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In this work some results for light mesons couplings to constituent quarks obtained in a one
loop calculation are compared among each other in the limit of large quark effective mass.
These coupling constants are extracted from momentum dependent form factors obtained in a
dynamical approach from an important term of the QCD quark-effective action. For this, exact
and approximated ratios of the different light meson-constituent quark coupling constants are
provided. The comparison is also done for the different light mesons and constituent quark
averaged quadratic radii.
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1. Introduction

The constituent quark model (CQM), as a collective set of models based in the original quark
model by Gell Mann and Zweig, is one of the most successful cornerstones for the understanding of
strong interactions in the Standard model. Besides its grounds in properties of Quantum Chromo-
dynamics (QCD) it describes quite well considerable part of the hadron spectra, in particular light
hadrons. Pions are almost massless being the (quasi) Goldstone bosons of the Dynamical Chiral
Symmetry Breaking (ChSB) that endows constituent quarks, and hadrons, with a large effective
mass that is observed. This mechanism is one of the mechanisms that contribute in the overall
hadron masses when compared to the current (Lagrangian) quark masses that are often referred to
measurements at high energies where partons are identified. The dressing of a gluon cloud should
be the most relevant contribution responsible for the emergence of constituent quarks [1]. In models
built in the 80’s and 90’s, a radius of the order of 0.2 − 0.3fm has been estimated for constituent
quarks [2, 3]. There are many versions of the CQM that, besides the gluon cloud, take into account
a pion cloud. The Weinberg’s large Nc Effective Field Theory (EFT) is an example of a CQM, with
the status and power of EFT, that is fully consistent with the properties of the large Nc expansion
[4]. In [5, 6] this EFT has been derived as the leading terms from a large quark and gluon effec-
tive masses expansion with leading couplings to the electromagnetic field and symmetry breaking
terms. Within the constituent quark model the meson-nucleon interaction is understood in terms
of meson-constituent quark coupling. For example, it has been argued that axial pion-constituent
quark coupling constant should be 𝑔𝐴 = 3/4 or 𝑔𝐴 = 1 [2, 4]. Eventually to cope different mesons
couplings and their relative role can be used to assess or to improve field theoretic schemes to help
to find unambiguous parameterization of the nucleon and nuclear potentials [7].

We shall consider the non perturbative one gluon exchange quark-antiquark interaction as one
of the leading terms of QCD effective action whose generating functional is given by [8, 9]:

𝑍 = 𝑁

∫
D[�̄�, 𝜓] exp 𝑖

∫
𝑥

[
�̄�
(
𝑖 /𝜕 − 𝑚

)
𝜓 − 𝑔2

2

∫
𝑦

𝑗𝑏` (𝑥) �̃�
`a

𝑏𝑐
(𝑥 − 𝑦) 𝑗𝑐a (𝑦) + �̄�𝐽 + 𝐽∗𝜓

]
(1)

Where 𝑁 is the normalization, 𝐽, 𝐽∗ the quark sources,
∫
𝑥

stands for
∫
𝑑4𝑥, and 𝑎, 𝑏... = 1, ...(𝑁2

𝑐−1)
stands for color in the adjoint representation being 𝑁𝑐 = 3. The quark gluon coupling constant
is assumed to be 𝑔 and the development below is akin to the Rainbow Ladder Schwinger Dyson
equation (SDE). Below indices 𝑖, 𝑗 , 𝑘 = 0, ...(𝑁2

𝑓
− 1) will be used for SU(2) isospin indices and

therefore 𝑁 𝑓 = 2. The quark current mass will be assumed to be equal for u, d quarks. The
color quark currents are given by 𝑗

`
𝑎 = �̄�_𝑎𝛾

`𝜓, and the sums in color, flavor and Dirac indices
are implicit. A Landau-type gauge will be considered for a non pertubative gluon propagator that
can be written as �̃�`a

𝑎𝑏
(𝑥 − 𝑦) ≡ �̃�`a

𝑎𝑏
= 𝛿𝑎𝑏

[(
𝑔`a − 𝜕`𝜕a

𝜕2

)
𝑅𝑇 (𝑥 − 𝑦) + 𝜕`𝜕a

𝜕2 𝑅𝐿 (𝑥 − 𝑦)
]
, where the

transversal and longitudinal components are 𝑅𝑇 (𝑥 − 𝑦) and 𝑅𝐿 (𝑥 − 𝑦). This non perturbative gluon
kernel therefore incorporates to some extent the gluonic non Abelian character with a corrected
quark-gluon coupling such that they will provide enough strength to yield dynamical chiral symmetry
breaking (DChSB). This has been found in several approaches and extensions [10–16].

