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1. Introduction

Cosmology is our window on the physics at ultra high energies: the correlations we can
observe in the Cosmic Microwave Background (CMB) and in the Large Scale Structures (LSS) can
be traced back to correlations of quantum fields at end of inflation, which encode the imprint of
processes occurring during the inflationary period where the Hubble scale can be as large as 1014

GeV. Understanding how to extract fundamental physics from such objects would then teach us
about which processes can occur at much higher energy scales than any experiment on earth.

However, we can either write down our favourite Lagrangians in an expanding background,
make our predictions and then just waiting for observation to eventually validate (or disprove) our
ideas, or we can aim at understanding what are the rules governing physical processes in such
a background and which constraints on the physics they impose. In this latter perspective, such
rules are expected to have an imprint on the cosmological correlations in terms of their analytic
structure. One might wonder why they should exist at all. First, cosmological correlations are
the result of a time evolution and live at on a space-like surface at late times. If we assume that
such an evolution has been causal and unitary, such principles should constrain their function form.
Secondly, the cosmological correlators contain the flat-space scattering amplitudes in a particular
kinematic limit [1, 2], for which we do know constraints coming from unitarity and locality [3–7].
It is then reasonable to expect that there should be an avatar of such constraints in the structure of
the cosmological correlations and the latter should be constrained by the requirement of having the
correct flat-space limit. Hence, given a cosmological correlation function how do we know if it
really comes from a causal and unitary evolution in a cosmological space-time?

We can ask these questions at the level of the wavefunction(al) of the universe rather than on
the correlators. Why should we care about the wavefunction of the universe given that it is not
what we will ever measure? In a more general sense, the wavefunction can also be considered
as a physical observable as it has properties such as gauge-invariance. Furthermore, it can be
considered as a more primitive object as its square modulus provides the probability distributions
for field configurations from which we can compute any correlation involving (gauge-invariant)
operators constructed from the relevant fields:

〈 𝑓 〉 = N
∫

DΦ|Ψ[Φ] |2 𝑓 (Φ), (1)

where Ψ[Φ] is the wavefunction which depends on some field configuration Φ at the space-like
future boundary, 𝑓 (Φ) is the quantity of which we would like to compute the spatial average, and
N is a suitable normalisation constant. Hence, the properties of 〈 𝑓 〉 are (partially) inherited from
the properties of Ψ[Φ]. The wavefunction of the universe will be the observable with focus on, and
will be chosen to be in the Bunch-Davies vacuum.

It is interesting to notice that the questions we are posing for the wavefunction have some answer
for the flat-space scattering amplitudes, at least in perturbation theory. In this context, the basics
rules are given by the flat-space isometry group, locality, unitarity and causality. The isometry
group dictates that the scattering amplitudes should be a function of Lorentz-invariant variables
and fixes, up to an overall constant, the three-particle amplitudes for any (unitary) irreducible
representations, providing a (non-perturbative) expression for the smallest possible processes and
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a classification for the three-particle interactions [4, 7]. Locality reflects into the analyticity of the
scattering amplitudes, with at most poles and branch-cuts which are associated to the propagation of
particles only. Unitarity is encoded into the factorisation properties of the scattering amplitudes as
the singularities are approached, with a positivity conditions on the coefficients of such singularities.
Finally, the avatar of causality is the Steinmann relations [8–11], i.e. the statement that the double
discontinuity across partially overlapping channels has to vanish in the physical region [12–15]. A
simple requirement of consistency with these principles a great deal of results: the consistency of
interacting theories for particles with spin less or equal to 2 and the inconsistency for those involving
a finite number of particles with higher spin [3–7]; the charge conservation and the equivalence
principle [3, 4], the existence of non-trivial self-interactions for spin-1 particles just if there are
different species and an internal symmetry which satisfies the Jacobi identity [4]. Interestingly, all
these results do not require neither the knowledge of the putative Lagrangian nor the notion of fields:
the building blocks, the three-particle amplitudes, are fixed by the isometry group and amplitudes
involving a higher number of states can be constructed via consistency with these principles.

