Kaon, Nucleon and Δ^{*} Resonances with Hidden Charm

Brenda B. Malabarba, ${ }^{a, *}$ A. Martínez Torres, ${ }^{a}$ K.P. Khemchandani, ${ }^{b}$ Xiu-Lei Ren ${ }^{c}$ and Li-Sheng Geng ${ }^{d}$
${ }^{a}$ Universidade de São Paulo, Instituto de Física, C.P. 05389-970, Sao Paulo, Brazil
${ }^{b}$ Universidade Federal de São Paulo, C.P. 01302-907, São Paulo, Brazil
${ }^{c}$ Institut fur Kernphysik \& Cluster of Excelence PRISMA ${ }^{+}$, Johannes Gutenberg-Universitat Mainz, D-55099 Mainz, Germany
${ }^{d}$ School of Physics, Beihang University, Beijing, 102206, China
E-mail: brenda@if.usp.br, amartine@if.usp.br, kanchan.khemchandani@unifesp.br, xiulei.ren@uni-mainz.de, lisheng.geng@buaa.edu.cn

In this presentation we discuss the generation of hadrons with an exotic quark content and hidden charm emerging from three-body interactions. To be more specific, we have studied the $K D \bar{D}^{*} / K \bar{D} D^{*}$ and $N D \bar{D}^{*} / N \bar{D} D^{*}$ systems and predicted states generated from the respective three-body dynamics. In the case of the $K D \bar{D}^{*} / K \bar{D} D^{*}$ system we predict the formation of a meson state with mass around 4307 MeV and quantum numbers $I\left(J^{P}\right)=1 / 2\left(1^{-}\right), K^{*}(4307)$, and from the study of the $N D \bar{D}^{*} / N \bar{D} D^{*}$ system we found N^{*} states with masses in the range $4400 \sim 4600 \mathrm{MeV}$, width of $2 \sim 20 \mathrm{MeV}$ and positive parity.

XV International Workshop on Hadron Physics (XV Hadron Physics) 13-17 September 2021
Online, hosted by Instituto Tecnológico de Aeronáutica, São José dos Campos, Brazil

[^0]
1. Introduction

In the past decades a large number of exotic states were observed experimentally due to the access available to higher energy regions at different facilities around the world, drawing a lot of attention to the subject. As a consequence there exist families of exotic states know as X, Y and Z (see, e.g., Refs. [1-5]).

Exotic mesons, usually, can be understood as tetraquarks or as states originated from two-meson dynamics. Meanwhile, exotic baryons are usually described as pentaquarks or as states generated from baryon-meson dynamics. Most of the exotic states claimed recently have hidden or explicit heavy flavors (charm and bottom).

In this talk we discuss the results obtained for two different three-body systems whose interaction generate exotic states: $K D \bar{D}^{*} / K \bar{D} D^{*}$ and $N D \bar{D}^{*} / N \bar{D} D^{*}$, both of them with hidden charm arising from the $D \bar{D}^{*} / \bar{D} D^{*}$ subsystem. The main motivation to investigate the $K D \bar{D}^{*} / K \bar{D} D^{*}$ system came from the fact that the subsystems $D \bar{D}^{*}, K D, K D^{*}$ have attractive interactions in s-wave from which the states $X(3872) / Z_{c}(3900), D_{s 0}(2317)$ and $D_{s 1}(2460)$ arise, respectively [6-13]. Also, if a state was to be found, the quantum numbers of the generated state (considering all interactions in s-wave) were expected to be compatible with a K^{*} with a mass in the charmonium sector. Such a state would be a prediction that could encourage experimental searches for kaons at energies around $\sim 4-5 \mathrm{GeV}$. Similarly, the study of the $N D \bar{D}^{*}$ system was inspired by the fact that the $N D$ and $N D^{*}$ subsystems are attractive and give rise, among others, to the state Λ_{c} (2595) [14-19]. Such attractive interactions, together with the attraction in the $D \bar{D}^{*} / \bar{D} D^{*}$ subsystem, lead us to contemplate that the formation of N^{*} states with a three-body nature as a consequence of the $N D \bar{D}^{*}$ dynamics is quite probable. Besides, the recent announcement of the LHCb collaboration claiming the existence of possible hidden charm pentaquarks with non-zero strangeness, masses around 4459 MeV [20] and quantum numbers yet to be determined further motivated us to carry out the calculations, since the masses found are close to the threshold of the $N D \bar{D}^{*}$ system.