In this work light meson-quark coupling constants and averaged quadratic radii will be exhibited
systematically within the large quark effective mass expansion of the quark- one loop background
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field method as performed in Refs. [5, 17–19]. There are many theoretical calculations for the
light hadrons electromagnetic and strong form factors that will not be discussed or quoted here.
These coupling constants will be extracted from form factors that were obtained in a dynamical
calculation with clear contact with QCD. In a one-loop quark polarization calculation, a large quark
and gluon effective masses expansion is done for the model of Eq. (1). From the resulting form
factors, the corresponding low energy coupling constants can be obtained (in the present work they
are shown in the limit of zero meson and constituent quark momenta) and, besides that, mesons and
constituent quark averaged quadratic radii can be calculated. Although the condition of zero meson
momentum is not the one usually adopted for coupling constants, note that constituent quarks might
be assumed to be very likely off shell, in spite of usual conditions for a CQM.

2. The quark determinant, light mesons and constituent quark currents

The method was explained in details in Refs. [5, 6, 17] and therefore it will be succintly
described below. A Fierz transformation for the model (1) is performed and, by picking up the
leading color singlet terms that provide the usual leading mesons couplings, it allows to investigate
the flavor structure in a more complete way. Besides that, color triplet currents only contributes for
higher order (and numerically smaller) being that they only survive when colorless combinations
emerge. This will be shown in details elsewhere. Color singlet provides a direct relation with lightest
observed states, quark-antiquark mesons. Chiral structures with combinations of bilocal currents
are obtained. The Background Field Method (BFM) makes possible the calculation of a one loop
effective action [20, 21]. Therefore the quark field is split into quarks, 𝜓2, composing (light) quark-
antiquark states that give rise to mesons and the chiral condensate, and the background quark, 𝜓1

that eventually might be identified to constituent quarks. The shift of quark bilinears corresponds
to performing a one loop BFM calculation and it might be written for each of the color singlet
Dirac/isospin channels 𝑚 = 𝑠, 𝑝𝑖 , 𝑣, 𝑎, 𝑎𝑖 , 𝑣𝑖 (scalar, pseudoscalar-isospin triplet, vector, axial,
vector-isospin triplet, axial-isospin triplet, where the isospin singlet states were omitted) where the
singlet pseudoscalar and scalar-isospin triplet will be omitted. This separation preserves chiral
symmetry. The sea quark can be integrated out exactly by means of the auxiliary field method that
give rise to colorless quark-antiquark states, light mesons and the chiral quark condensate. Auxiliary
fields are introduced by means of the unity integrals multiplying the generating functional. The scalar
degree of freedom can be eliminated by means of a chiral rotation that endows the pseudoscalar-
iso-triplet ones with non linear structure and dynamics typical from the Goldstone bosons. Field
renormalization constants were introduced explicitly in Refs. [22, 23]. Bilocal auxiliary fields for
the different flavors can be expanded in an infinite orthogonal basis with all the excitations in the
corresponding channel [8]. For the low energy regime one might pick up only the lowest energy
modes, lightest 𝑘 = 0 which corresponds to the pions in this channel, i.e. for example for the
pseudoscalar isotriplet fields 𝑃𝑖,𝑘=0 = 𝜋𝑖 , making the normalization constant of the meson to be a
simple constant in the zero momentum limit. 𝐹𝑘 (𝑧) = 𝐹𝑘 (0). The saddle point equations for each
of the remaining auxiliary fields, 𝜙𝑞, after the integration of the sea quark, can be written from the
condition: 𝜕𝑆𝑒 𝑓 𝑓