In cosmology we are pretty far from such an understanding, but in recent years several progress
to fill this gap has been made. De Sitter space represents a suitable playground to start addressing
these issues: its isometry group, 𝑆𝑂 (1, 𝑑 + 1), is nothing but the conformal group in 𝑑-dimensions
and such a symmetry fixes the three-state processes up to a constant [1, 16–20]. We would then
need to gain a deeper understanding of the analytic structure of the wavefunction and how unitarity
and causality constraints it. It turns out that the Bunch-Davies wavefunction has singularities in
correspondence of the vanishing of sums of energies1 associated to the full process as well as sub-
processes: when these singularities are approached, the wavefunction reduces to the high-energy
limit of the flat-space scattering amplitudes (in the former case) or factorises into a product of
lower points scattering amplitudes and wavefunctions [21, 22]. Furthermore, on one side unitarity
implies a cosmological optical theorem [23] and related cutting rules [24, 25], and on the other the
wavefunction has to satisfy Steinmann-like relations and their extension to multiple singularities
[26, 27]. While all these statements hold for the perturbative wavefunctions for general FRW
cosmologies, non-perturbative implications of unitarity started to be formulated in de Sitter case
[28, 29].

In this talk I will report on such recent progress, with a special focus on the perturbative
Bunch-Davies wavefunction of the universe for scalar interactions as well as with a first-principle
definition in terms of cosmological polytopes [21, 30].

2. The wavefunction of the universe

Let us begin with the usual definition of the wavefunction of the universe. Let us consider
a system described by the action 𝑆[𝜙], 𝜙 being the collection of modes of relevance, in an FRW
background

𝑑𝑠2 = 𝑎2(𝜂)
[
−𝑑𝜂2 + 𝑑 𝑑®𝑥 · 𝑑®𝑥

]
, (2)

1With an abuse of language, we refer to the modulus of a spatial momentum as energy: 𝐸 := | ®𝑝 |.
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which has its late-time boundary at 𝜂 = 0. Then the wavefunction of the universe can be written as
a path integral – see [31]:

Ψ[Φ] = N
∫

D𝜙 𝑒𝑖𝑆 [𝜙] ∼ 𝑒−𝜙𝜙𝜓2−𝜙𝜙𝜙𝜓3−...−

𝑛-times︷ ︸︸ ︷
𝜙 · · · 𝜙 𝜓𝑛−... (3)

whereN being a normalisation constant, and the very right-hand-side represents its general structure
with 𝜓𝑛 being the 𝑛-point wavefunction coefficient. In perturbation theory it can be seen as the sum
over all the Feynman graphs with a certain number of external states:

𝜓𝑛 :=
∑︁
{G}

𝜓G , 𝜓G = 𝛿 (𝑑) ©­«
𝑛∑︁
𝑗=1

®𝑝 ( 𝑗)ª®¬
∫ 0

−∞

∏
𝑠∈V

[
𝑑𝜂𝑠 𝜙

(𝑣)
+ 𝑉𝑠

] ∏
𝑒∈E

𝐺 (𝑦𝑒; 𝜂𝑠𝑒 , 𝜂𝑠′𝑒 ), (4)

𝜓G being the wavefunction associated to a given 𝑛-point graph G defined by the sets of sites2 V
and edges E; 𝜓 (𝑠)

+ is the product of the bulk-to-boundary propagators 𝜙+ at a site 𝑠, 𝑉𝑠 encodes the
interaction at a site 𝑠; and finally 𝐺 (𝑦𝑒; 𝜂𝑠𝑒 , 𝜂𝑠′𝑒 ) is the bulk-to-bulk propagator associated to the
edge 𝑒 and with internal energy 𝑦𝑒. The Bunch-Davies condition at in the infinite past selects those
modes which are exponentially suppressed as 𝜂 −→ −∞(1− 𝑖𝜀), i.e. the positive energy solutions

lim
𝜂−→−∞(1−𝑖 𝜀)

