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QCD phase diagram constructed with effective models
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In this work, we obtain a representation of the QCD phase diagram with the help of two effective
models, MIT based bag models to describe quark matter and QHD based models to describe
hadronic matter. To obtain the phase transition line, we use the Gibbs conditions that determine
the critical chemical potential for symmetric matter at zero and finite temperature.
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QCD phase diagram constructed with effective models Carline Biesdorf

1. Effective models

To describe hadronic matter we use an extension of the Quantum Hadrodynamics (QHD) with
non-linear terms. The Lagrangian density reads:
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where the Dirac spinor 𝜓𝑁 represents the two nucleons with the effective mass 𝑀∗
𝑁
= 𝑀𝑁 − 𝑔𝜎𝜎

and isospin ®𝜏𝑁 . The 𝑚𝑖’s and the 𝑔𝑖’s are, respectively, the mass of the meson 𝑖 (𝑖 = 𝜎, 𝜔, 𝜌), and
the coupling constants of the mesons with the nucleon 𝑁 . Applying the mean field approximation
(MFA), the EoS can be obtained from eq. (1) (see ref. [1]).

We choose two parametrizations: L3𝜔𝜌 [2] and FSU2H [3] that satisfy bulk nuclear matter
properties and also reproduce maximum star masses above 2M⊙ even when hyperons are included.

To describe quark matter we choose two different approaches. The first one uses the original
MIT bag model and the second is a modification of that model with the inclusion of a vector field,
as presented in [4]. The Lagrangian density of the model follows:

L𝑀𝐼𝑇 =
∑︁
𝑞

{
𝜓𝑞

[
𝛾𝜇 (𝑖𝜕𝜇 − 𝑔𝑉𝑉𝜇) − 𝑚𝑞

]
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}
Θ(𝜓𝑞𝜓𝑞) −

1
2
𝜓𝑞𝜓𝑞𝛿𝑆 , (2)

where the Dirac spinor 𝜓𝑞 represents the quark with mass 𝑚𝑞, 𝑔𝑉 the coupling constant, and 𝑚𝑉

the mass of the meson. Using mean field approximation we obtain the EoSs as shown in ref. [4].
We choose two values for the bag pressure: 𝐵1/4 = 148 MeV, which is the lowest value within

the stability window [4] that satisfies the Bodmer-Witten conjecture, and 𝐵1/4 = 163 MeV, which
is outside the stability window. In order to obtain higher transition temperatures at low chemical
potentials, we here also consider a temperature dependent bag model, as done in [5]:

𝐵(𝑇) = 𝐵0

[
1 +

(
𝑇

𝑇0

)4
]
, (3)

where 𝑇0 is adjusted to reproduce the LQCD and freeze-out (pseudo) critical temperature at zero
chemical potential. Thus we use 𝑇0 = 131 MeV for 𝐵

1/4
0 = 148 MeV and 𝑇0 = 152 MeV for

𝐵
1/4
0 = 163 MeV.

2. First order phase transition - Gibbs conditions - and flavor conservation

The criteria we use to calculate the phase transition are the Gibbs conditions [6]:

𝑇 (𝐻) = 𝑇 (𝑄) = 𝑇, 𝑃 (𝐻) = 𝑃 (𝑄) = 𝑃0, 𝜇 (𝐻) (𝑃0, 𝑇) = 𝜇 (𝑄) (𝑃0, 𝑇) = 𝜇0, (4)
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with

𝜇 ( 𝑓 ) =
𝜖 ( 𝑓 ) + 𝑃 ( 𝑓 ) − 𝑠 ( 𝑓 )𝑇

𝑛
( 𝑓 )
𝐵

, (5)

where 𝜖 ( 𝑓 ) , 𝑃 ( 𝑓 ) , 𝑠 ( 𝑓 ) and 𝑛
( 𝑓 )
𝐵

are the total energy density, pressure, entropy density and number
density of the phase 𝑓 = {𝐻,𝑄}.

Now, once the time scale of the strong force is very small, we consider flavor conservation
during the phase transition, so that the quark phase is completely determined from the initial hadronic
matter. As we have symmetric matter for the hadronic phase, we also must have symmetric matter
for the quark phase.

