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We use the renormalization group optimized perturbation theory (RGOPT) to evaluate the quark
contribution, Pq , to the QCD pressure at NLO (two loop level). In this application the complete
QCD pressure is then obtained simply by adding the perturbative NLO contribution frommassless
gluons to the resummed Pq . At the central scale M = 2πT our complete QCD pressure, P = Pq +

Pg, shows a remarkable agreement with lattice predictions for 0.25 . T . 1 GeV. As expected,
the RG properties native to the RGOPT resummation significantly reduce the embarrassing scale
dependence that plagues popular analytical methods such as standard thermal perturbative QCD
and hard thermal loop perturbation theory (HTLpt).
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1. Introduction

The description of the phase transitions occurring within hot and dense hadronic matter rep-
resents one of the major theoretical challenges in contemporary hadronic physics, despite the
enormous progress achieved by lattice QCD (LQCD) numerical simulations [1]. This is due to
the notorious sign problem [2], which arises when finite chemical potential (µ) values are consid-
ered preventing LQCD to be reliably applied at finite baryonic densities1. A possible analytical
alternative to LQCD is the so called hard thermal loop perturbation theory (HTLpt) [3] which rep-
resents a powerful resummation method. When applying this technique one deforms the original
Lagrangian by a Gaussian mass term to be treated as an interaction, defining a modified perturbative
expansion which then leads to a sequence of (variationally improved) approximations at successive
orders. At NNLO the HTLpt predictions in Refs.[4, 5] are remarkably close to the lattice results for
temperatures down to T & 2Tpc for the commonly chosen “central” renormalization scale choice,
M = 2π

√
T2 + µ2/π2. Unfortunately, even a moderate scale variation of a factor 2 dramatically

affects the pressure and related thermodynamical quantities by relative variations of order 1 or
more. More recently, an alternative dubbed renormalization group optimized perturbation theory
(RGOPT) [6, 7], which combines the standard optimized perturbation theory (OPT) [8] framework
with renormalization group (RG) properties has been proposed. One of RGOPT main advantages is
that it restores RG invariance at all stages of the calculation, in particular when fixing the arbitrary
variational mass parameter. At vanishing temperatures it has been used in QCD up to high (three
and four-loop) orders to estimate the basic coupling αs [7], predicting values very compatible with
the world averages [9]. Also accurate values of the (vacuum) quark condensate were obtained at
four-loop [10] and five-loop [11] orders. Regarding QCD at extreme conditions the method has been
initially used to evaluate the quark contribution to the pressure at two-loop (NLO) at finite densities
and vanishing temperatures [12]. The results obtained in that work show how the method improves
over perturbative QCD (pQCD). More recently, the work of Ref. [12] has been extended in order
to describe the finite temperature domain producing results which are remarkably close to LQCD
even when the “central" scale varies by a factor of 2 [13, 14]. In this case the RGOPT predictions
were compared to those furnished by pQCD and HTLpt showing a substantial improvement as far
as scale dependence is concerned. In this contribution we review some of the main results obtained
in Refs. [13, 14]. The work is organized as follows. In the next section we present the analytical
results for the QCD pressure at the two loop level. Our numerical results and conclusions are
presented in Sec. 3.

1Except at low densities where the problem may be circumvented, e.g., by performing a Taylor expansion around
vanishing chemical potential results.
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2. QCD pressure

In the case of a massive theory the two loop perturbative quark contribution to the QCD
pressure can be obtained by combining results from Refs. [10, 15]
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= −
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where Lm = ln(m/M), g ≡ 4παs(M), M is the arbitrary renormalization scale in the MS-scheme,
CF = (N2

c − 1)/(2Nc), Nc = 3, and Nf = 3. The thermal and in medium integrals, Ji, can be found
in Refs. [13, 14]. The RGOPT pressure can be obtained by following the prescription described in
Refs. [13, 14] so that the quark contribution to the pressure becomes
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, (2)

where the additional terms, with respect to Eq.(1), arise from subtracting a finite zero point
contribution of the form (m4/g)