𝜙+(−𝐸𝜂) ∼ 𝑓 (𝜂)𝑒𝑖𝐸𝜂 , (5)

for some function 𝑓 (𝜂). Furthermore, the bulk-to-bulk propagator is characterised by three terms

𝐺 (𝑦𝑒; 𝜂𝑠𝑒 , 𝜂𝑠′𝑒 ) =
1

Re{2𝜓2(𝑦𝑒)}
[
𝜙+(−𝑦𝑒𝜂𝑠𝑒 )𝜙+(−𝑦𝑒𝜂𝑠′𝑒 )𝜗(𝜂𝑠𝑒 − 𝜂𝑠′𝑒 )+

+ 𝜙+(−𝑦𝑒𝜂𝑠𝑒 )𝜙+(−𝑦𝑒𝜂𝑠′𝑒 )𝜗(𝜂𝑠′𝑒 − 𝜂𝑠𝑒 )−
−𝜙+(−𝑦𝑒𝜂𝑠𝑒 )𝜙+(−𝑦𝑒𝜂𝑠′𝑒 )

] (6)

where 𝜓2(𝑦𝑒) is the two-point wavefunction with energy 𝑦𝑒. Notice that the first two terms are
time-ordered, while the last one is a boundary term coming from the boundary condition that the
fluctuations have to vanish at 𝜂 = 0. Then, given a graph G, the associated wavefunction 𝜓G has
3𝑛𝑒 terms. Through (4) can in principle compute any perturbative contribution to the wavefunction.
Beside the intrinsic difficulties of such a computation, is there anything we can say a priori without
computing any of the 𝜓G’s and, hence, without specifying the theory?

3. Bunch-Davies condition, singularities and factorisations

Luckily, the answer to the previous question is affirmative. As in the disclaimer at the very
beginning, the focus of our discussion is the perturbative wavefunction with Bunch-Davies initial
condition. As the latter selects just the positive energy solutions, the wavefunction can have singu-
larities just as sums of certain subset of the energies vanish. There are two important consequences.

2For avoiding later to have a language clash with the polytope terminology, we reserve the word vertex for the highest
codimension boundary of a polytope, and use site for graphs.
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First, it implies that no particle production/decay is allowed in the physical region and hence the
wavefunction is analytic for combination of the energies involving differences [21, 22]

lim
𝑥−𝑦−→0

𝜓G = P(𝑥 − 𝑦) (7)

where 𝑥 and 𝑦 are some linear combinations of the external and internal energies respectively, and
P(𝑥 − 𝑦) is a polynomial in 𝑥 − 𝑦. One says that folded singularities have to be absent.

The second important consequence of the Bunch-Davies conditions is that the allowed singu-
larities are reachable outside the physical sheet, the latter being defined by {𝐸 𝑗 , 𝑦𝑒 ∈ R+, ∀ 𝑗 =

1, . . . , 𝑛, 𝑒 ∈ E}: in order to approach them, it is necessary to perform an analytic continuation such
that some of the energies become negative and other stay positive. Consequently, moving outside
the physical sheet in this way we have a situation with in- and out-states. Furthermore, saying that a
certain sum of the energies vanishes is equivalent to say that energy conservation for a subprocess
is restored: the singularities are related to the flat-space physics! More precisely:

o if we consider the vanishing of the total energy 𝐸tot :=
∑𝑛

𝑗=1 𝐸 𝑗 , then the coefficient of the
singularity is the (high-energy limit of) the flat-space scattering amplitude with the same 𝑛

external states [1, 2]:
𝜓G

𝐸tot−→0∼ AG Sing{𝐸tot} (8)

A way to understand it is to consider the integral representation for 𝜓G in the region where
the center-of-mass time 𝜂 for all states is taken to infinite past. Because of the Bunch-Davies
condition, the mode functions reduce to exponential and

