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Approaching small- and large-box regimes in field theory
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We propose to investigate in detail how field theory behaves in restricted spaces. To do so,
we consider a parametric representation of Feynman amplitudes, which allows us to discuss the
behavior up to all orders in a perturbative expansion and extract consequences valid in a global
setting. As a first step, we employ periodically compactified spaces and consider a scalar field
theory. We show two valid and equivalent representations: a large-box representation (best suited
near the bulk limit) and a small-box representation (best suited near the limit of dimensional
reduction). In the small-box regime, we discuss the approach to dimensional reduction and show
how it differs from a static-mode approximation.
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1. Introduction

In recent years, some authors have considered field theories, like QCD, with circle com-
pactification and how it might give new clues regarding the renormalon problem (See references in
Ref. [2]). However, there is a lack of investigation in the literature regarding the topic of dimensional
reduction of Feynman amplitudes and the general behavior of spatial compactifications up to all
loops. Of course, the discussion about only one dimension is well-known, as one can immediately
recall from field theory at finite temperature. There, we know how Feynman amplitudes behave
both in the limit of high- and low- temperatures. However, as far as we know the general scenario
was first discussed by the author and some collaborators years ago, see Refs. [3, 4], where the
dimensional reduction was investigated both for a scalar and a fermionic field, and also taking into
account the dependence with four different boundary conditions: periodic, antiperiodic, Dirichlet
and Neumann. However, these works were restricted just to one-loop contributions.

When we proceed to extend the discussion up to all loops in perturbation theory, we find
another small hole in the literature. Although the parametric representation for field theory is
well-established and textbook content, there were very few attempts to extend it to the scenario with
compactified dimensions. Perhaps the justification for this is the fact that finite-size effects do not
contribute if one is interested in the study of renormalizability. Anyway, this does not justify this
lack of understanding. To fill this gap we can extend the Schwinger parametric representation to a
compactified scenario. This is the theme of the present research, for further details we refer to the
full article, see Ref. [2].

2. Parametric representation : Standard

The scenario under investigation is a scalar field theory without derivative couplings. The field
lives initially in a 𝐷 dimensional Euclidean space. The amplitude corresponding to some Feynman
graph 𝐺 is a composition of the internal propagators (𝐼 is the number of internal propagators), the
vertices (𝑉 is the number of vertices), and a constant related to the coupling constants and symmetry
factors of the graph.

Ĩ𝐺 = 𝐶𝐺

𝐼∏
𝑖=1

[∫
𝑑𝐷𝐾𝑖

(2𝜋)𝐷
1

𝐾2
𝑖
+ 𝑚2

𝑖

]
𝑉∏
𝑣=1

[
(2𝜋)𝐷𝛿𝐷

(
𝑃𝑣 −

∑︁
𝑖

Y𝑣𝑖𝐾𝑖

)]
, (1)

Here 𝜖𝑣𝑖 is the incidence matrix. We build it by assigning +1 when the line starts at vertex and −1
when it ends at the vertex.

What follows is a standard procedure. Firstly one considers some parametrization, such as the
Schwinger parametrization, then we deal with both the conservation Dirac deltas and the integrals
over the internal momenta. We go on until we obtain the final form of the parametric representation
in terms of the so-called Symanzik polynomials U and V.

I𝐺 = 𝐶𝐺

[∏
𝑖

∫ ∞

0
𝑑𝑢𝑖

]
𝑒−

∑
𝑖 𝑢𝑖𝑚

2
𝑖

(4𝜋) 𝐷
2 𝐿

𝑒−
V(𝑝)
U

U 𝐷
2

(2)

Perhaps the most significant thing here is thatU andV can be obtained directly by the topology
of the original diagrams. That is, in principle, it became a bit easier to obtain the amplitude of some
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Feynman diagram of any order. The Symanzik polynomials are given by the 1-tree contributions
(U) and the 2-tree contributions (V). For the interested reader, we refer to e Refs. [5, 8] for a
further discussion of the topic.

3. Parametric representation : compactified spaces

There are many prescriptions to consider quantum field theory in restricted dimensions. Here
we employ the perspective where some spatial directions are periodically compactified. You can
picture it as a restriction on the field itself, that satisfies some periodic identification. Or also as
deformation of the space itself, that becomes something like a hypertorus. This is illustrated in
Fig. 1. We can say that our field lives in 𝐷 dimensional space where 𝑑 of them have a finite length,
like a box. In the large box limit we say that the system approaches the bulk, that is, the scenario
without any compactification. In the small box limit, we say the system approaches the dimensional
reduction, that is, the length scale of some dimensions is so small that can be ignored and the system
seems to live in a space with fewer dimensions.

Figure 1: Representation of the periodic compactification employed.

