fact, assumes that the
universe expands from a configuration where the scale factor is zero and, consequently, the metric
is degenerate and the energy density diverges. The universe temperature at the big bang can be
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zero or infinite depending on whether one has inflation or not. This pathological behaviour implies
that our picture of the universe starts from a point where the laws of GR are no longer valid; this is
called the big bang problem.

5.1 Origin and avoidance

In GR, the solutions of Einstein equations (15) are plagued by singularities, as for instance
in black holes. Since the theory is not predictive at singularities, this has been viewed as a major
theoretical problem and a motivation for quantum gravity. In fact, even if we find one regular
solution at 𝑡 = 0, it does not mean that the big bang problem is solved. One can make this argument
more rigorous through a series of focusing theorems started by Hawking and Penrose in the 1960s
[37–43]. These theorems make various assumptions about the universe matter content or the type
of dynamics. However, in 2003 Borde, Guth and Vilenkin (BGV) proved a very interesting theorem
[44] not based on any specific gravitational theory. Also, it does not assume anything about the
matter content or equation of state. The theorem implies that, if we change dynamics from Einstein
gravity to a more general one (for instance, 𝑅 → 𝑓 (𝑅)), we do not solve the singularity problem
and can still find singularities.

5.2 BGV theorem

We can formulate the BGV theorem as follows. Let (M, 𝑔) be a spacetime with a congruence
𝑢` continuously defined along any time-like or null geodesic 𝑣` (𝜎) (the observer). Further, we
define the following quantities

𝛾 := −𝑢`𝑣` ≥ 0, 𝑢2 = −1 ,

𝑤` :=
𝑣` − 𝛾𝑢`
𝛾2 + 𝑣2 =⇒ 𝑤2 = 1,

H := 𝑤`𝑤
a∇a𝑢

`,

Hav :=
1

𝜎𝑒 − 𝜎𝑖

∫ 𝜎𝑒

𝜎𝑖

d𝜎H (𝜎),

(133)

where 𝜎 is a proper-time or an affine parameter along the observer’s geodesic, running from some
initial value 𝜎𝑖 to some end value 𝜎𝑒. For instance, an observer in the congruence defined by the
vector 𝑢` is like traveling through a flux of particles. We introduced a local notion of volume
expansion H , which is a generalization of the Hubble parameter. We then defined an average
expansion Hav over the observer’s world-line.

Let the averaged expansion condition Hav > 0 hold for almost any 𝑣`. Then, (M, 𝑔) is
geodesically past-incomplete: geodesics have a finite proper or affine length. The proof is straight-
forward. Noting that H = ¤𝐹 =: 𝑣`∇`𝐹, where 𝐹 = 𝛾−1 > 0 for null geodesics (𝑣2 = 0) and
𝐹 = arctanh(𝛾−1) > 0 for time-like geodesics (𝑣2 = −1), one notes that the average expansion is
just a positive finite constant 𝐶 divided by the length of our geodesic, which is then finite:

0 < Hav =
𝐹 (𝛾𝑒) − 𝐹 (𝛾𝑖)

𝜎𝑒 − 𝜎𝑖
=

𝐶

𝜎𝑒 − 𝜎𝑖
. (134)

To get this result, we did not need to assume inflation, only that the universe expanded on
average. We did not even need homogeneity or isotropy. This theorem is very powerful and one
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might think it seems to put the final word on the singularity problem. However, this is not accurate.
Having past-incomplete world-lines is not enough to prove the existence of a global singularity. For
that, we would need to show that past-incompleteness happens for all observers at the same time.

5.3 Jumping into the big bang: BKL conjecture

Let us assume we cannot get rid of the big bang. What would we see if we went towards the
singularity? Surprisingly, the following result holds in several models, not only in GR but also if
we modify gravity or change the number of spacetime dimensions.

Near the singularity, spatial points decouple and spacetime becomes homogeneous. In partic-
ular, time derivatives dominate over spatial derivatives. Belinsky, Khalatnikov, and Lifshitz (BKL)
proposed this conjecture in the late 60s and early 70s, based on converging results in different set-
tings [45–47]. The approach towards the singularity turns out to be either monotonic or oscillatory
in the scale factors. Spacetime becomes homogeneous but not isotropic, meaning that different
directions can behave differently. For instance, if we have three independent scale factors 𝑎1(𝑡),
𝑎2(𝑡) and 𝑎3(𝑡), which are all functions of time, we are in the so-called Bianchi IX model. There
are many possible parametrizations of the scale factors, such as

𝑎1,2 =: e−Ω+𝛽+±
√

3𝛽− , 𝑎3 =: e−Ω−2𝛽+ , Ω := −1
3

ln (𝑎1𝑎2𝑎3) . (135)

The coefficients 𝛽± of this parametrization enter the potential associated with the Bianchi IX
cosmology. During the evolution towards singularity, the universe bounces back and forth along
the walls of this potential. This process is the reason why such a configuration is also called
cosmological billiard: the scale factors chaotically change their behaviour during the evolution
backwards in time. One can understand the BKL singularity also by parametrizing the scale factors
in terms of the number of e-folds N𝑖 = ln 𝑎𝑖 . Towards the singularity, one scale factor always
decreases, but the other two oscillate in opposite directions, so that at any time there is always one
scale factor increasing backwards in time. This behaviour is shown on Fig. 8. This process happens
infinitely many times before reaching the singularity.

Although here we have focused on the BKL big bang, there are other models of singularity
(e.g., coming from SUGRA), some of which even reach the point of describing the shape of the
singularity itself [48].
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Figure 8: BKL singularity. Time flows backwards towards the singularity to the right, where 𝜏 :=∫
d𝑡/(𝑎1𝑎2𝑎3) and 𝑢𝑛 parametrizes the power laws 𝑎 (𝑛)

𝑖
∼ 𝑡 𝑝𝑖 (𝑢𝑛 ) within each epoch 𝑛. Reprinted with

permission from [4], ©2017 Springer International Publishing Switzerland.

6. Cosmological constant problem

Compared to the singularity problem, the cosmological constant one is of broader interest
because it is an observational problem. While the big bang and black-hole singularities undeniably
constitute an issue for GR as a theoretical framework, we do not observe them. In contrast, we do
have direct access to the effects of the cosmological constant. Also, there are many model-dependent
solutions to the big bang problem, but there are many more for the cosmological constant problem.
This, and the fact that there is no common agreement on which solution is the best, are telltales
indicating the scope of the task ahead.

We know that dark energy accounts for about 3/4 of the total cosmic energy budget but,
nevertheless, it is not dense. Its energy density is about 120 orders of magnitude smaller than the
reduced Planck energy density

𝜌Λ ∼ 10−48GeV4 ∼ 10−120𝑀4
Pl. (136)

Why is there such a hierarchy of extremely small numbers?
We can state the cosmological constant problem in different ways. Here we recall four of them:

the old problem, the new problem, the broken-symmetry problem and the 4𝜋 puzzle.

33



P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
1
7

Lectures on classical and quantum cosmology Gianluca Calcagni

6.1 Old problem

One of the first formulations is called the old problem, reviewed in [49]. According to equation
(46), the dark-energy component looks like a cosmological constant because its equation of state is
compatible with a barotropic index equal to −1. For this reason, we can naturally frame the problem
in the formalism of QFT. Since dark energy looks like a pure cosmological constant Λ = const, we
may try to interpret it as the zero-point energy of matter fields. Unfortunately, QFT cannot explain
the magnitude of Λ in terms of vacuum energy density. First of all, we recall that the vacuum energy
density (or zero-point energy) is the eigenvalue of the system Hamiltonian when acting upon the
physical vacuum state. In QFT, it is equivalent to the contribution 𝑍 [0] of all bubble diagrams, i.e.,
Feynman diagrams with no external legs.