2. Formalism

The systems we are interested in are composed of three hadrons. To investigate their interactions we must obtain the corresponding T-matrix and this can be done by solving the Faddeev equation

$$
\begin{align*}
T & =T^{1}+T^{2}+T^{3} \\
T^{1}=t_{1}+t_{1} G\left[T^{2}+T^{3}\right], \quad T^{2} & =t_{2}+t_{2} G\left[T^{1}+T^{3}\right], \quad T^{3}=t_{3}+t_{3} G\left[T^{1}+T^{2}\right], \tag{1}
\end{align*}
$$

with G being a three-body loop function and $t_{i}, i=1,2,3$, the two-body t-matrices describing the $(j k)$ subsystems $[j, k=1,2,3, j \neq k \neq i]$.

Solving the Faddeev equations, usually, is a cumbersome task. However, the three-body systems we are intending to study ($N D \bar{D}^{*}$ and $K D \bar{D}^{*}$) have an interesting characteristic that allows us to simplify the formalism for determining the T-matrix. When a three-body system, composed by the particles P_{1}, P_{2} and P_{3}, has P_{3} lighter than the other two particles and $P_{1} P_{2}$ cluster as a bound state/resonance, we can treat their interactions as those of a particle with fixed scattering centers. As a consequence, Eq. (1) can be written as [21-24]

$$
\begin{equation*}
T=T_{31}+T_{32}, \quad \text { with } \quad T_{31}=t_{31}+t_{31} G_{3} T_{32}, \quad T_{32}=t_{32}+t_{32} G_{3} T_{31} \tag{2}
\end{equation*}
$$

where $t_{31}\left(t_{32}\right)$ is the two-body t-matrix related to the subsystem $P_{1} P_{3}\left(P_{2} P_{3}\right)$ and G_{3} the propagator of P_{3} in the cluster.

Considering $K(N)$ as P_{3}, D as P_{1} and \bar{D}^{*} as P_{2} for the $K D \bar{D}^{*}\left(N D \bar{D}^{*}\right)$ system, with $D \bar{D}^{*}$ clustering as the states $X(3872)$ or Z_{c} (3900) (with isospin 0 or 1, respectively), both our systems fulfil the the aforementioned criteria.

In this manner, to determine the three-body T-matrices for the $N D \bar{D}^{*}$ and $K D \bar{D}^{*}$ systems we must obtain T_{31} and T_{32}, given in Eq. (2), for each system. In the following we are going to succinctly present the formalism to do this. More details can be found in Refs. [25, 26].

The elements T_{31} and T_{32} in Eq. (2) depend on the two-body t-matrices t_{31} and t_{32} as well as the loop function, G_{3}, of P_{3} in the cluster. The latter propagator of P_{3}, with P_{3} being $K(N)$ for the system $K D \bar{D}^{*}\left(N D \bar{D}^{*}\right)$, is given by

$$
\begin{equation*}
G_{K}=\frac{1}{2 M_{a}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{F_{a}(\mathbf{q})}{q_{0}^{2}-\mathbf{q}^{2}-m_{K}^{2}+i \epsilon}, \quad G_{N}=\frac{1}{2 M_{a}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{m_{N}}{\omega_{N}(\mathbf{q})} \frac{F_{a}(\mathbf{q})}{q_{0}-\omega(\mathbf{q})+i \epsilon} \tag{3}
\end{equation*}
$$

The term F_{a} in Eq. (3) is a form factor related to the molecular nature of the cluster ($D \bar{D}^{*}$) and can be written as [27-29]

$$
\begin{array}{r}
F_{a}(\mathbf{q})=\frac{1}{N} \int_{|\mathbf{p}|,|\mathbf{p}-\mathbf{q}|<\Lambda} d^{3} \mathbf{p} f_{a}(\mathbf{p}) f_{a}(\mathbf{p}-\mathbf{q}) \\
f_{a}(\mathbf{p})=\frac{1}{\omega_{a 1}(\mathbf{p}) \omega_{a 2}(\mathbf{p})} \cdot \frac{1}{M_{a}-\omega_{a 1}(\mathbf{p})-\omega_{a 2}(\mathbf{p})} \tag{4}
\end{array}
$$

with M_{a} being the mass of the cluster, $N=F_{a}(\mathbf{q}=0)$ is a normalization constant, Λ represents a cut-off $\sim 700 \mathrm{MeV}$ and $\omega_{a i}=\sqrt{m_{a i}^{2}+\mathbf{p}^{2}}$.