𝜕𝜙𝑞
= 0. These equations for the NJL model and for the model (1) with Schwinger

Dyson equations at the rainbow ladder level have been analyzed in many works in the vacuum or
under a finite energy density. The scalar field has the only saddle point equation with non trivial
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solution for the quark-antiquark chiral condensate. This classical solution generates a large effective
quark mass

The scalar field can be frozen by means of a chiral rotation and this produces the chiral
condensate and a strongly non linear pion sector. An usual pion field definition is parametrized
by the functions: 𝑈 = 𝑒𝑥𝑝(𝑖 ®𝜋 · ®𝜎) and 𝑈† = 𝑒𝑥𝑝(−𝑖 ®𝜋 · ®𝜎). The corresponding Jacobian of the
path integral measure will not be calculated and it might induce extra (anomalous) terms for the
resulting form factors. By performing a Gaussian integration of the sea quark field, the resulting
determinant can be written, by means of the identity det 𝐴 = exp 𝑇𝑟 ln(𝐴), as:

𝑆𝑒 𝑓 𝑓 = −𝑖 𝑇𝑟 ln
{
−𝑖𝑆−1

𝑓 (𝑥 − 𝑦)
}
, (2)

𝑆−1
𝑓 (𝑥 − 𝑦) ≡ 𝑆−1

0 (𝑥 − 𝑦) + Ξ𝑠 (𝑥 − 𝑦) + Ξ𝑣 (𝑥 − 𝑦) +
∑︁
𝑞

𝑎𝑞Γ𝑞 𝑗𝑞 (𝑥, 𝑦), (3)

where 𝑓 stands for flavor in the adjoint representation, 𝑇𝑟 stands for traces of all discrete internal
indices and integration of space-time coordinates and Ξ𝑠 (𝑥 − 𝑦) and Ξ𝑣 (𝑥 − 𝑦) stand respectively
for the coupling of sea quark to the scalar-pseudoscalar and vector/axial fields for the particular
definition mentioned above pion field as [5, 6, 17]:

Ξ𝑠 (𝑥 − 𝑦) = 𝐹 (𝑃𝑅𝑈 + 𝑃𝐿𝑈
†) 𝛿(𝑥 − 𝑦), (4)

Ξ𝑣 (𝑥 − 𝑦) = −𝛾
`

2

[
𝐹𝑣𝜎𝑖

(
𝑉 𝑖
` (𝑥) + 𝑖𝛾5 �̄�

𝑖
` (𝑥)

)
+ 𝐹𝑣𝑠

(
𝑉` (𝑥) + 𝑖𝛾5 �̄�` (𝑥)

) ]
𝛿(𝑥 − 𝑦), (5)

where 𝐹 = 𝑓𝜋 is the pion field normalization, 𝑃𝑅/𝐿 = (1 ± 𝛾5)/2 are the chirality right/left hand
projectors and the constants 𝐹𝑣 and 𝐹𝑣𝑠 provide the canonical field definition respectively of rho
and A1 mesons and of 𝜔 and axial 𝑓1.

The free quark kernel can be written as 𝑆−1
0, 𝑓 𝑟𝑒𝑒 (𝑥 − 𝑦) =

(
𝑖 /𝜕 − 𝑚

)
𝛿(𝑥 − 𝑦), where 𝑚 is so far

the current quark mass. The classical solution for the scalar field, found from its gap equation, is
directly incorporated into an effective quark mass 𝑀∗ = 𝑚+ < 𝑠 >. The redefined quark kernel can
be written as:

𝑆−1
0 (𝑥 − 𝑦) =

(
𝑖 /𝜕 − 𝑀∗) 𝛿(𝑥 − 𝑦). (6)

In expression (3) the following quantity, with the usual chiral quark currents has been considered:∑
𝑞 𝑎𝑞Γ𝑞 𝑗𝑞 (𝑥, 𝑦)

𝛼𝑔2 = 2𝑅(𝑥 − 𝑦)
[
�̄�(𝑦)𝜓(𝑥) + 𝑖𝛾5𝜎𝑖�̄�(𝑦)𝑖𝛾5𝜎𝑖𝜓(𝑥)