If we compute this energy using the electroweak sector of the Standard Model of particle
physics, at tree level we obtain���𝜌 (0)vac

��� ∼ 𝑚2
ℎ

8
√

2𝐺F
∼ 1.2 × 108 GeV4 ∼ 10−65𝑀4

Pl ∼ 1056𝜌Λ, (137)

where 𝑚ℎ is the Higgs mass and 𝐺F is the Fermi coupling. This value is 56 orders of magnitude
bigger than what we observe.

Going to one-loop level does not alter this estimate. One must compute the following integral:

𝜌
(1)
vac =

∑︁
𝑖

𝑁𝑖

2

∫ +∞

−∞

𝑑3k
(2𝜋)3

√︃
|k|2 + 𝑚2

𝑖
, (138)

where 𝑁𝑖 is the number of one-particle states of the species 𝑖. Using a cut-off regularization scheme,
one ends up with the famous estimate 𝜌 (1)vac,𝑖 ∼ 𝐸4

max, where 𝐸max is an energy ultraviolet (UV) cut-off
[50]. Thus if we take the reduced Planck mass as a cut-off, 𝐸max = 𝑀Pl, we get 𝜌 (1)vac,𝑖 ∼ 10120𝜌Λ.

However, such a regularization breaks Lorentz invariance and gives a wrong result. Using
instead the dimensional regularization scheme, one gets [51, 52]

𝜌
(1)
vac =

∑︁
𝑖

𝑁𝑖𝑚
4
𝑖

(8𝜋)2 ln

(
𝑚2

𝑖

𝑀2

)
∼ 10−65𝑀4

Pl ∼ 1056𝜌Λ , (139)

where 𝑀 is the renormalization scale chosen as the average between 𝐻0 and the energy of photons
coming from supernovæ [52]. Thus, we end up with the same order of magnitude as for the tree
level. It is not as big as the often-quoted 10120, but it is still huge. One can show that going to the
higher loops does not improve the discrepancy.

6.2 Problem of small/large numbers

We stress that the old cosmological constant problem is not just an artifact stemming from
applying QFT for the sake of it. The problem is neither the smallness itself nor the fact that ordinary
QFT does not work, but that we cannot explain the value of 𝜌Λ with known, well-established
physics. For instance, at matter-radiation equality, the energy density is about 110 orders of
magnitude smaller than the Planck density,

𝜌eq ≈ 1.5 × 10−110𝑀4
P . (140)
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Such an abysmal gap is comparable with the one in equation (136), being 𝜌eq “only” ten orders
of magnitude larger than 𝜌Λ. However, this is not a hierarchy problem because we can predict the
value of 𝜌eq using the particle physics of the Standard Model.

In order to further understand the problem of small or large numbers in relation with the cosmo-
logical constant, we propose an analogy taken from our own build-up. Suppose we want to estimate
the probability that one person has a specific face. In the language of genetics, this would amount to
ask what the probability is to have a certain phenotype. In turn, this is an expression of the individ-
ual’s genotype, i.e., the information encoded in the genes. Genes are made of DNA rolled into chro-
mosomes and the composition of the latter is determined at conception by the combination of two
gametes, the haploid cells carrying the father’s and the mother’s genetic
information. Now, within the DNA, a gene locus is said to be in het-
erozygosis when it admits two different alleles of the gene. Therefore,
the variety of faces may be linked to genetic recombination and to how
many loci are in heterozygosis.

Out of a total of about 20, 000 coding genes in the complete haploid set of 23 chromosomes
[53, 54], about 16-20% are polymorphic [55–57], meaning that, in average, each individual’s
genome has about 3200 − 4000 loci in heterozygosis. This means that genetic recombination can
produce

23200 − 24000 ∼ 10960 − 101200 (141)

different gametes, a tremendous number by any account. This number is much superior even
to the famous 10500 vacua in string theory (section 7.4.1), not to mention the puny 10120 of the
hierarchy problem for the cosmological constant. However, its explanation is straightforward once
we know genetics and the workings of the DNA. Coming back to physics, the cosmological constant
problem might exist simply because we still do not know what a more complete cosmological theory
(“genetics”) looks like and how it would predict the content (the “genome”) of the universe.

6.3 New and coincidence problem

The so-called new cosmological constant problem focuses on the fact that the cosmological
constant energy density today is of the same order as the matter-energy density,

𝜌Λ = 𝑂 (𝜌m) . (142)

Why is that so? Another facet of the same observation is the coincidence problem.
The cosmological constant becomes dominant at very small redshifts: Why so recently?

However, let us note that in terms of cosmic time Λ domination begun when the universe was about
half its present age. Therefore, this type of fine tuning depends on the chosen time variable.

6.4 Broken symmetry problem

There is another way to state the cosmological constant problem, proposed by Weinberg [58].
When we are in Minkowski spacetime, we can shift the matter Lagrangian by a constant:

Lm → Lm + 𝜌0 =⇒ 𝑇 a
` → 𝑇 a

` + 𝜌0𝛿
a
` (143)
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This shift does not change the equations of motion ∇a𝑇
a

` = 0. However, as soon as we switch on
gravity, we no longer have this shift symmetry because the Einstein equations (15) are not invariant
due to the cosmological constant:

Λ → Λ − ^2𝜌0. (144)

This sudden breaking of the shift symmetry is peculiar from the point of view of field theory. In field
theory, vacuum solutions are usually symmetric with respect to some subgroup of the full symmetry
group. In the case of classical gravity, when Λ = 0 a vacuum solution is the Minkowski metric
𝑔`a = [`a , which is invariant under the Poincaré group. However, when Λ ≠ 0 this symmetry
is broken and solutions preserving space-time translations require a fine tuning on Λ. This way
is another way to state that we cannot apply all the field-theory concepts to GR straightforwardly
when the cosmological constant is different from zero.

6.5 4𝜋 puzzle

We conclude by recasting the problem in terms of the 4𝜋 puzzle, which is a numerical
coincidence based on classical cosmology [59]. For the observed value of 𝜌Λ, the duration of
the matter-radiation era from the end of inflation at time 𝑡e (reheating) until the onset of late-time
acceleration at time 𝑡Λ can be computed in terms of the number of e-foldings and it is equal to
4𝜋 ± 10−3:

NeΛ =

∫ 𝑘Λ

𝑘e

d3𝑘

(2𝜋)3Vcom =
2

3𝜋
ln
𝑎e𝐻e

𝑎Λ𝐻Λ

≃ 1
6𝜋

ln
[
10−3 𝜌reh

𝜌Λ

]
≈ 4𝜋, (145)

where Vcom ∝ (𝑎𝐻)−3 is the comoving Hubble volume. This value is based on the history of the
universe and, specifically, on the onset of the dark energy era. It also depends on the reheating
because it depends on when the radiation era starts. However, these uncertainties do not alter the
above estimate.