∑
k skgk , performing the substitutions m → m(1 − δ)γ0/(2b0) and

g → δg, reexpanding to order-δ and finally setting δ = 1. The explicit form of the RG coefficients
γ0, b0 as well as the relevant sk can be found in Refs.[13, 14]. To fix the variational mass, m, one
may proceed in two different ways [12–14]: using either a standard stationarity criterion [16], the
mass optimization prescription (MOP):

∂PRGOPT
q

∂m

���
m
≡ 0 , (3)

or, alternatively, the reduced RG equation[
M∂M + β(g)∂g

]
PRGOPT
q = 0 , (4)

which is the criterion to be considered in the present work 2 The coupling g(M) is determined
from standard PT two-loop running, with the renormalization scale M chosen as a multiple of πT
as usual. Unfortunately, when applied to Eq.(2), both Eq.(3) and Eq.(4) yield a complex dressed
mass m(g,T, µ) for a substantial part of the physically relevant T, µ range. Nevertheless, this
issue can be cured in an RG consistent manner by performing a renormalization scheme change
(RSC)[7, 12, 14]. With this aim we define a RSC acting only on the variational mass in our
framework, m → m′(1 + B2g

2), where a single B2 parametrizes a NLO RSC from the original
MS-scheme inducing an extra term −4gm4s0B2 in Eq.(1). Within this RSC B2 may be considered
an extra variational parameter to be fixed by a sensible prescription.
Considering specifically the RG Eq.(4), it can be conveniently written as an equation for ln(m2/M2),

− ln
m2

M2 + Brg ∓
8π2

g

√
2
3

Drg(B2) = 0 , (5)

2The reader interested in the MOP prescription is referred to Refs. [13, 14].

3



P
o
S
(
X
V
H
a
d
r
o
n
P
h
y
s
i
c
s
)
0
4
0

Renormalization group improved QCD thermodynamics Marcus Benghi Pinto

with Brg,Drg(B2) given respectively in Eqs. (4.10) and (4.11) of Ref.[14]. To yield real solutions
the arbitrary RSC parameter B2 is fixed by partly fully cancelling Drg. In particular for the RG
prescription one may use Drg(B2) = 0 to uniquely fix B2. Once the prescription to fix the RGOPT
parameters has been established we can finally consider the full QCD pressure by simply adding to
Eq.(2) the NLO glue contributions [17]

PPT
g =

8π2

45
T4

[
1 −

15
(4π)2

g

]
. (6)

3. Numerical results and conclusions

Let us now compare the NLO RGOPT full QCD results with those from HTLpt [5, 18] and
(massless) pQCD [19], as well as with available LQCD data from Refs. [20–22] at µB = 0. For the
numerical evaluations of NLO quantities we take the exact two-loop running coupling (see, e.g.,
Ref. [12]) and vary the scale within the range πT ≤ M ≤ 4πT .
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Figure 1: NLO RGOPT (RG prescription) plus NLO PPT
g pressure (brown band) compared to N3LO g3 ln g

pQCD (light blue band), NLO HTLpt (light green band) and NNLO HTLpt (light red band), with scale
dependence πT ≤ M ≤ 4πT , and to lattice data [20–22] at µB = 0.

Let us choose ΛMS = 335 MeV for Nf = 3 which is very close to the latest world average value
[9]. Notice that, for consistency, the NNLO HTLpt [5] and O(g3 ln g) pQCD [19] numerical results
reproduced here have been obtained rather with a three-loop order running coupling.
The results displayed in Fig.1 show that the RGOPTNLO predictions for the central scale, M = 2πT
compare very well with lattice results for temperatures starting at T ' 0.25 GeV which lies within
the relatively strong coupling regime (αs ' 0.3). This agreement persists up to T = 1 GeV, the
highest value for the LQCD data in Ref. [20]. Comparing our NLO results with those from NNLO
HTLpt one also observes that the RGOPT successfully attenuates the scale dependence issue. Due
to technical difficulties in applying our approach to the gluon sector we have only considered the
purely perturbative NLO contribution on top of the variationally resummed quark contributions.
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