]
− �̄�`a (𝑥 − 𝑦)𝛾`𝜎𝑖

[
�̄�(𝑦)𝛾a𝜎𝑖𝜓(𝑥) + 𝛾5�̄�(𝑦)𝛾5𝛾a𝜎𝑖𝜓(𝑥)

]
(7)

In this expression, 𝛼 = 2/9 from the Fierz transformation. These background quark currents are
attached to components of the gluon propagator given by:

�̄�`a ≡ �̄�`a (𝑥 − 𝑦) = 𝑔`a (𝑅𝑇 (𝑥 − 𝑦) + 𝑅𝐿 (𝑥 − 𝑦)) + 2
𝜕`𝜕a

𝜕2 (𝑅𝑇 (𝑥 − 𝑦) − 𝑅𝐿 (𝑥 − 𝑦)), (8)

𝑅 ≡ 𝑅(𝑥 − 𝑦) = 3𝑅𝑇 (𝑧 − 𝑦) + 𝑅𝐿 (𝑥 − 𝑦). (9)
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These functions can be considered as part of a gluon cloud providing the emergence of a constituent
quark current that can be dressed further by a pion cloud for the effective action shown below.

3. Light mesons couplings to constituent quarks

The complete set of leading pion and vector/axial mesons couplings to constituent quarks,
with coupling constants resolved in the long wavelength limit with zero momentum exchange, were
presented in Refs [5, 17–19]. In these works the estimations for numerical values of the resulting
coupling constants some specific and different ad hoc normalization for the quark-gluon running
coupling constant and gluon propagator were fixed such as to reproduce particular numerical values
of a specific meson-constituent quark coupling constant of a particular channels. In the present
work, numerical estimations will not be presented and only relative values will be addressed. The
leading light meson-constituent quark current couplings were found to be the following:

L𝑞−𝜋 =
𝐺2 𝑗𝑠

𝐹
𝜋𝑖𝜋𝑖 (�̄�𝜓) + 𝐺 𝑝𝑠𝜋𝑖 �̄�𝜎𝑖𝑖𝛾5𝜓 + 𝑖𝜖𝑖 𝑗𝑘

𝐺𝑉

𝐹2 𝜋𝑖 (𝜕`𝜋 𝑗) �̄�𝛾`𝜎 𝑗𝜓,

+ 𝐺𝐴

𝐹
(𝜕`𝜋𝑖) (�̄�𝑖𝛾5𝛾a𝜎

𝑖𝜓) − 𝐺 𝑝
𝑝𝑠

(𝜕2𝜋𝑖)
𝑀∗𝐹

(�̄�𝜎𝑖𝑖𝛾5𝜓) − 𝐺 𝑝
𝑠

𝜕2(𝜋𝑖𝜋𝑖)
𝑀∗𝐹2 (�̄�𝜓), (10)

L𝑞−𝑣 = 𝑔𝑟1𝑉
`

𝑖
𝑗𝑉,𝑖
` + (𝑔𝑟1 + 𝑔𝑎𝑥) �̄�`

𝑖
𝑗 𝐴,𝑖` + 𝑔𝑣1𝑉

` 𝑗` + (𝑔𝑣1 + 𝑔𝑎𝑥) �̄�` 𝑗
`

𝐴
, (11)

L𝑣 𝑗𝑎−𝐴 = 𝑖𝜖𝜎𝜌`a𝐹𝑣 𝑗𝑎
[
G𝑖
𝜌` (𝜕𝜎 𝑗𝑉,𝑖

a ) + G𝜌` (𝜕𝜎 𝑗𝑉a ) + F 𝑖
𝜌` (𝜕𝜎 𝑗 𝐴,𝑖a ) + F𝜌` (𝜕𝜎 𝑗 𝐴a )

]
, (12)

being that meson local fields were written with their canonical normalization. The last set of
couplings, L𝑣 𝑗𝑎−𝐴, correspond to anomalous couplings [19] that emerges due to the anomalous
trace of Dirac indices: 𝑡𝑟𝐷 (𝛾`𝛾a𝛾𝜎𝛾𝜌𝛾5) = 4𝑖𝜖`a𝜎𝜌. Although these couplings are the only ones
in the eqs above that present second order dependence in external (meson and quark) momenta,
there are several other non-anomalous second order derivative couplings, i.e. external momenta,
which are however suppressed by a factor 1/𝑀∗ with respect to the first order derivative couplings
presented above. In the above equations, the Abelian part of the stress tensors for the vector and axial
mesons were defined for the isotriplet and isosinglet states: F 𝑖