Next we need to calculate t_{31} and t_{32}. The determination of t_{31} and t_{32} for the $K D \bar{D}^{*}$ and $N D \bar{D}^{*}$ systems is similar. Hence, to illustrate the procedure we consider, for example, the $K D \bar{D}^{*}$ system. First, let's determine the expression for t_{31}.

The $K\left(D \bar{D}^{*}\right)$ system, considering $D \bar{D}^{*}$ as $X(3872)$ or $Z_{c}(3900)$, has three possible isospin configurations: $|K X, 1 / 2,1 / 2\rangle,\left|K Z_{c}, 1 / 2,1 / 2\right\rangle$ and $\left|K Z_{c}, 3 / 2,3 / 2\right\rangle$ (where we use the notation $\left|A, I, I_{3}\right\rangle$, with A indicating the system, I is the total isospin of the system and I_{3} the corresponding isospin third component). Considering, for instance, the state $\left|K Z_{c}, 1 / 2,1 / 2\right\rangle$, the amplitude t_{31} for $K Z_{c} \rightarrow K Z_{c}$ in isospin $1 / 2$ is given by

$$
\begin{equation*}
\left\langle K Z_{c}, 1 / 2,1 / 2\right| t_{31}\left|K Z_{c}, 1 / 2,1 / 2\right\rangle \tag{5}
\end{equation*}
$$

Remembering that t_{31} is related to the $K D$ subsystem, to determine the matrix element in Eq. (5) it is convenient to express the $\left|K Z_{c}\right\rangle$ state in terms of the isospin of the $K D$ subsystem. To do this we use the Clebsch-Gordan coefficients

$$
\begin{equation*}
\left|K Z_{C}, \frac{1}{2}, \frac{1}{2}\right\rangle=\frac{1}{2}\left[|K D, 1,1\rangle \otimes\left|\bar{D}^{*}, \frac{1}{2},-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}(|K D, 1,0\rangle+|K D, 0,0\rangle) \otimes\left|\bar{D}^{*}, \frac{1}{2}, \frac{1}{2}\right\rangle\right] . \tag{6}
\end{equation*}
$$

Using Eq. (6) together with Eq. (5) we get that

$$
\begin{equation*}
\left\langle K Z_{c}, I=1 / 2, I_{3}=1 / 2\right| t_{31}\left|K Z_{c}, I=1 / 2, I_{3}=1 / 2\right\rangle \equiv t_{1(22)}=\frac{1}{4}\left(t_{K D}^{I=1}+3 t_{K D}^{I=0}\right), \tag{7}
\end{equation*}
$$

where the $t_{K D}^{I=a}$ is the two-body t-matrix for the $K D$ subsystem with isospin $I=a, a=0,1$, and the subscript ${ }^{\prime}(22)^{\prime}$ in Eq. (7) stands for the transition $K Z_{c} \rightarrow K Z_{c}$, an element of the coupled channel t-matrix. Since the system $K X$ can also have total isospin $1 / 2$ it can couple to $K Z_{c}$, such that the transitions $K X \rightarrow K X\left(t_{31(11)}\right)$ and $K X \leftrightarrow K Z_{c}\left(t_{31(12)}\right.$ or $\left.t_{31(21)}\right)$ have to be considered in order to obtain t_{31}. The determination of the isospin weights for the transitions $K X \rightarrow K X$ and $K X \rightarrow K Z_{c}$ requires the exact same procedure as that for the case of $K Z_{c} \rightarrow K Z_{c}$, and the results are summarized in Table 1.

	$K X$	$K Z_{c}$
$K X$	$\frac{1}{4}\left(3 t_{K D}^{I=1}+t_{K D}^{I=0}\right)$	$\frac{\sqrt{3}}{4}\left(t_{K D}^{I=1}-t_{K D}^{I=0}\right)$
$K Z_{c}$	$\frac{\sqrt{3}}{4}\left(t_{K D}^{I D=1}-t_{K D}^{I=0}\right)$	$\frac{1}{4}\left(t_{K D}^{I=1}+3 t_{K D}^{=0}\right)$

Table 1: t_{31} amplitudes for the $K D \bar{D}^{*}$ system in terms of the two-body t-matrices for the $K D$ subsystem.