𝜓G ∼
∫
−∞(1−𝑖 𝜀)

𝑑𝜂 𝑓tot(𝜂) 𝑒𝑖𝐸tot𝜂 . (9)

This contribution would vanish unless 𝐸tot = 0 outside of the physical region, providing
an energy-conserving delta function. Furthermore, taking the 𝜂 to past infinity moves the
interactions arbitrarily far away from the space-like boundary. For states which do not have
flat-space counterpart, and hence there is no notion of S-matrix, the 𝐸tot singularity is milder
and the coefficient is a purely cosmological effect [32].

o if we consider the vanishing of some partial energy 𝐸g :=
∑

𝑗∈g 𝐸 𝑗 +
∑

6𝑒∈ 6E 𝑦 6𝑒 associated to
a subgraph g ⊂ G with 6E⊂ E being the subset of edges of G departing from g, then the
wavefunction factorises into the product of a flat-space scattering amplitude Ag associated
to g times the wavefunction associated to the complementary graph g summed over both
positive and negative energies associated to the edges between g and g [21, 22]:

𝜓G
𝐸g−→0∼ Ag ×

∑︁
{𝜎6𝑒=∓}

𝜓g(𝜎6𝑒𝑦 6𝑒)
Re{2𝜓2(𝑦 6𝑒)}

× Sing{𝐸g}. (10)

This factorisation property can be understood with a similar argument as (9) and considering
that in this limit just two out of the three terms of the bulk-to-bulk propagator (6) associated
to each of the edges in the subset 6E contribute, one of the two time-ordered terms and the
boundary one.
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o we can also consider the codimension-2 singularity reached by considering the energies𝐸g and
𝐸g, associated to a subgraph g and its complementary g, vanishing. Then energy conservation
is restored in the two complementary subprocesses and the wavefunction factorises into a
product of flat-space scattering amplitudes:

𝜓G
𝐸g,𝐸g−→0

∼ Ag × Ag × Sing{𝐸g} × Sing{𝐸g}. (11)

Notice that depending on the specific theory, as these limits are approached, the scattering amplitude
can enjoy Lorentz boosts and hence be full-fledge Lorentz invariant [33], as in the case of states in de
Sitter space, or still be boostless and just invariant under the Euclidean group 𝐼𝑆𝑂 (𝑑) := R𝑑o𝑆𝑂 (𝑑)
[34]. These factorisation properties can be used to bootstrap the four-point wavefunction in de Sitter
without making any reference [22, 35] as well as to reconstruct the so-called wavefunction universal
integrand for an arbitrary graph [36].

4. Cosmological unitarity

The factorisation properties of a flat-space scattering amplitude are a direct consequence of
unitarity. What can we say about the imprint of unitarity in the Bunch-Davies wavefunction?
The evolution operator 𝑈̂ := T {exp{−𝑖

∫ 0
−∞ 𝑑𝜂 𝐻̂ (𝜂)}}, defined out of the Hamiltonian operator

describing our system, has to satisfy the unitarity condition 𝑈̂𝑈̂† = Î. Leaving on a side the issue
of a regularisation of 𝑈̂ that makes it well-defined in the infinite past and, at the same time, does
not spoil unitarity – see [31, 37] –, then requiring that the wavefunction comes from an unitary
evolution implies that it has to obey an optical theorem and the related cutting rules [23–25, 38]:

𝜓G + 𝜓
†
G =

∑︁
{E𝑐 }

[∏
𝑒∈E𝑐

∫
𝑑𝑑𝑞𝑠𝑒

(2𝜋)𝑑

∫
𝑑𝑑𝑞𝑠′𝑒

(2𝜋)𝑑
1

2Re{𝜓2(𝑦𝑒)}

] ∏
g⊂G

(
𝜓g + 𝜓

†
g

)
, (12)

which expressed the left-hand-side in terms of the sum of all the possible ways of deleting an edge,
splitting the original graph G into a collection of subgraphs G𝑐 , i.e. G = ∪g∈G𝑐

g. Also, {E𝑐}
is the collection of all the subsets of E, excluding the empty set; 𝑠𝑒 and 𝑠′𝑒 are the endpoints of
the edge 𝑒, and all the 𝜓† have all the energies reversed in sign, except the one associated to the
edge 𝑒. Interestingly enough, one can notice that 𝜓G and 𝜓