𝜌` = 𝜕𝜌𝑉
𝑖
`−𝜕`𝑉 𝑖

𝜌, F𝜌` = 𝜕𝜌𝑉`−𝜕`𝑉𝜌,
G𝑖
`a = 𝜕` �̄�

𝑖
a − 𝜕a �̄�𝑖

`, and G`a = 𝜕` �̄�a − 𝜕a �̄�`. The non-Abelian contributions were neglected
although they can be incorporated straightforwardly.

The above coupling constants correspond to the zero external momenta limit of the correspond-
ing form factors. In the Euclidean momentum space these form factors are written as:

𝐺 𝑝𝑠 = 𝐺2 𝑗𝑠 = 2𝑔𝑟1 = 2𝑔𝑣1 = 32𝑑1𝑁𝑐 (𝛼𝑔2) 𝐹1(0, 0), (13)
𝐺𝐴

𝐹
=
𝐺𝑉

𝐹
=
𝐺

𝑝
𝑝𝑠

𝐹
=
𝐺

𝑝
𝑠

𝐹
= 2

𝑔𝑎𝑥

𝑀∗ = 8𝑀∗𝐹𝑣 𝑗𝑎 = 32𝑑1𝑁𝑐 (𝛼𝑔2) 𝐹2(0, 0), (14)

where

𝐹1(0, 𝑄) =

∫
𝑘

(𝑘 · (𝑘 +𝑄) − 𝑀∗2)𝑆0(𝑘)𝑆0(𝑘 +𝑄)𝑅(−𝑘),

𝐹2(0, 𝑄) =

∫
𝑘

𝑀∗𝑆0(𝑘)𝑆0(𝑘 +𝑄)𝑅(−𝑘) (15)
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where
∫
𝑘
=
∫

𝑑4𝑘
(2𝜋 )4 and the following function was used: 𝑆0(𝑘) = 1

𝑘2+𝑀∗2 . In the very large quark
effective mass one has 𝐹2(0, 𝑄) ∼ 𝐹1(0, 𝑄)/𝑀∗. There are basically two types of pion coupling
to quarks (and to the nucleon). The pseudoscalar and scalar momentum independent ones, are
numerically large. The derivative couplings that might be suppressed due to the different form
factors 𝐹1 and 𝐹2 and due to 1/𝑀∗ or 𝐹 factors. 𝐺𝑉 and 𝐺𝐴 and also the induced scalar and
pseudoscalar ones 𝐺 𝑝

𝑝𝑠, 𝐺
𝑝
𝑠 . For the vector and axial mesons, there are also two types. Firstly the

usual Yukawa-type couplings, 𝑔𝑟1, 𝑔𝑣1 with eventual corrections to the axial ones 𝑔𝑎𝑥 . Secondly,
the anomalous couplings 𝐹𝑣 𝑗𝑎 that is suppressed due to a numerical constant factor 1/4 and to a
factor 1/𝑀∗ or 1/𝑀∗2 if compared to 𝑔𝑟1. Besides that, the above definition for the anomalous
coupling constant, 𝐹𝑣 𝑗𝑎, has dimension 𝑀−2 although it could be defined as dimensionless quantity
by dividing it by 𝑀∗ in Eq. (12) what might not be "natural". All the other coupling constants are
dimensionless and correspond to the possible leading phenomenological couplings for mesons with
cosntituent quarks/nucleon.

In Figure (1), the diagrams corresponding to the couplings (10 ,11) and (12) are drawn. The
vertices with two mesons lines (dashed lines) represent two pion couplings (𝐺𝑉 and 𝐺2 𝑗𝑠) and
non-leading two-vector(axial) mesons couplings to constituent quark currents.