6.6 Attempts to solving the Λ problem

Let us consider some possible solutions to the cosmological constant problem not invoking
quantum gravity. Simple ideas that, however, do not work or are still under development are the
following.
Quintessence: 𝜌Λ = 𝜌𝜙

As we saw, we can explain the acceleration in the early universe by introducing a dynamical scalar
field 𝜙. It is reasonable to ask if this approach also works for the late-time universe. This minimally
coupled scalar field is called quintessence [60]. The problem is that one has to choose an ad
hoc potential to fit observations and, more importantly, one has to fine-tune the initial conditions.
Assuming the quintessence field to be non-minimally coupled to matter (extended quintessence)
[61, 62], one can get acceleration with 𝑤0 ≈ −1 and no fine-tuning [63] but the ΛCDM model
is still statistically favoured [64]. Also, both minimally and non-minimally coupled models of
quintessence tend to favour lower local values of 𝐻0 compared with ΛCDM, thus exacerbating the
𝐻0 tension and facing an observational problem [65, 66].
Modified gravity: 𝑓 (𝑅)
Another explanation may come from modified-gravity models such as 𝑓 (𝑅), where late-time

36



P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
1
7

Lectures on classical and quantum cosmology Gianluca Calcagni

acceleration is sustained by geometry itself [67, 68]. However, we do not know how to theoretically
justify observationally viable models because, simply put, we do not know where these Lagrangians
come from. Attention to phenomenology should go hand by hand with care for a top-down
motivation, something about which 𝑓 (𝑅) and similar ad hoc proposals tend to fail. Lastly, many of
these models require moderate fine-tuning.
Void models
The cosmological principle works on average, but we know that large void regions surround the
clusters of galaxies. A possibility is that acceleration is a spurious effect of assuming a meaningful
average energy density ⟨𝜌⟩ and the FLRW background, where one is not taking into account the
fact that signals propagate through voids where 𝜌void ≪ ⟨𝜌⟩. These models (see [4, section 7.6.2]
for references) are attractive because they do not add new physics to GR, only a more sophisticated
background and matter distribution. However, most of them are in tension with data, entail some
fine tuning or remove the fine tuning at the price of simplicity.

7. Cosmology of quantum gravity

We now present some cosmological models emerging from QG. It is legitimate to ask what
quantum gravity predicts about cosmological observations. In this section, we partially try to
describe the state of the art in this field.

7.1 Ideal QG proposal

An ideal QG proposal should satisfy some minimal requirements which, for generality, we
state for a theory of everything (i.e., including all sectors of gravity and matter):

1. Theoretically rigorous, viable and inclusive. First of all, a theory of QG should be theoretically
rigorous, with good properties such as no (or a finite number of) infinities in the UV, no or
harmless violations of unitarity, and so on. In particular, on the side of theoretical consistency,
it should solve the singularity problem. On the side of inclusiveness, it should reproduce
portions of well-established theories already tested by experiments, in particular, a good
low-energy or low-curvature limit recovering GR, an early-universe inflationary mechanism,
the Standard Model of particles, and so on.

2. Retrodictive. A good theory should give retrodictions, i.e., observational predictions that
have already been tested, but stemming from a new theoretical set-up. This is a step further
on the side of inclusiveness. For instance, its inflationary spectra should be computable
and consistent with observations, it should solve the cosmological constant problem, the 𝐻0

tension or explain some loose strand of the Standard Model, such as the origin of neutrino
masses.

3. Predictive and testable. It should also give unique predictions of yet-unobserved phenomena
that could be checked against near-future observations in the laboratory, particle physics,
astrophysics or cosmology.

We are currently far from this ideal framework but there are many proposals with some, if not most,
of the above properties. Nowadays, the question is not whether one can quantize gravity (we did it
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already!), but which of the existing theories is closer to fulfill this program. Since it is possible to
advance our knowledge of QG phenomenology in fundamental theories or, at least, through models
strongly tied to fundamental theories, we should make a warning remark on back-of-the-envelope
arguments discarding the possibility of QG effects on the ground that they are too small or confined
to Planck scales. In general, we have two possibilities to approach QG:

• Perturbative QG. One can realize QG as a perturbative QFT when taking a modification of GR
as the underlying classical theory (GR cannot be perturbatively quantized consistently [69]). For
instance, one can add higher-order curvature operators to the action. However, in this case we
expect QG effects to become relevant at high curvature or short distances. From the point of
view of homogeneous cosmology, we only have two scales available, the Planck length ℓPl and
the Hubble parameter 𝐻, so that corrections would be expressed as powers of the product ℓPl𝐻.
Using the value of the Hubble parameter today, 𝐻0, we get a highly-suppressed value of 10−60,
possibly exponentiated to some yet smaller quantity.

• Non-perturbative QG effects. Things change if we consider non-perturbative quantizations of
QG or, in general, non-perturbative effects regardless of the type of quantization. As a simple
example, in some settings the fundamental building blocks may dynamically evolve to a semi-
classical spacetime limit where an intermediate length scale 𝐿 ≫ ℓPl emerges. This scale could
be the characteristic length of some quantum states of geometry [70]. Then, one can construct
dimensionless quantities such as ℓ𝑎Pl𝐻

𝑏𝐿𝑐 if the powers sum up to zero, 𝑎 − 𝑏 + 𝑐 = 0; some
quantum corrections would be proportional to this quantity and not all of them would be small.
String theory and string cosmology are another clear demonstration of how non-perturbative
physics can make the microscopic visible.

The type of back-of-the-envelope, curvature-corrections-based reasoning described in the first bullet
is often invoked to dismiss QG as a relevant actor in the cosmology theater. These arguments have
also been refuted time and again by the fact, among several others, that quantum theories beyond
Einstein gravity can significantly modify the standard inflationary spectrum, thanks also to the
non-perturbative effects mentioned in the second bullet.

7.2 Inflation in QG

There are many models of QG or inspired by QG which embed inflation. Here we give just
three examples. The first is non-local quantum gravity, the second is a class of models coming from
loop quantum gravity and the third is a class of models from string theory.
Non-local Starobinsky inflation
Non-local quantum gravity is a perturbative QFT approach where the dynamics is characterized,
at the fundamental level, by a certain class of non-local operators [71, 72]. This theory is unitary
and renormalizable or even finite in some realizations. In the so-called Weyl basis and in four
dimensions, the generic action of non-local quantum gravity is

𝑆 =
1

2^2

∫
d4𝑥

√︁
|𝑔 |

[
𝑅 + 𝑅𝛾S(2)𝑅 + 𝐶`a𝜌𝜎𝛾C(2)𝐶`a𝜌𝜎 + V(R)

]
. (146)

The action is of higher order in curvature terms in order to make the theory renormalizable. The non-
local form factors 𝛾S(2), 𝛾C(2) are introduced to preserve unitarity (ghost freedom) and improve
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renormalizability and depend on a fundamental scale 𝑀∗ possibly close or equal to 𝑀Pl. Different
form factors are allowed by these self-consistency conditions imposed on the theory but they all
share the property of diverging in the UV, so that their inverse (the graviton propagator) vanishes
in the same limit. Last, V is a collections of local terms in curvature tensors R = 𝑅, 𝑅`a , 𝑅`a𝜌𝜎

which is necessary only if we want to make the theory not only renormalizable, but also UV finite.
Note that the Weyl tensor 𝐶`a𝜌𝜎 vanishes on a FLRW background.