†
G on the left-hand-side of (12) share

only one singularity, the total energy pole, and their leading behaviour is the same up to a sign.
This implies that when approaching the total energy singularity in the left-hand-side of (12), the
leading Laurent coefficient get cancelled, and in fact the right-hand-side of (12) does not have such a
singularity. However, such a Laurent coefficient encodes the flat-space amplitude for the full graph
G and (12) does not reproduce the flat-space cutting rules. A careful use of the 𝑖𝜀-prescription
produce distributional terms which precisely reproduce them [39]. Finally, prescinding on such
distributional terms, (12) together with the requirement that no folded singularities are allowed
provides a new tool to bootstrap the wavefunction 𝜓G [40]

5. Steinmann-like relations

The 𝑖𝜀-prescription, and hence the analyticity properties, are intimately related to causality.
While its imprint on the wavefunction is not understood yet, in the flat-space scattering amplitude

6
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it reflects as constraints on codimension-2 singularities, named Steinmann relations [8–15]. They
state that the double discontinuity of the amplitudes across partially overlapping channels have to
vanish. One can then ask a similar question on 𝜓G: are there constraints on singularities with
codimension higher than one? Also in this case, the answer turns out to be affirmative [26, 27].
In particular, considering the singularities corresponding to two subgraphs g1, g2 ⊂ G such that
g1 ∪ g2 ≠ ∅, g1 ∪ g2 ≠ ∅ and g1 ∪ g2 ≠ ∅, then [26]

Disc𝐸g1

(
Disc𝐸g2

𝜓G
)
= 0, (13)

where the non-empty conditions on the intersections between the two subgraphs and their comple-
mentaries imply that the the channels they represent are partially overlapping. This is precisely the
statement that the double discontinuities across partially overlapping channels is zero also for the
wavefunction. Interestingly, in codimension-2 there are further conditions on double discontinuities
that are absent in the flat-space case [27]:

Disc𝐸g1

(
Disc𝐸g2

𝜓G
)
= 0, for


g2 ⊂ g1

𝑛g2 > 𝐿g1 + 1
, (14)

where 𝑛g2 is the number of edges departing from g1 and 𝐿g1 is the number of loops of g1. There is
a beautiful physical interpretation of why (14) ought to hold: the subgraph g1 identifies a scattering
amplitude Ag1 – again 𝐸g1 = 0 imposes energy conservation for such a subprocess – and taking
𝐸g2 = 0 with g2 satisfying the two conditions above perform a cut on Ag1 with a non-defined energy
flow!

It is possible to extend these constraints to arbitrary codimension-𝑘 singularities. Concretely,
given 𝑘-channels identified by a collection of 𝑘 subgraphs {g 𝑗 ⊂ G, 𝑗 = 1, . . . , 𝑘}, in principle
there are 2𝑘 intersections involving any combination of them and their complementary graphs.
Considering all such intersections, except the one involving just the complementary graphs, i.e.⋂𝑘

𝑗=1 g 𝑗 , then [27]:

Disc𝐸g1

(
Disc𝐸g2

(
. . .Disc𝐸g𝑘

𝜓G
))

= 0 (15)

if and only if out of these 2𝑘 − 1 intersections there are more then 𝑘 of them which are non-empty,
i.e. not all of them have to be necessarily overlapping, but just any number greater than 𝑘 would
make the multiple discontinuity vanish.