In the limit of very large quark effetive masses, the ratios presented in (13,14) can be put
together in the following approximate form:

𝐺 𝑝𝑠 = 𝐺2 𝑗𝑠 = 2𝑔𝑟1 = 2𝑔𝑣1 ≃ 𝐺𝐴

𝑀∗

𝐹
= 𝐺𝑉

𝑀∗

𝐹
= 𝐺

𝑝
𝑝𝑠

𝑀∗

𝐹
= 𝐺

𝑝
𝑠

𝑀∗

𝐹
= 2𝑔𝑎𝑥 = 8𝑀∗2

𝐹𝑣 𝑗𝑎 . (16)

Part of these relations are exact in the level of one loop calculation and part of it relies in the large
quark effective mass limit. It can be seen the quark-level Goldberger-Treiman relation (CQM) [18]
and similar ones. Besides that, the pion pseudoscalar coupling to quark has a coupling constant
that is around twice the vector meson-constituent quark coupling constant that is of the order of
the relative ratio found in the literature. The anomalous vector meson coupling constant to (axial)
quark current is suppressed by ∼ 1/(4𝑀∗2) with respect to the vector meson-constituent quark
vector current coupling constant in the limit of very large quark effective mass.

6
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Figure 1: These diagrams correspond to the constituent quark-meson effective couplings from expressions
(10 ,11) and (12). The wavy line with a full dot is a (dressed) non perturbative gluon propagator, the solid
lines stand for a constituent quark (external line), and dashed lines represents mesons fields. Full square in a
vertex represents a simple derivative coupling, and triangle the anomalous couplings, eg. eq. (12)

3.1 Averaged quadratic radii

From the form factors presented above, averaged quadratic radii can be defined from the different
meson-constituent quark couplings and results are somewhat similar to the results obtained from the
NJL model [24]. The function 𝐹1(𝐾,𝑄) is known to have a non standard non-monotonic behavior
with momenta 𝐾,𝑄 mostly because of the constant effective mass approximation. A truncation
of this function [17, 18] provides a more standard behavior and it reproduces more reasonably
the resulting form factors that can be identified as due to a momentum-dependent effective mass.
This truncation has been implemented by: 𝐹1(𝐾,𝑄) ≃ 𝐹𝑡𝑟

1 (𝐾,𝑄) ≡ 𝑀∗𝐹2(𝐾,𝑄). Since the form
factors are dimensionless the corresponding axial and pseudoscalar quadratic radii were defined in
a standard form by:

< 𝑟2 >𝐴=< 𝑟
2 >𝑉= 2

𝐹

𝑀∗ < 𝑟
2 >𝑎𝑥=

𝐹

𝑀∗ < 𝑟
2 >𝑡𝑟

𝑝𝑠=
𝐹

𝑀∗ < 𝑟
2 >𝑡𝑟

2 𝑗𝑠 = −6
𝑑𝐺𝐴(0, 𝑄)

𝑑𝑄2

����
𝑄=0

,(17)

< 𝑟2 >𝑝𝑠=< 𝑟
2 >2 𝑗𝑠= 2 < 𝑟2 >𝜌= 2 < 𝑟2 >𝜔 = −6

𝑑𝐺 𝑝𝑠 (0, 𝑄)
𝑑𝑄2

����
𝑄=0

.(18)

The axial meson AQR is smaller than the vector meson AQR, within the calculation scheme above:
< 𝑟2 > �̄�=< 𝑟2 >𝜌 − < 𝑟2 >𝑎𝑥 , where < 𝑟2 >𝑎𝑥 is obtained from the particularly standard
manipulation of the fermion determinant, otherwise, by imposing hermicity, vector and axial
mesons might have the same properties. At the nucleon level, vector and axial AQR are different
from each other and expected to follow:

√︃
< 𝑟2

𝑉
> /< 𝑟2

𝐴
> ≃ 1.6 [2, 24]. By changing the external

momentum structure of the Feynman diagrams for light meson and constituent quarks one finds that
the quantity < 𝑟2 >2 𝑗𝑠 stands for both, the scalar constituent quark AQR and pion AQR. Lattice
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calculation for the pion scalar AQR indicates its value is larger than the pion charge radius [25, 26],
and it is estimated to be of the order of the strong pion (pseudoscalar) AQR. The vector AQR
< 𝑟2 >𝑉 is proportional to the pion charge AQR, < 𝑟2