Starobinsky inflation can be embedded in this theory. Calling 𝑧 := 2/𝑀2
∗ and parametrizing

the form factor in the Weyl term as

𝛾C(𝑧) =
1

2𝑀2
∗

eH2 (𝑧) − 1
𝑧

, (147)

with a similar parametrization for 𝛾S with a different function H0, one can choose the form factors
H0 and H2, which depend on two mass scales 𝑀∗ and 𝑚, such that the Starobinsky action (130) is
recovered in the local limit. Regarding inflation, let us concentrate on the GW spectrum, which will
also be examined in section 8.3. The primordial tensor spectrum is [145, 146]

Pt ≃
𝑚2

2𝜋2𝑀2
Pl
(1 − 3𝜖)e−H2 [−𝑅/(2𝑀2

∗ )] , (148)

where the Ricci scalar 𝑅 is evaluated at horizon crossing. The other inflationary observables follow
through.
Loop quantum cosmology
Loop quantum cosmology (LQC) is the cosmological realization of the Hamiltonian quantization
scheme of loop quantum gravity. The latter does not aim to integrate the Standard Model, although
there are proposals in that direction. There are at least three different versions of LQC, depending on
how we treat cosmological perturbations and the background: the anomaly cancellation approach,
the hybrid quantization approach and the dressed metric approach [4, 73–76]. Just like in the standard
model of cosmology, the inflaton is a scalar field introduced by hand, its origin is unexplained and
its potential is simply assumed. Still, the QG ingredients of LQC open a window on new physics.
In fact, even if the curvature scale of inflation is typically much smaller than the Planck energy, we
can still get macroscopic effects in QG modifications of the CMB spectrum.

So far, LQC models have proved themselves both retrodictive and predictive. However, we
recall that deviations from GR at low multipoles should be larger than cosmic variance to be testable
as far as the CMB is concerned, which happens only in a very limited number of cases.
String cosmology
There are very different realizations of string inflation, depending on how we compactify the extra
spatial directions if these are small, or on how the visible four-dimensional universe would be
embedded in large extra dimensions. In general, in this framework, the inflaton naturally arises as
a field among the many geometry-originated scalars (called moduli) of the theory. In this sense,
the string approach is more satisfactory than LQC because we do not need to artificially add extra
degrees of freedom.

However, there are many ways to have an early universe stage of acceleration (Tab. 3) [4, 77]:
moduli inflation, axion inflation, monodromy inflation, warped D-brane inflation, UV DBI inflation,
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IR DBI inflation, string-gas cosmology, certain versions of the ekpyrotic universe, and so on. These
models are all in agreement with observations of the primordial scalar spectrum but they can
give different predictions about the tensor sector and the level of non-Gaussianity. In some of
these models (moduli inflation, warped D-brane inflation, IR DBI inflation and viable versions of
the ekpyrotic universe), the tensor-to-scalar ratio 𝑟 is too small to be observable. Other models
can produce larger values of 𝑟 closer to the current upper bound (94). Lastly, the fine-tuning of
string-cosmology models is generally acceptable and, in some cases, it is very mild.

In the classification of section 7.1, all these models are retrodictive because the theoretical
value of the scalar spectral index 𝑛s lies in the allowed observational range coming from (93) and
the tensor-to-scalar ratio 𝑟 respects the upper bound (94); and they are also predictive because it is
possible to calculate the theoretical value of 𝑟 when we still have not observed the tensor sector.
But only the second group of models is testable as far as the tensor sector is concerned, since the
predicted value of 𝑟 is large enough to be within observational reach in the near future.

Model 𝜖∗ |[∗ | 0.95 < 𝑛s < 0.98 𝑛t 𝑟 𝑓NL Fine tuning
Moduli inflation ∼ 0 ∼ 10−2 ✓ ≲ 0 ∼ 0 Small 100 − 10−3

Axion inflation ∼ 10−2 ≳ 10−2 ✓ ∼ −10−2 ≲ 0.001 Small? 10−2 − 10−4

Monodromy inflation ∼ 10−2 ≳ 10−2 ✓ ∼ −10−2 0.01 − 0.1 Small 10−2

Warped D-brane inflation ∼ 0 ∼ 10−2 ✓ ≲ 0 ∼ 0 Small 10−2 − 10−3

UV DBI inflation ∼ 10−1 ∼ 10−1 ✓ ∼ −10−1 ≳ 0.01 Large 10−2

IR DBI inflation ∼ 0 ∼ 10−2 ✓ ≲ 0 ∼ 0 Large 10−1 − 10−2

String-gas cosmology − − ✓ ∼ +10−2 ≲ 0.1 Small 10−2

Ekpyrotic universe ∼ 102 ∼ 102 ✓ ≳ 2 ∼ 0 Large 10−1 − 10−2

Table 3: Main features of different models of string cosmology. The scalar spectral index is inside the
3𝜎 experimental bound determined by (93). 𝑓NL is a parameter estimating the level of non-Gaussianity of
scalar perturbations. All the models predict small values of the slow-roll parameters evaluated at horizon
crossing, except for the ekpyrotic universe. String-gas cosmology and the ekpyrotic universe are alternatives
to inflation.

7.3 Big bang problem in QG

In the following list, we briefly summarize how different approaches to QG fare concerning
the big bang problem. More references prior to 2017 can be found in [4].

• String theory. Singularities are resolved by T-duality [78] or by other means in different
corners of the parameter space of the theory [79–82]. A particularly original scenario
is the 𝐸10/𝐾 (𝐸10) coset model [83]. This model arises in 𝐷 = 11 SUGRA, which can
be considered as the low-energy limit of M-theory, which, in turn, is regarded as the 11-
dimensional extension of string theory. This setting is a quantum version of the cosmological
billiard. If one tries to approach the cosmic singularity, one finds that spatial points decouple
and that spacetime becomes homogeneous, in agreement with the BKL conjecture for classical
billiards. However, close to the singularity something unexpected happens. In the strong-
coupling limit where the 11-dimensional Newton’s constant goes to infinity, 𝐺 → +∞, all
the 𝐷 = 11 SUGRA dynamical matter fields and the metric reduce to just one degree of
freedom in one dimension, a homogeneous dynamical variable a(𝑡) which takes values in the
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Lie group E10 and follows a null geodesic in the quotient space E10/𝐾 (E10), where 𝐾 (E10) is
the maximal compact sub-group of E10. In this regime, the big bang is never reached because
spacetime dissolves into a purely algebraic structure: the Universe becomes just symmetry.

• Non-local quantum gravity. In this theory, the big bang singularity is smeared into a bounce
already at the classical level, thanks to the presence of the non-local operators [84–86]. In
the case of black holes, singularities can be resolved through non-locality in certain versions
of the theory, while in others the help of conformal symmetry is needed.

• Canonical quantum cosmology, where the universe is described by a wave function satisfying
the Wheeler–DeWitt equation. We have a probabilistic interpretation of the big bang. The
wave-function solving the Hamiltonian constraint of the universe vanishes at the big bang, so
that the probability to hit the initial singularity is zero [87]. In general, non-singular solutions
exist [88] but it is not clear how typical they are, since we do not have quantum versions of
the singularity theorems mentioned in section 5.

• Loop quantum gravity. While in Wheeler–DeWitt quantum cosmology the big bang happens
but with zero probability, in the case of loop quantum cosmology we actually skip the big
bang [4, 74–76]. In fact, as a result of the quantization of geometry, the evolution of the
universe goes through discrete steps which do not include the big bang at 𝑡 = 0. In the limit
of a continuous evolution, the effective Friedman equations display a finite quantum bounce
where the energy density is about half the Planck density [4, 74–76]. This result is fairly
generic but relies on assumptions that have been criticized [89].

• Spin foams, a covariant path-integral quantization based on the states of loop quantum gravity
[90]. The bounce predicted in LQC is confirmed [91].

• Group field theory, a perturbative QFT where fields live on a group manifold and in which
both loop quantum gravity and spin foams are included [92, 93]. LQC dynamics, hence the
bounce, are recovered solving the theory on condensate states [94].