Some comments are now in order. The proof of all these Steinmann-like relations (13), (14)
and (15) rely on the combinatorial formulation in terms of the cosmological polytope [21, 30].
As we will see in the next section, the cosmological polytopes provide a first principle definition
for a wavefunction universal integrand describing certain scalar toy models – the wavefunction
universal integrand upon integration over the external energies with a suitable measure returns the
wavefunction for an arbitrary FRW cosmology. This implies that strictly speaking these constraints
are originally formulated as double and multiple residues of this universal integrand along channels
satisfying the above conditions. However, the integration over the external energies returns polylog-
arithms [21, 41] and consequently these restrictions can be promoted to restrictions on double and
multiple discontinuities for the integrated wavefunction. In the case of the tree-level wavefunction,
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this is the end of the story. At loop level, there are the integrations over the loop momenta that need
to be carried out and hence the integration over the external energies still produce an integrand. In
this case, the space of functions of these integrals is not known and hence whether these constraints
translate to the loop-integrated wavefunction still need to be proven and at loop level the statements
on the discontinuities holds for the energy-integrated integrand. Finally, the cosmological polytope
formulation describe processes with states with a flat-space counterpart: if on one side then the
Steinmann-like relations not necessarily have to hold for those states which do not have a flat-space
counterpart, on the other side any wavefunction which can be written in sums of scalar integrals
that have a description in terms of cosmological polytopes will satisfy them.

6. A combinatorial origin for the wavefunction

In the previous sections we have reviewed novel progress in the understanding of the analytic
structure of the Bunch-Davies wavefunction in de Sitter and more general FRW cosmologies. The
advantage of de Sitter space-time is that, being maximally symmetric, there are more symmetries
constraining the functional form of the wavefunction and that can be exploited. In this section we
switch gear and consider a different, complementary, approach: we can look for an independent,
well-defined, mathematical description which can turn out to have the basic properties we ascribe to
the wavefunction. In other words, we can look for a mathematical object which is defined in its own
right, without any reference to physics and then discover that it encodes the wavefunction. Such
object do exist and go under the name of cosmological polytopes [21, 30]. They turn out to be in one-
to-one correspondence with the graphs G encoding the contribution𝜓G to the wavefunction. Hence,
there are two ways of introducing them: either from their intrinsic definition and then discover that
it is possible to associate a Feynman graph to them; or starting from the graph and discover that
there is a concrete polytope associated to them. For pedagogical reason, we will consider this
second route. A second disclaimer, the cosmological polytopes encode the so-called wavefunction
universal integrand: given a graph G, we can think about the wavefunction contribution 𝜓G as

𝜓G =

∫ 𝑙∏
𝑙=1

𝑑𝑑ℓ

(2𝜋)𝑑
∏
𝑠∈V

[∫ +∞

𝑋𝑠

𝑑𝑥𝑠 𝜆(𝑥𝑠)
]
𝜓̃G (𝑥𝑠, 𝑦𝑒 ( ®ℓ)) (16)

where 𝜓̃G (𝑥𝑠, 𝑦𝑒 ( ®ℓ)) is the universal integrand defined according to (4) by taking 𝜙+(−𝐸𝜂) = 𝑒𝑖𝐸𝜂 ,
the integration over ®ℓ is the loop integration, 𝑋𝑠 is the sum of the energies of the external states, 𝜆(𝑥𝑠)
is a measure which encodes the specificity of the cosmology and of the valence of the interaction,
e.g. in the case of a 𝜙3 theory in 𝑑𝑆1+3 space we have 𝜆(𝑥𝑠) = 1. For conformal theories, there
is no 𝑥𝑠 integration: 𝜓̃G can be also interpreted as the wavefunction in Minkowski space with
a space-like boundary at 𝜂 = 0. The cosmological polytopes encode 𝜓̃G (𝑥𝑠, 𝑦𝑒 ( ®ℓ)) and provide
with a combinatorial way of extract information about the 𝑥𝑠-integrated function via the so-called
symbols [21, 31, 41]. Finally, given a graph G let us suppress the external lines corresponding to
the bulk-to-boundary propagators: such reduced graph G̃ is therefore just defined by the set of sites
V and internal edges E of G. We can associate the kinematic information to G̃ by assigning the
label 𝑥𝑠 to the 𝑠-th site and 𝑦𝑒 to the edge 𝑒 ∈ E: each element of {𝑥𝑠, 𝑠 ∈ V} can be though of as
the sum of the energies of the external states at the site 𝑠, while {𝑦𝑒, 𝑒 ∈ E} are the moduli of the

