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1. Introduction

Even classical gravity in de Sitter spacetime can be subtle. Quantum gravity in de Sitter
spacetime is even more confusing for many reasons. For instance, the finite de Sitter entropy
suggests that the quantum description of de Sitter should be encoded by a Hilbert space with only a
finite number of states. In the known realization of holography in terms of a higher-spin theory [1],
the boundary theory also lives at an instance of time instead of at a spatial boundary. The extent
to which this should be viewed as a full quantum theory, rather than some statistical description,
remains puzzling. This is not to even mention puzzles of the late-time behavior of de Sitter vacua,
which generically undergo eternal inflation, leading to a measure problem [2]. Since de Sitter
spacetime approximates the current phase of our universe, it is essential that we adapt our toolkit
of holography and quantum gravity to this case.

The Chern-Simons formulation of three-dimensional gravity has long been an avenue for
tackling questions of quantization of gravity [3, 4]. A natural observable from the Cherns-Simons
perspective is a Wilson loop, or if one does not insist on gauge-invariance, a Wilson line. Moving
beyond the semi-classical description of a Wilson line in a fixed background, we can also consider
the quantum generalization where the metric is allowed to fluctuate. Interestingly, whereas de Sitter
gravity has often turned out to be more subtle than its anti- de Sitter counterpart, this is an avenue
where it is possible to gain comparativelymore traction in de Sitter. For instance, EdS3 has isometry
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algebra B>(4) ' BD(2) × BD(2). In the Chern-Simons formulation, this is the gauge algebra. BD(2)
is a compact algebra, and there are more mathematical results to draw on than for non-compact
algebras. For instance, there exist exact results from non-abelian localization for the Chern-Simons
path integral and also theWilson loop expectation value [5–7]. This can potentially give us a handle
on fully exact results and their gravitational duals. In contrast, in the anti- de Sitter case progress in
computing the full Wilson line has only been made perturbatively in 1/2, with 2 the central charge
of the dual conformal field theory [8].

The bulk of these proceedings consists of a pedagogical review of [9]. Many details of the
construction can be found in that paper; here the aim is to avoid technicalities in favor of giving a
straightforward overview of applications ofWilson lines to de Sitter gravity. This includes shortcuts
for readability, along with some additional background. There will also be some allusions to further
developments as well as connections with other aspects of de Sitter gravity treated at the workshop.
In the spirit of the workshop, it is also interesting to learn what the representations used to build
Wilson lines have to tell us about standard representations of B>(3 + 1, 1) that can be used to
construct fields in de Sitter spacetime (see [10] for a recent review). This, along with the study of
the quantum case and its gravitational description, is the subject of work in progress [11].

2. Review of Chern-Simons theory and Wilson lines for AdS3

We will begin with a very brief review of Chern-Simons theory and the role of Wilson lines as
gravitational probes for anti- de Sitter (AdS) spacetime. There is a classical equivalence between
3d gravity in AdS and Chern-Simons theory with gauge algebra B>(2, 2) ' B; (2) × B; (2) [4].
Specifically, consider two copies of the B; (2) Chern-Simons action

( = (�( [�] − (�( [ �̄] (1)

with
(�( [�] =

:

4c

∫
M

Tr
(
� ∧ d� + 2

3
� ∧ � ∧ �

)
, (2)

where � ∈ B; (2)! , �̄ ∈ B; (2)'. This is equal to the three-dimensional Einstein-Hilbert gravitational
action for AdSwith curvature radius ℓ and gravitational constant�3, given aChern-Simons coupling
: related to these parameters as

: =
ℓ

4�3
. (3)

The gauge theory has Wilson loop observables

,ℛ(�) = Trℛ
(
�4−

∮
�
�
�4−

∮
�̄
)
, (4)

where � is a closed loop in AdS. The representations ℛ we consider for gravitational applications
are highest-weight B; (2) representations. Given B; (2) generators �0, �± in the raising and lowering
basis, these are constructed by starting from a highest weight state |ℎ, 0〉 satisfying