• Multifractional spacetimes, where fields live in a spacetime with scale-dependent Hausdorff
and/or spectral dimension [95, 96]. In the so-called stochastic interpretation of the theory,
spacetime becomes fuzzy, there is a minimal uncertainty on scales and it no longer makes
sense to talk about singularities at all. However, these scenarios are not yet embedded in a
full theory of QG.

• Asymptotic safety, a non-perturbative realization of quantum gravity based on the functional
renormalization approach [97–99]. Bouncing solutions have been found [100] but their
generality remains unclear. Therefore, the big bang problem is not yet solved.

• Unimodular gravity is a class of theories where some components of the metric are non-
dynamical [4, 101]. Since it is equivalent to GR at the classical level, the cosmic singularity
is still in its place classically and any news about it should come from the quantum theory,
which can be defined via the path integral. However, attention has been mainly drawn to the
cosmological constant problem rather than to the big bang. Therefore, the big bang problem
is not yet solved.
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• Causal sets, where the fundamental setting is not continuous spacetime but a discretum of
points with an ordering relation [102, 103]. The big bang problem is not yet solved.

• Causal dynamical triangulation, a path-integral quantization regularized by approximating
smooth manifolds with triangulations [104, 105]. The big bang problem is not yet solved.

7.4 Cosmological constant problem in QG

A fundamental question is whether the solution of the cosmological constant problem is rooted
in the UV or in the infrared. We may think about it as an infrared problem because it has to do with
the large-scale properties of the universe, but its origin could be in short-scale physics, as in the
failed QFT resolution of the old problem (section 6.1).

Let us now see how QG models deal with the cosmological constant problem. We further
discuss the theories marked with an asterisk * in the following sub-sections.

• String theory.* We have a landscape of vacua of which a sizable portion have a small Λ.

• Non-local quantum gravity. The Λ problem is not yet addressed.

• Canonical quantum cosmology.* There is a probabilistic interpretation of the value of Λ.

• Loop quantum gravity.* There are very few proposals to address the issue.

• Spin foams. The Λ problem is not yet addressed.

• Group field theory.* There is a probabilistic interpretation of the value of Λ.

• Multi-fractional spacetimes. The Λ problem is reformulated but not yet addressed. One
multi-fractional theory can explain dark energy just as a geometrical effect [106].

• Asymptotic safety.* There is a clear-cut prediction for Λ which, however, relies on important
assumptions.

• Unimodular gravity. There is an attempt in emergent unimodula gravity to solve the 4𝜋
puzzle to explain why Λ is small, although it does not predict the observed value [107].

• Causal sets.* There is a sketchy prediction for Λ.

• Casual dynamical triangulations. A de Sitter universe emerges from full QG, but the Λ

problem is not yet addressed.

7.4.1 String theory: a landscape for Λ

String theory offers an original probabilistic resolution of the cosmological constant problem.
The theory could have as many as 1010−10500 distinct vacua in the low-energy limit. However, how
many of them could produce the universe that we live in? It turns out that we might have enough
vacua satisfying the observational constraints. We can count them with either statistical selection
[108–110] or anthropic selection [111, 112]. Statistical selection means that we count the vacua
according to joint probabilities (for instance, of having a small Λ and a low-scale supersymmetry
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breaking). As for the anthropic selection, based on vacua compatible with life, there are many
versions of the anthropic principle but even Weinberg’s most conservative formulation [113] can
lead to a relative estimate of the number of viable vacua.

An open question is whether stable de Sitter backgrounds are really supported by string theory.
Despite many explicit examples, doubts have been cast about the actual number of viable vacua
produced by the theory, being most the landscape a “swampland” of unphysical configurations
[114].

7.4.2 Canonical quantum cosmology: a probability for Λ

In Wheeler–DeWitt canonical quantum cosmology, we can compute the nucleation probability
of the initial state of the Universe [115–117], that is, the probability for the Universe to start in a
de Sitter state with a given value of Λ. Depending on whether we take the Vilenkin [118] or the
Hartle–Hawking [119] wave-function Ψ, we get different probabilities 𝑃 ∼ |Ψ|2, both exponential
but with a crucial sign difference:

𝑃V(Λ) = exp

(
−

12𝑀2
Pl

Λ

)
, 𝑃HH(Λ) = exp

(
12𝑀2

Pl
Λ

)
. (149)

In the case of the Hartle–Hawking wave-function, universes with small Λ are favored. However,
we can renormalize the wave-function with a Λ-dependent constant, which may erase the effect.
Therefore, there is a certain degree of arbitrariness in these results.

7.4.3 Loop quantum gravity: a condensate for Λ

In the case of loop quantum gravity, there are some attempts to explainΛ from 𝑆𝑈 (2)𝑞 “fat” spin
networks. Assuming geometries where the metric is degenerate, one can encode spacetime dynamics
into a Dirac equation for spinorial degrees of freedom [120]. If these fermions 𝜓 condense, then
the expectation value of the condensate gives an exponentially suppressed cosmological constant
which only requires a mild fine-tuning of one part over one hundred:

Λ = Λ0 exp
(
−

〈
�̄�𝛾5𝛾𝑧𝜓

〉)
≪ 1, (150)

where 𝛾5 and 𝛾𝑧 are Dirac gamma matrices. However, the number of assumptions leading to this
result forbid to consider it as robust before studying the model in greater detail.

7.4.4 Group field theory: another probability for Λ

Group field theory (GFT) is a theory of fields living on a group manifold, i.e., a manifold made
of group elements. In the case of gravity, the group is the local gauge group of gravity. This theory
is argued to reproduce the states of geometry of spin foams and loop quantum gravity. Furthermore,
contrary to the case of LQC in relation with loop quantum gravity, cosmology can be extracted
directly from the full theory and it requires much less effort.

If 𝜑(𝑔) is a scalar field, where 𝑔 ∈ G is a group element, we can write the action of a group
scalar field theory as

𝑆GFT =

∫
G

d4𝑔

[∫
G

d4𝑔′𝜑∗(𝑔)K (𝑔, 𝑔′) 𝜑 (𝑔′) +𝑉 (𝜑, 𝜑∗)
]
, (151)
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where K (𝑔, 𝑔′) is a non-local operator and the potential 𝑉 is a non-linear interaction of the fields.
Then we can perform the usual Fock quantization with commutation relations[

�̂�(𝑔), �̂�† (𝑔′)
]
= 1G (𝑔, 𝑔′) , (152)

and, given the vacuum state |∅⟩, we can construct one-particle states as

|𝑔⟩ := �̂�†(𝑔) |∅⟩. (153)

We can play with these quanta to get a condensate, which is a coherent state such that

|b⟩ := 𝐴𝑒 b̂ |∅⟩, b̂ :=
∫

d4𝑔b (𝑔)�̂�†(𝑔), �̂� |b⟩ = b |b⟩. (154)

Then, if we have infinitely many particles in the same state, we get a continuous homogeneous and
isotropic spacetime.

Furthermore, we can get a probabilistic prediction for the cosmological constant because the
wave-function of the Universe in canonical quantum cosmology is given by the expectation value
of the group field. The quantum dynamics is given by the Gross–Pitaevskii equation

0 = ⟨b |1Ĉ |b⟩ =
∫

d4𝑔′K (𝑔, 𝑔′) b (𝑔′) + 𝛿𝑉

𝛿𝜑∗(𝑔)

����
𝜑=b

, (155)

where Ĉ is the quantum version of the equations of motion. The expectation value goes as

b (Λ) ∼ 1
√
Λ
. (156)

Just like for canonical quantum cosmology, universes with small values of Λ are favored, although
here the probability distribution is less peaked at Λ = 0. However, here we do not have the nor-
malization problem we encountered in the Wheeler–DeWitt result (149), since this is a Lagrangian
formulation without the ambiguities typical of the Hamiltonian formalism.