𝜋 >𝑒.𝑚.≃ 3𝑒
2 < 𝑟2

𝜋 >𝑉∼ 3𝑒
2

𝐹
𝑀∗ < 𝑟2

2 𝑗𝑠 >

being their ratio not very different from experimental or lattice results < 𝑟2
𝜋 >𝑒.𝑚.∼ 0.45fm2 and

< 𝑟2
2 𝑗𝑠 >∼ 0.68fm2.
The constituent quark axial and vector AQR are equal to each other and suppressed by a factor

𝐹/𝑀∗ with respect to the pseudoscalar and scalar AQR, what may signal the emergence of the pion
cloud [18]. The vector mesons AQR are basically equal to the pion AQR (ps). Besides that, the
electromagnetic squared radius for the rho and omega vector mesons, < 𝑟2

𝜌 >𝐸 and < 𝑟2
𝜔 >𝐸 , are

simply related to the strong AQR, being given by:

< 𝑟2
𝜔 >𝑒.𝑚.= 3 < 𝑟2

𝜌 >𝑒.𝑚.=
3𝑒
2
< 𝑟2

𝜌 >=
3𝑒
2
< 𝑟2

𝜔 > . (19)

Finally from the anomalous vector (axial) meson coupling to the axial (vector) constituent
quark current it is possible to provide estimations for axial (vector) AQR of vector (axial) meson.
Those anomalous couplings corresponds to a small axial or vector component for the vector or axial
mesons. For that, it is important to define a normalized dimensionless coupling function (form
factor) for which there is an ambiguity. The two "natural" choices are given by:

(𝑖) �̄�
(𝑖)
𝑣 𝑗𝑎

= �̄��̄�𝐺𝑣 𝑗𝑎 (𝐾,𝑄), (𝑖𝑖) �̄�
(𝑖𝑖)
𝑣 𝑗𝑎

= 𝑀∗2
𝐺𝑣 𝑗𝑎 (𝐾,𝑄), (20)

where �̄�, �̄� may be considered to be averaged quark and meson momenta for the form factors. The
advantage of this first definition is that it does not require a further normalization with the quark
effective mass exclusively due to the dimension argument and all the quantities emerge naturally
from the expansion of the determinant. The second definition, as just discussed, does not seem
natural although it provides numerical values close to the first one, eventually slightly larger. The
definition of anomalous vector or axial meson AQR will be adopted to be the following:

Δ𝐴 < 𝑟
2
𝜌 >= −6

𝑑�̄�𝑣 𝑗𝑎

𝑑𝑄2

�����
𝑄=0

=
�̄��̄�

4𝑀∗𝐹
< 𝑟2 >𝐴 . (21)

By adopting �̄�, �̄� ∼ 200 MeV, 𝑀∗ ∼ 360 MeV and 𝐹 ∼ 92 MeV, it provides the following axial
AQR of the rho or omega vector meson:

Δ𝐴 < 𝑟
2
𝜌 >∼ 0.3 < 𝑟2 >𝐴∼ 0.08 < 𝑟2 >𝜌,

that is very close to the result obtained numerically in [19], i.e. around 10% of the vector meson
AQR. A similar value is valid for the vector-AQR of the light axial 𝑓1 and 𝐴1 mesons, Δ𝑉 < 𝑟2 > 𝑓1

and Δ𝑉 < 𝑟2 > �̄�1
.

Discussion We have exhibited some properties, coupling constants and averaged quadratic
radii, of low energies mesons interacting with constituent quarks as developed in the last years
in the framework of the constituent quark model at low energies at the one loop BFM and AFM.
Although it still is missing a more complete description, with further numerical estimations in terms
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of the running quark mass and corresponding renormalization constants several of the relations
among different channels of interactions and mesons, for example in Eqs. (16, 17, 18), should
not change considerably at this one loop calculation. Results, tendencies and relative ratios, agree
at least qualitatively, if not quantitatively in some cases, with experimental observation and other
calculations.
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