�+ |ℎ, 0〉 = 0 , �0 |ℎ, 0〉 = ℎ |ℎ, 0〉 , (5)

with the remaining states in the representation generated through successive action of the lowering
operator, |ℎ, :〉 ∝ (�−): |ℎ, 0〉. These representations have a Casimir 22 = ℎ(ℎ − 1).
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The Wilson loop can be viewed as the partition function for an auxiliary quantum system
associated to the curve� [12]. The Hilbert space for this system is identified with the representation
ℛ, and the trace in Eq. (4) is just the usual quantum mechanical trace over the Hilbert space. This
partition function can be evaluated semiclassically through a version of the orbit method [6, 7]

,ℛ(G8 , G 5 ) =
∫
D*4−( (*,�, �̄)� . (6)

Here* is an auxiliary field associated to the curve �, coupled to the background connections �, �̄.
The explicit construction of the action for ((*, �, �̄)� for AdS can be found in [13].

It will be useful for us to consider Wilson lines rather than loops. These are not observables in
the same sense, as introducing endpoints means they are no longer gauge invariant. Let |*8〉 ,

��* 5

〉
∈

ℛ be endpoint states. Then the Wilson line can be expressed as

,ℛ(G8 , G 5 ) =
〈
* 5

���4− ∫
W
�
�4
−

∫
W
�̄ |*8〉 , (7)

where W is a bulk curve with endpoints G8 , G 5 .
The Wilson line has a bulk gravitational interpretation. It probes the physics of a point particle

moving from G8 to G 5 with

<2 = 22 + 2̄2 , B = ℎ − ℎ̄ , 22 = ℎ(ℎ − 1) . (8)

On-shell with* = 1, the action in Eq. (6) computes the geodesic distance between G8 , G 5 [13].
It also has a boundary interpretation, when we take G8 , G 5 to the boundary of AdS. Then the

Wilson line computes the correlator

,ℛ(G8 , G 5 ) =
G8 ,G 5 →mAdS

〈
k |O(G8)O(G 5 ) |k

〉
. (9)

Here k is a heavy state dual to the gauge fields �, �̄ that describe the bulk geometry, and O(G) is a
light operator with scaling dimension (ℎ, ℎ̄) coming from the representation.

3. Ishibashi states

When considering Wilson lines as opposed to loops, the boundary states |*8〉 ,
��* 5

〉
are an

additional input. What is a natural choice for these states? Although there are many possibilities,
we consider a choice of states suitable if it reproduces gravitational physics. An appropriate choice
is to consider Ishibashi states [14–16] (see also [17] for another application to bulk physics). More
specifically, we consider two possibilities, the Ishibashi state, |ΣIsh〉, and the crosscap state, |Σcross〉.
These are defined as satisfying the condition for �0 ∈ B; (2)! , �̄0 ∈ B; (2)' and for 0 = 0,±1,

�0 − �̄−0 |ΣIsh〉 = 0 , (10)
�0 − (−1)0 �̄−0 |Σcross〉 = 0 . (11)

Through these conditions, the singlet states can be seen as a way to tie together the barred and
unbarred representations. As long as one considers expectation values in these singlet states, barred
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generators can be substituted for suitable unbarred generators (possibly up to a phase) and vice
versa.

While these equations cannot be solved by finite sums of states in the representation, it is
possible to take infinite sums of states. In terms of states

��ℎ, :, :̄〉 = |ℎ, :, 〉 ⊗ ��ℎ, :̄〉 for the full
representation combining both barred and unbarred copies, the solutions are

|ΣIsh〉 =
∞∑
:=0
|ℎ, :, :〉 , |Σcross〉 =

∞∑
:=0
(−1): |ℎ, :, :〉 . (12)

With this solution for the Ishibashi state, one can compute the AdS3 Wilson line explicitly [16].
Schematically, the result is

,ℛ(G8 , G 5 ) = character associated to the representationℛ
= Green’s function between G8 , G 5 . (13)

These are two fairly universal relations that we would like to highlight in these proceedings. As we
will see, similar statements can be made for Wilson lines in de Sitter, but with slight differences and
subtleties. We would also like to understand exactly how the Green’s function can be reproduced
for de Sitter, specifically in terms of which representations and endpoint states are necessary to use
in the construction.