The computation of t_{32} needs an analogous analysis to determine the contributions from interactions in different isospins and the results happen to coincide with those shown in Table 1, except for a global minus sign to be considered for the non-diagonal terms and changing $D \rightarrow \bar{D}^{*}$.

Since N has the same isospin as K the results on the isospin weights obtained for $K D \bar{D}^{*}$ in Table 1 changing $K \rightarrow N$. The $t_{(32)}$ matrix for the $N D \bar{D}^{*}$ system is also analogous to the one obtained for the $K D \bar{D}^{*}$ system.

So, to determine the t_{31} and t_{32} matrices we need to obtain the two-body t-matrices for the $K D$, $K \bar{D}, K \bar{D}^{*}, K D^{*}, N D, N \bar{D}, N \bar{D}^{*}$ and $N D^{*}$ subsystems in different isospin configurations. These amplitudes can be obtained by solving the Bethe-Salpeter equation

$$
\begin{equation*}
t_{A B}=V_{A B}+V_{A C} G_{C C} t_{C B}, \tag{8}
\end{equation*}
$$

where $V_{A B}$ is the kernel for a channel made of two hadrons and can be obtained with an appropriate effective Lagrangian, and $G_{C C}$ is a two body loop function. The loop function G is divergent and has to be regularized either with a cut-off or with dimensional regularization.

To obtain the two-body t-matrices $t_{D N}$ and $t_{\bar{D}^{*} N}$, we consider two distinct models: one based on the $S U(8)$ spin flavor symmetry [30] and other based on the $S U(4)$ and heavy-quark spin symmetries [31, 32].

In the case of the $K D / K \bar{D}^{*}$ subsystems, to determine the $t_{K D}$ and $t_{K \bar{D}^{*}}$ we solve Eq. (8) using as kernel the amplitude obtained from an effective Lagrangian based on heavy-quark spin symmetry [33-35].

Notice that the systems $N D$ and $N D^{*}$, unlike $K D K D^{*}$, can be coupled in s-wave because of their quantum numbers [in s-wave the state $N D\left(N D^{*}\right)$ has spin-parity $J^{P}=1 / 2^{-}\left(J^{P}=\right.$ $\left.1 / 2^{-}, 3 / 2^{-}\right)$]. To consider the coupling between $N D$ and $N D^{*}$, in the $S U(4)$ model [32] a transition amplitude $D N \rightarrow D^{*} N$ is obtained through box diagrams (more details can be found in Ref. [32]). In the $S U(8)$ model the $D N \rightarrow D^{*} N$ transition is described by a Weinberg-Tomozawa amplitude Ref. [30].

3. Results

In figure 1 we show the results obtained for $|T|^{2}$ as a function of the energy of the $K D \bar{D}^{*}$ system considering the configurations $K X$ and $K Z_{c}$. As we can see, in both processes, $K X \rightarrow K X$ and $K Z_{c} \rightarrow K Z_{c}$ [considering $K X$ and $K Z_{c}$ as coupled channels when solving Eq. (2)], a peak around 4300 MeV shows up. The width of the Z_{c} state was included in the formalism by implementing the transformation $M \rightarrow M-i \Gamma / 2$, with $\Gamma \sim 28 \mathrm{MeV}$, in the corresponding form factor of Eq. (4). When solving Eq. (4) we have varied the cut-off from 700 to 750 MeV , but no significant difference in the results were obtained from this variation (see Fig. 1).

It is interesting to note that the results for the $K X \rightarrow K X$ transition presented in Fig. 1 show a second peak around 4375 MeV which is related to the threshold of the three-body system.

When considering the $K Z_{c} \rightarrow K Z_{c}$ transition with isospin $3 / 2$ no signal of a bound state is found in $|T|^{2}$. Studies of further properties of $K^{*}(4307)$ can be found in Refs. [36, 37].

Figure 1: Modulus squared of the three-body T-matrix for the transitions $K X \rightarrow K X$ (left) and $K Z_{c} \rightarrow K Z_{c}$ (right) considering the coupling between the $K X$ and $K Z_{c}$ channels.