7.4.5 Asymptotic safety: a bullseye prediction for Λ

In asymptotic safety, we quantize our theory using the functional renormalization approach
and postulate that the theory is asymptotically safe. The latter means the following. Let _𝑖 be the
set of dimensionless couplings of the theory and let 𝑘 be the energy scale. Then, asymptotic safety
states that the UV limit of the renormalized couplings is non-vanishing,

lim
𝑘→∞

_̄𝑖 (𝑘) = _̄∗𝑖 ≠ 0 . (157)

If we just quantize GR in vacuum, there are only two scale-dependent couplings, Newton’s constant
𝐺𝑘 = 𝑘−2𝐺𝑘0 and the cosmological constant Λ𝑘 = 𝑘2Λ𝑘0 . The effective action and equations of
motions are given by

Γ𝑘 =
1

16𝜋𝐺𝑘

∫
d𝐷𝑥

√︁
|𝑔 | (𝑅 − 2Λ𝑘) ,

𝛿Γ𝑘

𝛿𝑔`a

[〈
𝑔`a

〉
𝑘

]
= 0 , (158)
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where ⟨𝑔`a⟩𝑘 is the average of the metric over Euclideanized spacetime volumes of linear size
∼ 𝑘−1.

We can reformulate the old cosmological problem by asking why the perturbative semi-classical
regime of the renormalization-group trajectory should be so much fine-tuned. From the perspective
of the functional renormalization-group approach, the problem is not quite solved. In fact, on one
hand, there do exist trajectories passing very close to the Λ = 0 axis in the (Λ𝑘 , 𝐺𝑘) plane [121], so
that it is possible to realize small values of Λ. On the other hand, the physical explanation of why
this happens is still unclear.

From the perspective of effective dynamics where 𝑘 is identified with a cosmological scale,
asymptotic safety can give rise to a local-void model with dynamical Λ𝑘 and 𝐺𝑘 fitting all observa-
tions and being statistically equivalent to ΛCDM, but without the fine tuning implicit in a constant
Λ [122, 123]. This model is interesting but it is based on the phenomenological assumption that
the replacement (Λ, 𝐺) → (Λ𝑘 , 𝐺𝑘) in the classical equations of motions is a faithful description
of the semi-classical limit of the theory.

An alternative is to formulate asymptotically free QG as a perturbative resummed QFT, which
is a QFT where all the tree level propagators in Feynman diagrams are replaced by resummed
propagators. Once one does that, one can calculate the vacuum expectation value of the fields of
the theory. The result is equated to the energy density of dark energy today 𝜌Λ(𝑡0), where 𝜌Λ(𝑡) is
defined such that 𝜌Λ + 𝑃Λ = 0 (in agreement with (46)) and radiation, matter and dark energy are
conserved as a whole in the continuity equation

¤𝜌 + ¤𝜌Λ + 3𝐻 [(𝜌 + 𝜌Λ) + (𝑃 + 𝑃Λ)] = 0 . (159)

An effective dynamics from a running Λ is also assumed as in the previous approach, but with
different scale identification, so that 𝜌Λ(𝑡) ∝ 𝑡−2 in terms of cosmic time. Then, one gets [124–126]

𝜌Λ(𝑡0) = 𝜌vac ≈ 9.5 × 10−121𝑀4
Pl , (160)

astonishingly close to the observed value (136). The number of underlying assumptions and loose
threads (for instance: (136) is found assuming the dynamics of GR) suggest to take this result with
caution. Although it may be too good to be true, more study will be required before discarding it as
sheer coincidence.

7.4.6 Causal sets: another bullseye prediction for Λ

In this framework, we do not have continuous spacetime but, instead, a discrete structure of
partially ordered points (𝑥 ⪯ 𝑦). These points are randomly generated on a Lorentzian manifold in
such a way (called sprinkling) to reproduce the causal structure of continuous Lorentzian geometries.
Volume measurements are replaced by point counting and are subject to an intrinsic uncertainty since
the number of points 𝑁 can be determined only probabilistically, through a Poisson distribution with
standard deviation Δ𝑁 =

√
𝑁 . Denoting as 𝛼2 the average number of points occupying a Planckian

volume, in four dimensions the volume uncertainty is then ΔV =
√
V/(𝛼𝑀2

Pl). Regular lattices or
graphs do not satisfy this property. The dynamics of these models is currently under construction
through different approaches.

45



P
o
S
(
C
O
R
F
U
2
0
2
1
)
3
1
7

Lectures on classical and quantum cosmology Gianluca Calcagni

In this setting, the cosmological constant arises as the canonical conjugate of the volume V,
so that Λ is the action of 𝛼2 fundamental elements and

ΔVΔΛ ≥ 𝑀−2
Pl . (161)

In terms of cosmic time, Λ(𝑡) is a stochastic variable with zero average, ⟨Λ⟩ = 0, while the
corresponding energy density is

𝜌Λ = 𝑀2
PlΔΛ ∼ 1

ΔV =
𝛼𝑀2

Pl√
V

∼ 𝛼𝑀2
Pl𝐻

2, (162)

which reproduces the observed value (136) provided [127–129]

𝛼 = 𝑂 (10−2) −𝑂 (1) . (163)

It has been argued that this range of 𝛼 clashes with the prediction for CMB fluctuations
[130, 131]. Heuristically, since 10−5 ∼ Δ𝑇/𝑇 ∼ ΔΦ/Φ ∼ 𝛿𝜌Λ/𝜌tot ∼ 𝛼. The model from which
this estimate comes from relies on the assumption that at each spacetime point one can associate a
value Λ(𝑥) determined only by the Poisson fluctuations within the past light cone of 𝑥. However,
such model is based on stochastic fluctuations which are local and classical rather than quantum
and it has not been embedded in a self-consistent covariant causal-set theory. Although we do not
have a complete cosmology of causal sets yet, a more refined application of constraints from CMB
data seems to be compatible with the range (163) [132].

8. Can GWs probe quantum gravity?

In recent years, there has been a great effort to check whether and how GWs can probe theories,
not necessarily of QG, beyond GR. One possibility is that such theories involve modifications of
the mechanisms of production of GWs, while another possibility is to have modifications in the
propagation of GWs. More literature can be found in the references below and in [133].

Production of GWs. Modifications to the production mechanisms of GWs can appear in:

• Modified black-hole metrics, that could give rise to modified waveforms [134–136]. We
know that GWs are either produced by astrophysical systems or from the early universe. For
instance, in the first case, we could have modifications of gravity that imply different black
hole solutions. This modification reflects into the GW waveform and we can test it with
interferometers.

• Primordial blue-tilted tensor spectra, that could give rise to an observable SGWB [136, 137].
In the case of primordial GWs, some theories can predict a blue tilted tensor spectrum, which,
in turn, would source an exotic SGWB.

Propagation of GWs. Modifications to the propagation of GWs can arise from:

• Modified dispersion relations, which can affect the GW propagation speed [135, 138, 139]
and the waveform phase [135, 140]. After the production, the GW propagates through space
and time until it reaches the observer. Since a constant non-luminal group velocity 𝑐t ≠ 1 is
tightly constraint, the simplest thing one can consider to encode a different propagation is a
modified dispersion relation, which has repercussions in the GW waveform.
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• Modified luminosity distance, which can be tested through the observation of standard sirens
[19, 20]. This is an example of test of new physics in the burgeoning field of multi-messenger
astronomy [141].