4. Why de Sitter?

It may seem like a pedagogical exercise to repeat this analysis for de Sitter, but in fact there
is something to learn by using Wilson lines as tools to probe bulk physics in de Sitter spacetime.
Can we reproduce the subtleties of de Sitter gravity? Such subtleties exist even classically, for
instance the Green’s function and smearing functions for dS3 do not result simply from analytic
continuation of their AdS3 counterparts [18–20]. Is there a way to reproduce Green’s functions and
smearing functions in de Sitter? As we will see, our Wilson line analysis allows us to see clearly
how these differences appear in the Chern-Simons language, in terms of duplicate contributing
representations.

The advantage of studying de Sitter gravity usingWilson lines also extends beyond the classical
analysis. There exist results in AdS3 for quantizing a Wilson line order by order in 1/2 [8]. But
in fact, in the Chern-Simons approach de Sitter spacetime is a better starting point for quantizing
a Wilson line. This is because there exist exact results from nonabelian localization and other
methods for BD(2) Chern-Simons theory, which is the gauge algebra relevant for EdS3 [5–7]. This
is analogous to the past use of exact results in Chern-Simons theory to match the 1-loop Euclidean
gravitational partition function [21]. When considering Wilson lines, the main subtlety comes
from the need to use non-unitary representations for de Sitter, as we will see in Section 5.1. The
application of exact results to the quantization of de Sitter Wilson lines will be treated in further
detail in [11].

Of course, there are also numerous subtleties that come up in any treatment of de Sitter gravity.
For instance, in the Lorenztian dS3 case it is natural to attach the boundaries of Wilson lines to
future timelike infinity, but unlike for AdS there is no CFT there to set boundary conditions.
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5. Euclidean EdS3

To probe gravity in de Sitter using Wilson lines, we start by considering three-dimensional
Euclidean de Sitter (EdS3), which is just a three-sphere, (3. EdS3 has isometry algebra B>(4) '
BD(2) × BD(2), thus we consider BD(2) Chern-Simons theory.

The description of EdS3 gravity using Chern-Simons theory proceeds similarly to the negative
cosmological constant case, but with a different gauge algebra. Consider two copies of the BD(2)
Chern-Simons action

( = (�( [�] − (�( [ �̄] (14)

with
(�( [�] = −

:

4c

∫
M

Tr
(
� ∧ d� + 2

3
� ∧ � ∧ �

)
, (15)

where � ∈ BD(2)! , �̄ ∈ BD(2)'. One can check that this likewise reduces to the three-dimensional
EdS3 Einstein-Hilbert gravitational action with curvature radius ℓ and gravitational constant �3,
given a Chern-Simons coupling taken to be

: =
ℓ

4�3
. (16)

Now let us consider the geometry of EdS3. The metric on the three-sphere can be written in
Hopf coordinates as

3B2

ℓ2 = 3A2 + cos2 A3g2 + sin2 A3q2 . (17)

We can relate this to the Chern-Simons connections �, �̄ through the relation

6`a = −
ℓ2

2
Tr

[
(�` − �̄`) (�a − �̄a)

]
. (18)

The connections can be related to group elements

� = 6!d6−1
! , �̄ = 6̃−1

' d6̃' . (19)

We can in particular make the choice

6! = 4
−8A !24−8 (q+g)!3 , 6̃' = 4

8 (q−g)!34−8A !2 . (20)

These define connections that reproduce the metric for the three-sphere in the coordinates given by
Eq. (17).

We can now evaluate de Sitter Wilson lines in three steps.

5.1 Step 1: Build representations

To probe gravitational physics in EdS3 using Wilson lines, we must construct infinite dimen-
sional BD(2) representations. Since unitary BD(2) representations are finite dimensional, this means
we must construct non-unitary representations.

The BD(2) algebra is
[!8 , ! 9] = 8n8 9:!: . (21)
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Expressed in terms of raising and lowering operators !± = !1 ± 8!2, !0 = !3, this is

[!0, !±] = ±!± , [!+, !−] = 2!0 . (22)

The simplest way to get a non-unitary representation, maintaining consistencywith the commutation
relations, is to take !3 to be Hermitian and !1,2 anti-Hermitian, in other words

!
†
± = −!∓ , !

†
0 = !0 . (23)

We can now construct non-unitary highest weight representations. We start with the highest
weight state defined through

!+ |;, 0〉 = 0 , (24)
!0 |;, 0〉 = ; |;, 0〉 . (25)

Then we successively build the remaining states by acting with lowering operators |;, ?〉 ∝
(!−) ? |;, 0〉. The proportionality constant can be determined by relating the overlap of states,
subject to the unit normalization of the highest weight state.