Figure 2 shows the results for the $N X \rightarrow N X$ and $N Z_{c} \rightarrow N Z_{c}$ transitions with $I\left(J^{P}\right)=$ $1 / 2\left(1 / 2^{+}\right)$and Fig. 3 shows the corresponding results in case of $I\left(J^{P}\right)=1 / 2\left(3 / 2^{+}\right)$. In both cases we have considered the inputs of Refs. [31,32] and $N X$ and $N Z_{c}$ as coupled channels. As can be seem, the plots show that there are two peaks close to 4400 MeV and 4550 MeV for all four transitions.

The cut-offs used when calculationg Eq. (4) vary from 700 MeV to 770 MeV and this variation causes a shift of $3-5 \mathrm{MeV}$ on the masses of the states obtained.

The results for the $N D \bar{D}^{*} / N \bar{D} D^{*}$ system, obtained by considering different models to determine the two-body t-matrices of the subsystems $(S U(4)$ or $S U(8)$), are very similar and the small difference found from the differences in the two-body models, as well as the different cut-off used to solve Eq. (4), provide us uncertainties in the masses and widths of the states found. The results for the masses and widths of the N^{*} 's obtained together with the corresponding uncertainties are summarized in Table 2.

Spin-parity	Mass(MeV)	Width (MeV)	Spin-parity	Mass(MeV)	Width (MeV)
$1 / 2^{+}$	$4404-4410$	2	$3 / 2^{+}$	$4467-4513$	$\sim 3-6$
$1 / 2^{+}$	$4556-4560$	$\sim 4-20$	$3 / 2^{+}$	$4558-4565$	$\sim 5-14$

Table 2: Masses and widths of the three-body N^{*} 's states found in the study of the $N D \bar{D}^{*}$ system.

Figure 2: $|T|^{2}$ for the transitions $N X \rightarrow N X$ (left) and $N Z_{c} \rightarrow N Z_{c}$ (right) with $I\left(J^{P}\right)=1 / 2\left(1 / 2^{+}\right)$as functions of \sqrt{s}.

Figure 3: $|T|^{2}$ for the transitions $N X \rightarrow N X$ (left) and $N Z_{c} \rightarrow N Z_{c}$ (right) with $I\left(J^{P}\right)=1 / 2\left(3 / 2^{+}\right)$as functions of \sqrt{s}.

In case of $I=3 / 2$, the $N D \bar{D}^{*} / N \bar{D} D^{*}$ interaction is capable of generating Δ^{*} states with hidden charm and masses around 4359 MeV with $\Gamma \sim 1.5 \mathrm{MeV}$ and 4512 MeV with $\Gamma \sim 4 \mathrm{MeV}$. For more details we refer the reader to Ref. [38]

4. Conclusions and acknowledgments

We conclude from this study that considering $D \bar{D}^{*} / \bar{D} D^{*}$ as a cluster and adding a nucleon or a kaon to it generates states with hidden charm and three-body molecular nature, i.e., states that are described in terms of hadrons interacting with each other while keeping their identities.

The results obtained for the $K D \bar{D}^{*} / K \bar{D} D^{*}$ system show that a K^{*} meson around 4307 MeV should be observed in experimental investigation, while for the $N D \bar{D}^{*} / N \bar{D} D^{*}$ system N^{*} states with $I\left(J^{P}\right)=1 / 2\left(1 / 2^{+}, 3 / 2^{+}\right)$and masses around $4400-4600 \mathrm{MeV}$ as well as Δ^{*} 's with masses $4359-4512 \mathrm{MeV}$ and $I\left(J^{P}\right)=3 / 2\left(1 / 2^{+}\right)$are predicted.

This work is supported by the Conselho Nacional Científico e Tecnológico (CNPq), grant number 305526/2019-7 and 303945/2019-2, and by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processes numbers 2019/17149-3, 2019/16924-3 and 2020/00676-8.