8.1 Modified dispersion relations

In this sub-section, we consider a crude way in which GW detectors can constrain the propaga-
tion of GW. In models breaking Lorentz invariance, one can consider modified dispersion relations
with an extra higher-order power of the spatial momentum. The energy 𝜔 = 𝑘0 and the momentum
𝑘 = |k| are then not proportional to each other,

𝜔2 = 𝑘2
(
1 ± 𝑘𝑛

𝑀𝑛

)
+𝑂 (𝑘𝑛+3), (164)

where 𝑀 is a fundamental mass scale introduced for dimensional consistency. From this phe-
nomenological dispersion relation, one can calculate the group velocity of the wave and the differ-
ence between this group velocity and the speed of light:

𝑣𝑔 =
d𝜔
d𝑘

, Δ𝑣 := |𝑣𝑔 − 1| . (165)

From this, one gets the expression of the fundamental mass

𝑀 ≃ 𝜔

(Δ𝑣) 1
𝑛

, (166)

which depends on the GW frequency and an inverse power of the velocity difference Δ𝑣. If we
consider the first gravitational wave detected by the LIGO-Virgo collaboration, GW150914, its
frequency is 𝜔 ≈ 630 Hz ≈ 10−13eV, corresponding to very low energies and a very tight constraint
on the velocity difference [16, 17]:

|Δ𝑣 | < 4 × 10−20. (167)

If we take a simple polynomial correction with 𝑛 = 1 or 𝑛 = 2, which may arise in certain scenarios,
one obtains very weak bounds on the mass 𝑀 , too weak to be of any use: 𝑀 > 10−2 − 107 eV.
Conversely, given a minimal mass 𝑀 > 10 TeV of order of the LHC center of mass energy, the
values of 𝑛 compatible with the LIGO-Virgo bound lie in the range [139]

0 < 𝑛 < 0.76 . (168)

Such values have a geometrical interpretation because they are typical of field theories on multi-
scale spacetimes, where 𝑛 is related to the dimension of spacetime [20, 95]. This example may be
interesting because when we recover the notion of spacetime in the continuum limit, in general in
QG it shows a multi-scale structure and the properties of geometry change with the scale.

These arguments are valid only for models that break Lorentz invariance.

8.2 Luminosity distance

As we mentioned in section 2.4, in GR the amplitude of astrophysical gravitational waves is
inversely proportional to the luminosity distance of their optical counterpart, so that 𝑑gw

𝐿
/𝑑em

𝐿
= 1.
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Deviations of GR arise, for instance, if we modify the dynamics of GWs through the action measure
and kinetic term. Then, we end up with a phenomenological expression for the ratio 𝑑gw

𝐿
/𝑑em

𝐿
,

where we have a correction depending on a scale ℓ∗ [20],

𝑑gw
𝐿

𝑑em
𝐿

= 1 ± |Γ − 1|
(
𝑑em
𝐿

ℓ∗

)Γ−1

, (169)

where Γ is a real parameter. Even when ℓ∗ = 𝑂 (ℓPl), there is a chance to have a detectable QG
effect if Γ ≳ 1. To formally derive this result, we assume a measure d𝜚(𝑥) whose scaling is the
Hausdorff dimension 𝑑h and we write the linearized action for the graviton with a modified kinetic
term as

𝑆 =
1
2

∫
d𝜚(𝑥) , ℎ𝑖 𝑗K(2)ℎ𝑖 𝑗 , (170)

where 𝑖, 𝑗 are spatial indices. Then, the scaling of our GW, which we call Γ, depends on the
Hausdorff dimension of spacetime, which in turn depends on the measure, and also on how the
kinetic term scales with momentum,

[ℎ𝑖 𝑗] =
𝑑h − [K]

2
=: Γ , (171)

where [K] is the dimensionality of the momentum-dependent part of the kinetic term. Assuming
a constant Γ, in the local wave zone the GW amplitude then goes as

ℎ𝑖 𝑗 =
^F𝑖 𝑗 (𝑡 − 𝑟)

(𝑟2) Γ
2

∼ 1
𝑟Γ

→ 1
(𝑑em

𝐿
)Γ
, (172)

where F𝑖 𝑗 is a tensor retarded function of time and the local radial distance 𝑟 from the source,
while the last step generalizes the result in the local wave zone to cosmological distances. When
Γ depends on the scale, (172) holds only asymptotically and one can consider the more general
expression (169), where the factor |Γ − 1| has been inserted to avoid an incorrect normalization
when Γ = 1 (GR case). The scale ℓ∗ is hidden in the modified kinetic term K(2), whose Fourier
transform contains higher-order powers of the momentum and thus a scale appears in front of the
leading-order term.

In Fig. 9, we see two typical plots for Γ, which would arise if we change the measure and the
graviton kinetic term. To get observable effects, we should approach the GR value Γ = 1 from
above. There are very few theories of QG that could satisfy this request and only three of them,
among those that have been explored, could have a large-enough effect: loop quantum gravity, spin
foams and GFT. In these scenarios, kinematical states of geometry give rise to a profile like the one
in the figure, where the deviation from 1 can be, in principle, large enough. The problem is that we
do not know whether the bump above 1 is physical or just a numerical artifact.

The general relation (169) was tested with the only standard siren observed so far, the kilonova
GW170817/GRB170817A caused by a binary neutron star merger [143], as well as with a simulated
LISA super-massive black-hole standard siren [20, 137]. It was found that QG effects could get
above the experimental uncertainty without violating any constraint when Γ deviates from 1 by a
few percent, depending on the value of ℓ∗. For example,

Γ ≲ 1.02 when ℓ∗ = 𝑂 (ℓPl) , (173)
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Figure 9: Dimensionality parameter Γ of GWs as a function of the scale. The red curve corresponds to a
monotonic evolution, for instance when the dimension of spacetime changes only in the deep UV, but there
is no observable effect in the luminosity distance because Γ is always smaller than one. The black curve
corresponds to a generic modification of both the measure and the kinetic term: for mesoscopic (i.e., not too
close to the UV) scales ℓ∗/ℓPl ≳ 𝑂 (10), the effect may actually become visible.

while for ℓ∗ = 𝑂 (1050ℓPl) Γ could be as large as 1.08. Note also that, with the modified dispersion
relation of section 8.1, in a spacetime with 𝑑h one has Γ = 1 − 𝑛/2 in the UV, so that the allowed
range (168) translates into Γ > 0.72, which does not place any further constraint for observable
effects on the luminosity distance [137].

8.3 SGWB

We conclude by considering possible modifications to the SGWB. The amplitude of the
stochastic background from inflation is relatively flat and well below the sensitivity in terms of
present or future experiments. To have a detectable signal, we would need some mechanism blue
tilting the primordial spectrum so that at higher frequencies, the amplitude of the spectrum would
cross the sensitivity curves.

In general, a blue tilted spectrum cannot be realized in standard slow-roll inflation. For instance,
in Starobinsky gravity (130) the tensor spectrum is red tilted and with a very small amplitude. For
these reasons, the predicted stochastic background is not detectable by present or future GW
interferometers and neither is the SGWB of non-local Starobinsky inflation. The problem is that
no matter which form factor we choose in (148), the blue tilt at CMB scales never gets a boost
towards higher amplitudes at high frequencies. This happens because H2 → 0 at high frequencies
and, eventually, the spectrum tends to the SGWB of the local Starobinsky model [147]. In other
words, a blue tilt at CMB scales does not guarantee a blue tilt at the scales of GW detectors.