The Casimir for these representations can be determined by squaring the condition, Eq. (43),
requiring that the highest weight state is annihilated by the raising operator. It is given by

!2 |;, ?〉 = 22 |;, ?〉 , 22 = ; (; + 1) . (26)

One can also check that with the choices above, all states in the representation have a positive norm.
The representations have an associated character

ch(ℛ) =
∞∑
?=0
〈;, ? | 48U!0 |;, ?〉 = 4

8U(;+1)

48U − 1
. (27)

This will be useful to compare to once we compute the Wilson line.
From the gravitational perspective, there are two defining properties of these representations:

Negative Casimir: Imposing that the norm of all states is positive implies ; < 0. We have a
negative Casimir in the window −1 < ; < 0, which corresponds to

− 1
2
< 22 < 0 . (28)

It will turn out that in order to match an appropriate Green’s function, the Casimir should be related
to the mass as 22 = −<2ℓ2/4. Thus, to reproduce gravitational physics, it is necessary to use
representations such as these that have a negative Casimir in some window.

Two representations with fixed Casimir: Inverting the Casimir Eq. (26) for ;, we have

;± = −
1 ±
√

1 + 422
2

. (29)

7
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There are in fact two solutions in the window Eq. (28). We define the two distinct representations
that contribute within this window to be

ℛ+ : − 1 < ;+ < −
1
2
, (30)

ℛ− : − 1
2
< ;− < 0 . (31)

With the choice 22 = −<2ℓ2/4, one can already start to recognize ;± in Eq. (29) as parameters that
appear in the EdS3 Green’s function [20].

5.2 Step 2: Construct singlet states

We now must make a suitable choice of endpoint states to use to evaluate our de Sitter Wilson
lines. In analogy to the B; (2) case for AdS, we consider Ishibashi and crosscap states defined by
the condition for !0 ∈ BD(2)! , !̄0 ∈ BD(2)', with 0 = 0,±1,

!0 − !̄−0 |ΣIsh〉 = 0 , (32)
!0 − (−1)0 !̄−0 |Σcross〉 = 0 . (33)

In terms of states |;, ?, ?̄〉 = |;, ?, 〉 ⊗ |;, ?̄〉 for the full representation, the solutions are given
by the infinite sums

|ΣIsh〉 =
∞∑
?=0
(−1) ? |;, ?, ?〉 , (34)

|Σcross〉 =
∞∑
?=0
|;, ?, ?〉 . (35)

The result appears similar to Eq. (5.1) for the AdS3 case. Besides the use of different representations,
one difference is that the phase (−1) ? now appears in the sum for the Ishibashi state, rather than
the crosscap state.

5.3 Step 3: Evaluate Wilson line

It remains to evaluate the Wilson line, and we now have all the ingredients required to perform
an explicit computation. We start by taking group elements, Eq. (20), and the connections, Eq. (19).
The Wilson line with Ishibashi state endpoints is given by

,ℛ(G8 , G 5 ) = 〈ΣIsh |�4−
∫
W
�
�4
−

∫
W
�̄ |ΣIsh〉 . (36)

We can evaluate the path ordered exponentials in terms of the group elements evaluated at the
endpoints,

�4
−

∫
W
�
= 6! (G 5 )6! (G8)−1 , �4

−
∫
W
�̄
= 6' (G 5 )−16' (G8) . (37)

Using the explicit group elements for (3 given in Eq. (20), the explicit endpoint states Eq. (34),
and evaluating in Eq. (36), this gives

,ℛ(G8 , G 5 ) =
48U(;+1)

48U − 1
, (38)

8
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where
cos

(U
2

)
= cos (A 5 ) cos (A8) cos (g 5 − g8) + sin(A 5 ) sin(A8) cos (q 5 − q8) (39)

is related to the invariant distance on (3. But this is just the character, Eq. (27), associated to the
non-unitary BD(2) representations,

,ℛ(G8 , G 5 ) = ch(ℛ) . (40)

The result is directly analogous to the AdS3 case, except that here the character is the one associated
to the non-unitary BD(2) representations we used for the EdS3 Wilson line.