References

[1] Atsushi Hosaka, Toru Iijima, Kenkichi Miyabayashi, Yoshihide Sakai, and Shigehiro Yasui. Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016 (2016) 6, 062C01, https://doi.org/10.1093/ptep/ptw045
[2] Eberhard Kelmpt and Alexander Zeitsev. Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD inspired concepts. Phys. Rept. 454 (2007) 1-202, https://doi.org/10.1016/j.physrep.2007.07.006
[3] Eulogio Oset et al. Weak decays of the heavy hadrons into dynamically generated resonances. Int. J. Mod. Phys. E25 (2016) 1630001, https://doi.org/10.1142/S0218301316300010
[4] Richard F. Lebed, Ryan E. Mitchell, and Eric S. Swanson. Heavy-Quark QCD Exotica. Prog. Part. Nucl. Phys. 93 (2017) 143-194, https://doi.org/10.1016/j.ppnp.2016.11.003
[5] Stephen Lars Olsen, Tomasz Skwarnicki, and Daria Zieminska. Non-standard heavy mesons and baryons: Experimental evidence. Rev. Mod. Phys. 90 (2018) 1, 015003, https://doi.org/10.1103/RevModPhys.90.015003
[6] D. Gamermann, E. Oset, D. Strottman and M. J. Vicente Vacas, Phys. Rev. D 76 (2007), 074016 doi:10.1103/PhysRevD. 76.074016 [arXiv:hep-ph/0612179 [hep-ph]].
[7] T. Barnes, F. E. Close and H. J. Lipkin, Phys. Rev. D 68 (2003), 054006 doi:10.1103/PhysRevD. 68.054006 [arXiv:hep-ph/0305025 [hep-ph]].
[8] D. Gamermann and E. Oset, Eur. Phys. J. A 33 (2007), 119-131 doi:10.1140/epja/i2007-10435-1 [arXiv:0704.2314 [hep-ph]].
[9] F. K. Guo, P. N. Shen, H. C. Chiang, R. G. Ping and B. S. Zou, Phys. Lett. B 641 (2006), 278-285 doi:10.1016/j.physletb.2006.08.064 [arXiv:hep-ph/0603072 [hep-ph]].
[10] E. van Beveren and G. Rupp, charmed cousins of the light scalar nonet," Phys. Rev. Lett. 91 (2003), 012003 doi:10.1103/PhysRevLett. 91.012003 [arXiv:hep-ph/0305035 [hep-ph]].
[11] A. Martínez Torres, E. Oset, S. Prelovsek and A. Ramos, JHEP 05 (2015), 153 doi:10.1007/JHEP05(2015)153 [arXiv:1412.1706 [hep-lat]].
[12] G. S. Bali, S. Collins, A. Cox and A. Schäfer, Phys. Rev. D 96 (2017) no.7, 074501 doi:10.1103/PhysRevD. 96.074501 [arXiv:1706.01247 [hep-lat]].
[13] M. Albaladejo, P. Fernandez-Soler, J. Nieves and P. G. Ortega, Eur. Phys. J. C 78 (2018) no.9, 722 doi:10.1140/epjc/s10052-018-6176-3 [arXiv:1805.07104 [hep-ph]].
[14] J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 763 (2005), 90-139 doi:10.1016/j.nuclphysa.2005.08.022 [arXiv:hep-ph/0507071 [hep-ph]].
[15] T. Mizutani and A. Ramos, Phys. Rev. C 74 (2006), 065201 doi:10.1103/PhysRevC. 74.065201 [arXiv:hep-ph/0607257 [hep-ph]].
[16] C. Garcia-Recio, V. K. Magas, T. Mizutani, J. Nieves, A. Ramos, L. L. Salcedo and L. Tolos, Phys. Rev. D 79 (2009), 054004 doi:10.1103/PhysRevD. 79.054004 [arXiv:0807.2969 [hepph]].
[17] O. Romanets, L. Tolos, C. Garcia-Recio, J. Nieves, L. L. Salcedo and R. G. E. Timmermans, Phys. Rev. D 85 (2012), 114032 doi:10.1103/PhysRevD. 85.114032 [arXiv:1202.2239 [hepph]].
[18] W. H. Liang, T. Uchino, C. W. Xiao and E. O. Baguena, PoS Hadron2017 (2018), 076 doi:10.22323/1.310.0076
[19] J. Nieves and R. Pavao, Phys. Rev. D 101 (2020) no.1, 014018 doi:10.1103/PhysRevD.101.014018 [arXiv:1907.05747 [hep-ph]].
[20] M. Wang. Recent results on exotic hadrons at lhcb, (2020), presented on behalf of the lhcb collaboration at implications workshop 2020.