8
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x′𝑖
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x 𝑗
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𝑥𝑖 𝑥′
𝑖

𝑦𝑖𝑖′
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𝑦𝑖′ 𝑗

𝑥𝑖 𝑥 𝑗

𝑦𝑖 𝑗

𝑦 𝑗𝑖

Figure 1: Example of cosmological polytopes (central column), their first principle definition as intersection
of triangles (first column) and their associated graphs

momenta running in the bulk-to-bulk propagators and parametrise the loop momenta as well as the
angles between all the momenta.

We can consider any graph G̃ with 𝑛𝑒 edges as generated from a collection of 𝑛𝑒 graphs with
two sites by suitably identifying the sites. Given a single two-site graph, we can promote the labels
associated to its sites and edge, namely 𝑥1, 𝑦12, 𝑥2 to be local coordinates Y := (𝑥1, 𝑦12, 𝑥2) in
P2. We can take the canonical basis of this space {x1, y12, x2} := {(1, 0, 0), (0, 1, 0), (0, 0, 1)} to
identify the midpoints of a triangle, i.e. there is a triangle associated to the 2-site line graph, with
vertices given by

{x1 − y12 + x2, x1 + y12 − x2, −x1 + y12 + x2} (17)

Then, considering a collection of 𝑛𝑒 2-site line graphs translates in considering a collection of 𝑛𝑒
disconnected triangles embedded in P3𝑛𝑒−1. Identifying two sites instead translates in intersection
two sides of two triangles in their midpoints, i.e. requiring a linear combination among pairs of
vertices of the two triangles, e.g. (see Figure 1)

(−x𝑖 + y𝑖𝑖′ + x′
𝑖) + (x𝑖 + y𝑖𝑖′ − x′

𝑖) = x′
𝑖 = (x′

𝑖 − y𝑖′ 𝑗 + x 𝑗) + (x′
𝑖 + y𝑖′ 𝑗 − x 𝑗) (18)

Hence, given an arbitrary graph G̃ with 𝑛𝑠 sites and 𝑛𝑒 edges, we can promote all these labels
to be local coordinates Y := (𝑥1, . . . , 𝑥𝑛𝑠 , 𝑦1, . . . , 𝑦𝑛𝑒 ) of the projective space P𝑛𝑠+𝑛𝑒−1, and the
associated cosmological polytope is the convex hull of 𝑛𝑒 triples such as (17) with sharing the
suitable points x𝑠.

Given a cosmological polytope, it is possible to associate a differential form, called canonical
form, with logarithmic singularities only and only its boundaries

𝜔(Y,PG̃) = Ω(Y,PG̃)〈Y𝑑𝑛𝑠+𝑛𝑒−1Y〉 =
n(Y)〈Y𝑑𝑛𝑠+𝑛𝑒−1Y〉

𝜈̃∏
𝑗=1

𝑞 𝑗 (Y)
(19)

where {𝑞 𝑗 (Y), 𝑗 = 1, . . . , 𝜈̃} are linear polynomials identifying the facets3 of PG̃ , while the
numerator n(Y) is a polynomial of degree 𝜈̃ − 𝑛𝑠 − 𝑛𝑒 which identify the locus of the intersections,
outside of PG̃ , of the hyperplanes containing the facets. It has the property that the residue with

3The facets are the codimension-1 boundaries of a polytope.
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respect to any of the 𝑞 𝑗’s is still a canonical form which is associated to the facet identified by
𝑞 𝑗 = 0.