Likewise, one can check that the Wilson line can also be related to the Euclidean Green’s
function � (Θ) for a scalar field on (3 with mass <2ℓ2 = −422,

� (Θ) = 0−;,ℛ+ (G8 , G 5 ) + 0−;−1,ℛ− (G8 , G 5 ) . (41)

Here Θ is the invariant distance between the endpoint coordinates G8 and G 5 of the Wilson line. As
was suggested earlier, the mass is directly related to the Casimir of the contributing representations,
which must be negative in order to reproduce the Green’s function. Unlike for the AdS3 case, here
for de Sitter one needs both representations contributing to a fixed Casimir to relate the Wilson line
to the Euclidean Green’s function.

6. Local fields

We can also probe gravitational physics directly from the representations we used to evaluate
the Wilson line. In this section, we will give a schematic overview of the construction that involves
taking some shortcuts. The details and careful treatment can be found in [9].

Represent the BD(2)! , BD(2)' generators as Killing vectors L0, L̄0 of the three-sphere

!0, !̄0 → L0, L̄0 . (42)

Likewise, we can promote the states in the representation constructed in Section 5.1 to fields,

|ℓ; ?, ?̄〉 → Φ?, ?̄ . (43)

By combining the action of the raising and lowering operators on fields, the Casimir equation
gives

(∇2 + ∇̄2)Φ?, ?̄ (G) = 2; (; + 1)Φ?, ?̄ (G) , (44)

where ∇2 = X01L0L1 and likewise for the barred copy. Thus the Φ?, ?̄ are just local fields1 on the
three-sphere.

These local fields can also be solved for explicitly. The highest weight conditions become

L+Φ0,0 = 0 , L0Φ0,0 = ;Φ0,0 , (45)

and the full set of fields can be built from Φ0,0 by acting using lowering operators L−, L̄− on
this highest weight state. One can solve Eq. (43), and then explicitly act by lowering operators

1More precisely, we call these “pseudo-fields” since both representations are necessary to form a complete basis.

9
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in differential operator form. The solutions Φ?, ?̄ are simply the quasinormal modes on the three-
sphere.

We can define a state |* (G)〉 expanded over the representation,

|* (G)〉 = 6−1
! (G)6' (G) |ΣIsh〉 (46)

=

∞∑
?, ?̄=0

Φ∗?, ?̄ (G) |;, ?, ?̄〉 . (47)

One can check that the Wilson line is simply the overlap

,ℛ(G8 , G 5 ) =
〈
* (g 5 , A 5 , q 5 + c)

�� * (g8 , A8 , q8)〉 . (48)

The extra shift in c in the angular direction is necessary as a result of the use of non-unitary
representations in the de Sitter case, and is not present in the AdS case.

By comparing Eqs. (47) and (34) and using the explicit expression for quasinormal modes on
the three-sphere, we can represent the Ishibashi state as

|ΣIsh〉 =
∑
?, ?̄

Φ∗?, ?̄ (g = 0, A = 0) |;, ?, ?̄〉 = |* (g = 0, A = 0)〉 , (49)

and thus it describes a state situated on (A = 0, g = 0) of the three-sphere. Of course, this result is
gauge ambiguous and depends on our choice of coordinates.

7. Analytic continuation to Lorentzian dS3

Ultimately we wish to use Wilson lines to probe gravity in Lorentzian dS3 spacetime. To
reproduce local bulk fields in this case, we now perform an analytic continuation from the three-
sphere implemented by the Wick rotation

g → 8C

ℓ
. (50)

One can also implement this Wick rotation on the Killing vectors and fields Φ?, ?̄, and work out
how the representation transforms. This is summarized in Table 1. It turns out that the non-unitary
BD(2)! × BD(2)' representation, ℛ, we constructed to obtain gravitational physics from Wilson
lines on the three-sphere nicely transforms under this Wick rotation to a unitary B; (2)! × B; (2)'
representation, ℛ̃, with generatorsH0,H± and a barred copy that are entirely Hermitian.