[21] R. Chand and R. H. Dalitz, Annals Phys. 20 (1962), 1-19 doi:10.1016/0003-4916(62)90113-6
[22] A. Deloff, Phys. Rev. C 61 (2000), 024004 doi:10.1103/PhysRevC. 61.024004
[23] S. S. Kamalov, E. Oset and A. Ramos, Nucl. Phys. A 690 (2001), 494-508 doi:10.1016/S0375-9474(00)00709-0 [arXiv:nucl-th/0010054 [nucl-th]].
[24] A. Martinez Torres, K. P. Khemchandani, L. Roca and E. Oset, Few Body Syst. 61 (2020) no.4, 35 doi:10.1007/s00601-020-01568-y [arXiv:2005.14357 [nucl-th]].
[25] Brenda B. Malabarba, K. P. Khemchandani, and A. Martínez Torres. N^{*} states with hidden charm and a three-body nature. eprint $=$ "2103.09978" (2021).
[26] Xiu-Lei Ren, Brenda B. Malabarba, Li-Sheng Geng, K. P. Khemchandani, and A. Martinez Torres. K^{*} mesons with hidden charm arising from $K X(3872)$ and $K Z_{c}(3900)$ dynamics. Phys. Lett. B 785 (2018) 112-117,https://doi.org/10.1016/j.physletb.2018.08.034
[27] D. Gamermann, J. Nieves, and E. Oset. Couplings in coupled channels versus wave functions: application to the $X(3872)$ resonance. Phys. Rev. D 81 (2010) 014029, https://doi.org/10.1103/PhysRevD.81.014029
[28] A. Martinez Torres, K.P. Khemchandani, L. Roca, and E. Oset. Few-body systems consisting of mesons. Few Body Syst. 61 (2020) 4, 35, https://doi.org/10.1007/s00601-020-01568-y
[29] A. Martinez Torres, E. J. Garzon, E. Oset, and L. R. Dai. Limits to the Fixed Center Approximation to Faddeev equations: the case of the $\phi(2170)$. Phys. Rev. D 83 (2011) 116002, https://doi.org/10.1103/PhysRevD.83.116002
[30] C. Garcia-Recio, V. K. Magas, T. Mizutani, J. Nieves, A. Ramos, L. L. Salcedo, and L. Tolos. The s-wave charmed baryon resonances from a coupled-channel approach with heavy quark symmetry. Phys. Rev. D, 79 (2009) 054004, https://doi.org/10.1103/PhysRevD. 79.054004
[31] W.H. Liang, C.W. Xiao, and E. Oset. Baryon states with open beauty in the extended local hidden gauge approach. Phys. Rev. D 89 (2014) 5, 054023, https://doi.org/10.1103/PhysRevD.89.054023
[32] W.H. Liang, T. Uchino, C. W. Xiao, and E. Oset. Baryon states with open charm in the extended local hidden gauge approach. Eur. Phys. J. A 51 (2015) 2, 16, https://doi.org/10.1140/epja/i2015-15016-1
[33], Gustavo Burdman and John F. Donoghue. Union of chiral and heavy quark symmetries. Phys. Lett. B 280 (1992) 287-291, https://doi.org/10.1016/0370-2693(92)90068-F
[34] Steven Weinberg. Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B 363 (1991) 3-18, https://doi.org/10.1016/0550-3213(91)90231-L
[35] Wise, Mark B. Chiral perturbation theory for hadrons containing a heavy quark. Phys. Rev. D 45 (1992) 7, R2188, https://doi.org/10.1103/PhysRevD.45.R2188
[36] X. L. Ren, B. B. Malabarba, K. P. Khemchandani and A. Martinez Torres, JHEP 05 (2019), 103 doi:10.1007/JHEP05(2019)103 [arXiv:1904.06768 [hep-ph]].
[37] X. L. Ren, K. P. Khemchandani and A. Martinez Torres, Phys. Rev. D 102 (2020) no.1, 016005 doi:10.1103/PhysRevD.102.016005 [arXiv:1912.03369 [hep-ph]].
[38] B. B. Malabarba, K. P. Khemchandani and A. M. Torres, Eur. Phys. J. A 58 (2022) no.2, 33 doi:10.1140/epja/s10050-022-00681-2 [arXiv:2103.09978 [hep-ph]].

[^0]: *Speaker