It is natural to ask whether other models motivated by QG that give rise to a blue tilted
primordial spectrum at inflationary scales exist. In [147], four such models were explored:

• String-gas cosmology.
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• New ekpyrotic scenario.

• Brandenberger–Ho noncommutative inflation.

• Multi-fractional inflation.

The first two models are partially embedded in string theory (where “partially” means with caveats,
several assumptions and undeveloped aspects), the third and fourth are inspired by QG (non-
commutative spacetimes and multi-scale spacetimes) but they are not fully embedded in it. However
debatable they are, these models offer a prediction of the SGWB that can be compared with present
or near-future observational data. Other models that could produce a detactable signal but that have
not been studied yet in detail are the pre-big-bang scenario [148, 149] and bouncing models with a
slow contracting phase [150–152].
String-gas cosmology
In string-gas cosmology, the early universe is described as a gas of strings at thermal equilibrium
[153–155]. This model is an alternative to inflation and CMB fluctuations are explained as thermal
fluctuations of the string gas. There is a maximum amplitude for the power spectrum derived from
its full expression and thus we do not expect the signal to reach the bottom of the DECIGO curve
(Fig. 10). The tensor-to-scalar ratio is2

𝑟 =
4
9

(
1 − 𝑇

)2 ln2
[

1 − 𝑇
(𝑙st𝑘)2

]
, (174)

where 𝑇 := 𝑇 (𝑘)/𝑇H is the string-gas temperature divided by the Hagedorn temperature 𝑇H and 𝑙st
is the string length scale.
New ekpyrotic scenario
In the new ekpyrotic scenario [156–158], inflation is replaced by the collision of two 3-branes. The
tensor-to-scalar ratio at the pivot scale 𝑘0 is

𝑟 ≃ 2𝑛s+2

Γ2 (1 − 𝑛s
2
) (𝑘0𝜏B)2(1−𝑛s ) (1 − 𝑛s)2 , (175)

where Γ is Euler’s function and 𝜏B is the conformal time at which a cosmological bounce takes place.
This model respects all the CMB bounds and predicts a blue-tilted tensor spectrum, which could be
observed by the Einstein Telescope (Fig. 11). However, if the spectrum goes up too sharply, it may
hit the BBN bound. We have to take into account reheating, which in general bends the spectrum
down [159, 160]. Therefore, when we have reheating in our early universe model, the spectrum can
respect the BBN constraints but it can also bend too early and go below the sensitivity curves. This
bending depends on the reheating temperature. This model can only reach the Einstein Telescope
sensitivity curve, a EU interferometer under proposal.
Brandenberger–Ho non-commutative inflation
This is a phenomenological model motivated by non-commutativity in string theory [161]. The
inflation is realized by a scalar field on a non-commutative background and gives rise to a blue tilt

2Formulæ (174) and (175) correct a typo in, respectively, equations (4.35) and (4.39) of [147], which were supposed
to introduce a missing prefactor in the results of previous literature.
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in the SGWB, which barely crosses the DECIGO sensitivity curve (Fig. 12), the model could give
rise to an observable but weak signal, available only for one Japanese detector which is still in a
pre-approval stage.
Multi-fractional spacetimes
In multi-fractional spacetimes, the scale-dependent Hausdorff and spectral dimensions of spacetime
distort the primordial inflationary spectrum at post-CMB scales making it blue tilted. In particular,
for the so-called theory with 𝑞-derivatives, the SGWB can be blue tilted even if the tensor spectral
index 𝑛t is negligible at CMB scales. The predicted SGWB crosses the DECIGO sensitivity curve
(Fig. 13).

Ω
G
W

10-16 10-11 10-6 0.1 104 109
10-24

10-19

10-14

10-9

10-4

lst=103MPl-1

lst=5×103MPl-1

CMB

SKA

LISA LVK

ET

DECIGO

BBN

f [Hz]

Figure 10: SGWB of string-gas cosmology compared with the sensitivity curves of LIGO-Virgo-KAGRA
(LVK), SKA, LISA, Einstein Telescope (ET) and DECIGO. The black and blue solid curves corresponds to
𝑙st = 103𝑀−1

Pl and 5 × 103𝑀−1
Pl , respectively, where 𝑙st is the string length scale. The only known analytic

expression of the tensor power spectrum is an approximation which fails for high-frequency GWs, since the
corresponding curves (thick black and blue curves) go beyond the upper bound on the GW amplitude (dashed
lines) obtained from the full spectrum. Note that we widened the single-frequency CMB constraint to a band
in order to make it more visible. Figure adapted from [147] (here we use the correct tensor-to-scalar ratio
(174) and adopt the updated upper bound 𝑟 = 0.036).
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Figure 11: SGWB of the new ekpyrotic scenario compared with the sensitivity curves of LVK, SKA, LISA,
ET and DECIGO. Denoting as 𝑛obs

s ± 𝛿𝑛s and 𝛼obs
s ± 𝛿𝛼s the preferred values obtained by Planck, we plot

the worst case minimizing the tensor blue tilt and maximizing the negative tensor running at the 2𝜎-level
(𝑛t = 1− (𝑛obs

s +2𝛿𝑛s) ≈ 0.026, 𝛼t = −(𝛼obs
s +2𝛿𝛼s) ≈ −0.007, red solid curve), the intermediate case taking

the central values of the parameters (black solid curve) and the best case maximizing the tensor blue tilt and
the positive tensor running at the 2𝜎-level (𝑛t = 1 − (𝑛obs

s − 2𝛿𝑛s) ≈ 0.042, 𝛼t = −(𝛼obs
s − 2𝛿𝛼s) ≈ 0.021,

blue solid curve). The dotted curves correspond to the above cases with no running. The high-frequency
bend due to reheating is not shown. Note that we widened the single-frequency CMB constraint to a band in
order to make it more visible. Figure adapted from [147] (here we use the correct tensor-to-scalar ratio (175)
and adopt the updated upper bound 𝑟 = 0.036).
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Figure 12: SGWB of the Brandenberger–Ho non-commutative model with N = 50 e-foldings compared
with the sensitivity curves of LVK, SKA, LISA, ET and DECIGO. The red and black solid curves represent
the cases with, respectively, 𝜙2

∗ = 18𝑀2
Pl and 𝜙2

∗ = 21𝑀2
Pl, where 𝜙∗ is the field scale of natural inflation.

Dotted curves correspond to the commutative cases with the above values of 𝜙∗. Note that we widened
the single-frequency CMB constraint to a band in order to make it more visible and that the spectra in the
plot satisfy the CMB bound at the pivot scale. Figure adapted from [147] (here we report the correct LISA
sensitivity curve and adopt the updated upper bound 𝑟 = 0.036).
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Figure 13: SGWB of multi-fractional inflation with no running (𝛼t = 0) and fractional exponent 𝛼 = −3
(black solid curve), compared with the sensitivity curves of LVK, SKA, LISA, ET and DECIGO. Here
𝑛t ≈ −0.0045 is given by the consistency relation 𝑟 = −8𝑛t and we take 𝑘∗ = 10−3 Mpc−1. The dotted
curve corresponds to the above case with non-zero running 𝛼t = −0.0001 (typical order of magnitude of
inflationary models). Note that we widened the single-frequency CMB constraint to a band in order to make
it more visible and that the spectra in the plot satisfy the CMB bound at the pivot scale. Figure adapted from
[147] (here we report the correct LISA sensitivity curve and adopt the updated upper bound 𝑟 = 0.036).
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