After analytic continuation, the fields lie in highest weight B; (2) representations with Casimir
ℎ(ℎ − 1), where ℎ = −; (analogously, ℎ = ; + 1 for ℛ̃−). They solve the dS3 wave equation

(∇2 + ∇̄2)Φ?, ?̄ = 2ℎ(ℎ − 1)Φ?, ?̄ , (51)

where ∇2 = −[01H0H1, and likewise for the barred copy, are related to the de Sitter Laplacian as
∇2 + ∇̄2 = − 1

2∇
2
3(3

. Like for the Euclidean case, the fields can be constructed explicitly starting
with the highest weight state which solves

H+Φ0,0 = 0 , H0Φ0,0 = ℎΦ0,0 , (52)

10
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EdS3 dS3

($ (4) ' (* (2) × (* (2) Chern-Simons (! (2,C) Chern-Simons
Non-unitary highest weight BD(2) representations Unitary highest weight B; (2) representations

Table 1: The analytic continuation from EdS3 to dS3.

and likewise for the barred operators, with the additional modes constructed by successive action
of lowering operatorsH−, H̄−. The solutions are just quasinormal modes for Lorentzian dS3.

In the Chern-Simons description of three-dimensional gravity, whether for AdS3, EdS3 or dS3,
it is necessary for the isometry algebra to be separable into two copies of a gauge algebra, over which
the unbarred and barred gauge fields can be expanded. In the Euclidean dS3 case it is possible to take
purely real linear combinations of the generators of the isometry algebra, the Euclidean Poincaré
algebra, to form two copies of the BD(2) algebra. For Lorentzian dS3, the isometry algebra is the
Lorentzian Poincaré algebra, and this does not separate into two copies of B; (2) unless one takes
complex linear combinations of the generators of the Poincaré algebra. Thus, to describe dS3, it is
necessary to consider gauge fields A, Ā that are elements of the complex gauge algebra B; (2,C).
It is typical to additionally specify a condition relating the gauge field A to the complex conjugate
of Ā. Then two copies of the B; (2,C) Chern-Simons action with purely imaginary Chern-Simons
couplings 8B can be shown to reduce to the Lorentzian dS3 gravitational action with de Sitter radius
ℓ and gravitational constant �3 given the matching B = ℓ/(4�3) [22].

It is now possible to repeat the analysis of Sections 5.2-5.3, but using the analytically continued
representations and (! (2,C) Chern-Simons theory. The Ishibashi states satisfying the analogue of
Eq. (32) for the Lorentzian representations are

|ΣIsh〉 =
∞∑
?=0
|ℎ, ?, ?〉 , (53)

|Σcross〉 =
∞∑
?=0
(−1) ? |ℎ, ?, ?〉 . (54)

For these unitary B; (2) representations, the phase (−1) ? now appears for the crosscap state rather
than the Ishibashi state, thus more closely resembling the original AdS3 case compared to the EdS3
case with non-unitary BD(2) representations.

TheWilson line can also be computed explicitly. In [9], this was done for the inflationary patch
of de Sitter. Using the endpoint Ishibashi state, Eq. (53), and (! (2,C) Chern-Simons connections
that describe the metric in these coordinates, the Wilson line again computes a character, but now
for the analytically continued representations,

,
ℛ̃
(G8 , G 5 ) = ch(ℛ̃) . (55)

Likewise, the Wilson line can be matched to the dS3 Euclidean Green’s function � (Θ) for a scalar
of mass <2ℓ2 = −422, where Θ is the invariant distance between endpoints G8 , G 5 of the Wilson
line:

� (Θ) = 0ℎ,ℛ̃+
(G8 , G 5 ) + 01−ℎ,ℛ̃−

(G8 , G 5 ) . (56)
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Notably, as for the EdS3 case, both representations in the window with a fixed Casimir ℎ(ℎ − 1)
contribute to the Green’s function, whereas only a single representation appears for AdS3.

Finally, we touch briefly on bulk reconstruction for de Sitter. By solving the wave equation in
various asymptotically AdS spacetimes, the usual HKLL construction for AdS [23, 24] allows for
the classical reconstruction of bulk fieldsΦ(G) in terms of a smeared integral of boundary operators
O(H) that are spacelike separated from the bulk point G,

Φ(G) =
∫

3H′ (G; H′)O(H′) . (57)

The kernel  (G; H) here is known as a smearing function, and it depends on the specifics of the
bulk geometry. While it is known in many cases, there also exist certain coordinate systems such
as Rindler-AdS for which there are obstructions to the construction [25].