In Fig. 1 we show examples where the Gibbs conditions are satisfied for 𝑇 = 120 MeV and
𝑇 = 0.
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Figure 1: Relation between pressure and chemical potential for the hadron (dashed lines) and quark (solid
lines) phases, respectively described by the L3𝜔𝜌 and FSU2H parametrization and 𝐵1/4 = 163 MeV
considering 𝑇 = 120 MeV and 𝑇 = 0. The red dots are the points where the Gibbs conditions are satisfied.

3. Phase Diagrams

In Fig. 2 we present the phase diagrams obtained considering two-flavored symmetric matter
for both phases. Also, for sake of completeness, we display the phase diagram for pure quark matter
using MIT based models. In this case, the phase transition criteria is just the value of the chemical
potential where the pressure goes to zero. At the top figures, the bag pressure values are constant.
In this case, the maximum critical temperature obtained for low chemical potentials, depends solely
on the value of the 𝐵1/4, i.e., for a fixed 𝐵1/4 value, different parametrizations for the hadronic
phase or even the inclusion of a vector field to the MIT bag model do not change the value of the
maximum temperature. Hence we draw the same conclusion as in [5]: the bigger the 𝐵1/4 value
the higher the maximum temperature. To understand this behavior we take a look at the relation
𝜇× 𝑃 at high temperatures. As can be seen in Fig. 1, the crossing of the curves from the two phases
occurs at very low pressures. So, as the condition to phase transition used when considering only
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(a) 𝐵1/4 = 148 MeV
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(b) 𝐵1/4 = 163 MeV
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(c) 𝐵
1/4
0 = 148 MeV
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Figure 2: Phase diagrams for symmetric matter considering the L3𝜔𝜌 and FSU2H parametrizations for
the hadronic matter and two different MIT based bag models for two constant 𝐵1/4 values (top) and two
temperature-dependent bag 𝐵(𝑇) (bottom) for the quark matter. The Cleym. line is the experimental
freeze-out [9] and L-G is the region where we expect a liquid-gas phase transition [10].

the MIT bag model is 𝑃 = 0, it is not surprising that the results at this region of the phase diagram
all coincide.

At higher chemical potentials, however, the influence of the hadronic phase shows up, so that
the line of coexistence distances itself from the line obtained via MIT based model only. The
inclusion of a vector field to the MIT bag model increases the critical chemical potential, as already
stated in [5], but here this influence is increased as can be seen by comparing the solid line with the
dashed line of the same color. The differences for the critical chemical potentials between different
QHD parametrizations for a fixed bag value also increase when the bag value is higher. The 𝐿3𝜔𝜌

parametrization results in a higher critical chemical potential than the FSU2H parametrization. In
the same way, vector MIT based models produce a higher critical chemical potential. This is related
with the stiffness of each model. A stiffer QHD model produces a lower critical chemical potential
when compared with a softer one. One has to bear in mind that this feature depends on the region
where the crossing of the curves takes place since FSU2H is stiffer than L3𝜔𝜌 only up to a certain
density (around 0.65 fm−3). On the other hand, for the quark phase we have two behaviors. When
we increase the bag pressure value, which softens the EoS, we obtain higher chemical potentials.
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But when we include the vector channel, which, in turn, stiffens the EoS, we also increase the
chemical potentials. To a more profound discussion, see [7].

With constant bag pressure values we are not able to obtain maximum temperatures that satisfy
the constrains imposed by LQCD [8] nor the freeze-out results [9] and so we are not able to fit
the Cleymans line entirely inside the confined (hadron) phase (see ref. [9]). So, we make use of
temperature-dependent bag pressure values. The results are presented at the bottom of Fig. 2. As
can be seen, we are only able to fit the Cleymans line entirely inside the confined (hadron) phase
for the combinations that includes a 𝐵

1/4
0 = 163 MeV and any of the QHD based model. In fact,

𝐵
1/4
0 = 163 MeV is the smallest value that allows us to satisfy this constrain. We can also see that

a phase diagram constructed using MIT based model alone always produces a lower value of the
maximum chemical potential when compared with a phase diagram that uses both, a QHD and a
MIT based model.

4. Conclusions

In this work, we sought to obtain a representation of the QCD phase diagram using two effective
models, MIT based bag models and QHD based models. We were only able to fulfill the constraints
imposed by LQCD [8] and freeze-out results [9] using a temperature-dependent bag pressure with
𝐵

1/4
0 = 163 MeV and any one of the QHD based models presented. However, if we also impose that

the maximum critical chemical potential has to lie between 1050 < 𝜇 < 1400 MeV, as discussed in
[5], only a combination with the FSU2H fulfils all constraints.
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