It turns out that the rational function Ω(Y,PG̃) in (19), called canonical function, is the
wavefunction universal integrand 𝜓̃G [21]. This implies that the cosmological polytope PG̃ codifies
all the information about such an integrand as well as a great deal of information about the integrated
wavefunction: the final function depends on two basic data, i.e. the integrand and the contour of
integration. The integrals over the labels of 𝑥𝑠 turns out to provide a representation for the Aomoto
polylogarithms [21, 31, 41, 42]. Going back to the universal integrand 𝜓̃G , its identification with the
canonical function implies that any of its properties can be formulated in terms of the combinatoric
properties PG̃ . For example, the Steinmann-like relations discussed in the previous section emerge
as compatibility conditions on the facets, i.e. conditions that the facets have to satisfy in order for
them to intersect and form a higher-codimension face of PG̃ . If these conditions are not satisfied,
than the hyperplanes containing them have an intersection outside the polytope in that codimension.
Consequently, such an intersection identifies a zero of Ω(Y,PG̃), i.e. it is a condition to identify
the numerator n(Y).

There is a special facet which corresponds to taking the residue with respect to the total energy:
the canonical form of this facet turns out to encode the flat-space scattering amplitudes. It is
referred to as scattering facet. The analysis of the vertex structure of this facet allowed to provide a
combinatorial prove of the flat-space cutting rules [33] and of the actual Steinmann relations [26],
providing a precise setting in which flat-space unitarity and flat-space causality emerge from the
cosmological context. The same occurs with for Lorentz invariance [33].

It is also remarkable that the Bunch-Davies condition is encoded into the combinatorial auto-
morphism group, i.e. the symmetry group preserving the face lattice of PG̃ – the face lattice is a
lattice whose vertices are all the faces of PG̃ , including the full PG̃ and the empty set, and the edges
of the lattice are determined by containment relations. Even more remarkably, the knowledge of the
scattering facet and of this combinatorial automorphisms allow to reconstruct the full polytope [36].
Said differently, knowing the flat-space amplitude and the Bunch-Davies condition it is possible to
bootstrap the wavefunction universal integrand.

7. Conclusion

Quantum field theory in de Sitter space, and more generally in expanding universes, has still
a lot of mysteries that need to be unravelled. An approach which does not rely on an explicit time
evolution has the power of providing new insights in the physics encoded in the relevant observables.
In this sense, the progress in the S-matrix context can be a source of inspiration, given that it was
possible to relate many physical properties to just few fundamental assumptions. Hence, ideally
it is desirable to bring our understanding of cosmological observables on the same footing as the
flat-space scattering amplitudes. Understanding the analytic structure of the wavefunction of the
universe and how fundamental physics is encoded into it, therefore seems to be a promising starting
point: the wavefunction of the universe is a primitive object from which we can compute any other
observable, and appears to have a simpler structure.

In this talk I have reviewed the first progress in addressing the following questions: what’s the
imprint of basic principles, such as unitarity and causality, in the wavefunction of the universe?

10
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what are their consequences?
This program is still at the very beginning and there are very basic and important issues to be

addresses. All the discussion in this talk is based on a graph-by-graph analysis, while the actual
observables are given by sums of graphs. While some properties carry over the sum over graphs, e.g.
the cosmological optical theorem and the Steinmann-like relations, the individual graph viewpoint
is a big limitation in understanding structures for general theories, especially theories which in
the usual field-theoretical description would have gauge redundancies. It is desirable to have an
approach, an organisation of perturbation theory, which is gauge-invariant at all steps. This has
been one of the keys in several achievements in scattering amplitudes. Also the combinatorial
picture is still primitive, despite the interesting results achieved: it also suffer of the same problem
of being tied to a single graph.

Finally, these S-matrix-inspired approaches can be helpful to elucidate the long standing issue
of the IR divergences and eventual inconsistency of perturbation theory in de Sitter – see for
example4 [44–52].
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