There are subtleties when considering smearing functions for de Sitter spacetime. For the
inflationary patch of dS3, one might imagine a similar construction relating bulk fields to integrals
smeared over operators at future timelike infinity. In this case, in order to reproduce the Euclidean
Green’s function from the two-point function of the bulk scalar [20], Ref. [18] (see also [19, 26, 27])
in fact argued that there must be two contributions to this smearing. The field Φ(G) at a bulk point
G can be schematically reconstructed as

Φ(G) =
∫

3H′ +(G; H′)O+(H′) +
∫

3H′ −(G; H′)O−(H′) , (58)

where
Δ± = 1 ±

√
1 − <2ℓ2 , (59)

and O±(H) are the boundary limits of the positive and negative frequency bulk modes with the
divergent factor stripped off. There are contributions not only from the normalizable part O+ dual to
Φ, but also from the shadow operator with scaling dimension Δ− = 2−Δ+. The appearance of both
falloffs is reminiscent of our result, Eq. (56). There, unlike for AdS, we needed to consider Wilson
lines associated to two different representations with fixed Casimir in order to correctly reconstruct
the Green’s function.

In AdS3, there is an alternate approach to deriving the smearing function that uses Wilson
lines [28]. In this method, one starts by noticing that the Ishibashi state lives at a localized bulk
point, thus it describes a local bulk field in terms of sums over states in the representation. By
applying the state-operator correspondence, one can relate these states to operators inserted at the
origin in the CFT, |ℎ, ?, ?̄〉 = O(0, 0) |0〉. The Ishibashi state, Eq. (53), becomes

|ΣIsh〉 =
∞∑
?=0

Γ(2ℎ)
Γ(? + 1)Γ(? + 2ℎ)H

?

−1H̄
?

−1O(0, 0) |0〉 . (60)

Acting on this by isometries, one can translate the Ishibashi state to an arbitrary point in the bulk,
thus describing any local bulk field. Some further algebraic manipulations allow one to take this to
the form, Eq. (57). In de Sitter, the existence of a state-operator correspondence would rely on a
dS/CFT correspondence and is far from clear, however it is highly suggestive to consider performing
a similar series of steps. If one does, the need for two representations in the Ishibashi construction
for de Sitter directly translates to the two contributions in Eq. (58).

12
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8. Discussion

We have reviewed how Wilson lines evaluated in non-unitary BD(2) representations (and their
unitary B; (2) counterparts after analytic continuation) can be used to evaluate Green’s functions
and construct local fields in both EdS3 and Lorentzian dS3 spacetime. An interesting further avenue
is to apply exact results for the expectation value of Wilson loops to infer quantum versions of the
Wilson line, and explore its gravitational interpretation [11].

Other approaches that use Chern-Simons theory to probe gravitational physics in de Sitter
include [29–31]. In our setting, we specifically found a crucial role played by non-unitary BD(2)
representations. These representations, which describe the quasinormal modes, are useful in the
context of Chern-Simons theory. However, due to a different Hermiticity choice, they differ from
the usual representations that describe non-exotic scalar fields in de Sitter—the complementary
and principal series of B>(3 + 1, 1). They nonetheless seem to be useful to describe local bulk
physics for such fields in de Sitter (analogously, the appearance of the quasinormal mode spectrum
in characters related to one-loop partition functions was noted in [32–34]). It will be interesting
to further understand the uses and limitations of Chern-Simons theory, which naturally involves
representations that split into barred and unbarred copies, to describe observables built from the
usual representations for de Sitter gravity.

This work should be extended beyond the scalar case, and there are some questions that arise
in this context. For instance, de Sitter spacetime admits a rich representation theory [10, 35–37],
including representations describing exotic fields such as partially massless gravitons that do not
appear in flat spacetime [38, 39]. One might ask if it is possible to use Wilson lines to probe such
physics.

Finally, it would also be interesting to explore further the role of the two representations, ℛ±
(and ℛ̃± in the Lorentzian case). A better understanding of the quantization of the Wilson line
might elucidate this issue. It would be particularly interesting to consider the role of these dual
representations within a concrete microscopic Hilbert space description for de Sitter.
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