In practice, we employ an extension of the so-called Matsubara formalism. The usual imaginary
time Matsubara formalism is used to build models of quantum field theory at finite temperature.
A context where dimensional reduction means the limit of very high temperatures. We can extend
it for 𝑑 spatial dimensions. The momenta are now changed to the momenta of the remaining
uncompactified dimensions and frequencies related to the compactified dimensions. The integrals
over the compactified dimensions are now summed over the modes. And the Dirac deltas became
Kronecker deltas. Refs. [6, 7]

This simple modification turns the computation a bit more intricate. The main reason is that
originally one could make any shift in the internal momenta to manipulate the integrals, as the
momenta belonged to the reals. Now, we have discrete frequencies and we are not allowed to make
any shift as we please. This restriction introduces the need for some caution during the computation.
To see the steps we refer to Ref. [2], where we define the function 𝐺𝛼.

I𝐺 = 𝐶𝐺

[∏
𝑖

∫ ∞

0
𝑑𝑢𝑖

]
𝑒−

∑
𝑖 𝑢𝑖𝑚

2
𝑖

(4𝜋)
(𝐷−𝑑)

2 𝐿

𝑒−
V(𝑝)
U

U 𝐷−𝑑
2

∏
𝛼


∑︁

𝑛
(ℓ)
𝛼 ∈Z

∀ℓ∈[1,𝐿 ]

𝑒
− 4𝜋2

𝐿2
𝛼

𝐺𝛼

𝐿𝐿
𝛼


, (3)

After some manipulations, we get to a point of bifurcation. We have at least two different paths
to follow. We can consider the Feynman amplitude in a small-box regime, where the compactified
dimensions can approach the limit of dimensional reduction. And we can consider the amplitude
in a large-box regime, where the compactified dimensions can approach the bulk limit of infinite
length.
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It is important to point out that both paths are equivalent, in the sense that we can analytically
go from one to another. Anyway, each of them is more suited to one scenario and converges faster
in different scales. In principle, one can extract information about dimensional reduction using the
large-box representation, and on the bulk using the small-box representation, see Ref [3].

4. Small- and large-box regimes

Firstly let us consider the small-box regime. The small-box approximation means that the
length scales 𝐿𝛼 of the 𝑑 compactified dimensions are small in comparison with an arbitrary
inverse mass scale Λ. That is, the value of Λ𝐿𝛼 is very small. The consequence of this is that
each new mode 𝑛 introduces an exponential suppression to our amplitude. This means that in the
limit of dimensional reduction, where the product approaches zero, the surviving and dominant
contribution is the one that minimizes the exponential. That is why we refer to the minimum of the
function 𝐺.

I𝐺 ∼ 𝐶𝐺

[∏
𝑖

∫ ∞

0
𝑑𝑢𝑖

]
𝑒−

∑
𝑖 𝑢𝑖𝑚

2
𝑖

(4𝜋)
(𝐷−𝑑)

2 𝐿

𝑒−
V(𝑝)
U

U 𝐷−𝑑
2

∏
𝛼


𝑒
− 4𝜋2

𝐿2
𝛼

min𝐺𝛼

𝐿𝐿
𝛼

 . (4)

One could, perhaps, expect that in the limit of dimensional reduction the amplitude is just
the original one but now with fewer dimensions, this happens in the static mode approximation of
finite-temperature field theory, for example. However, when we consider the minimum of𝐺 we find
the simple result that there might be some surviving information from the compactified dimensions.
This surviving information is due to the external modes, as there is no justification whatsoever for
them to be taken as zero. One might, perhaps, think of it as the production of a dynamic mass due
to dimensional reduction.

On the other hand, the large-box approximation means that the length scales 𝐿𝛼 of the 𝑑
compactified dimensions are large in comparison with an arbitrary inverse mass scale Λ. That is,
the value of Λ𝐿𝛼 is very large. In this regime the original expression has a very slow convergence,
new modes do not produce a suppression as before. To deal with it we can use an identity of
the Jacobi theta, which is a common procedure in the topic of zeta regularization. After some
manipulation, we get a new expression that converges faster in the large-box regime.

I𝐺 = 𝐶𝐺

[∏
𝑖

∫ ∞

0
𝑑𝑢𝑖

]
𝑒−

∑
𝑖 𝑢𝑖𝑚

2
𝑖

(4𝜋) 𝐷
2 𝐿

𝑒
−V(𝑃;𝑢)

U(𝑢)

U 𝐷
2 (𝑢)

∑︁
𝑛
(ℓ)
𝛼 ∈Z

∀ℓ,∀𝛼

𝑒
−∑

𝛼
𝐿2
𝛼

4U(𝑢) n𝑡
𝛼𝐴(𝑢)n𝛼𝑒

2𝜋𝑖
U(𝑢)

∑
𝛼 n𝑡

𝛼𝐴(𝑢)𝐵𝛼 (𝑢) . (5)

There are two main comments here. First, this expression makes it very easy to see the bulk
limit. When the product of the length scale and the mass scale approaches infinity the dominant
contribution is exactly the known contribution without any compactification. The second comment
is that this expression proves that, up to all loops, the Feynman amplitude in compactified dimensions
is separable just like at one-loop. We have a bulk contribution independent of the compactifications
(that must be renormalized) and contributions of each compactified dimension. Also, if we make a
small parametric transformation, the contribution of compactified dimensions can always be written
as a sum over Bessel functions of the second kind.
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5. Conclusions

We exhibit two different representations to deal with Feynman diagrams up to all loops in
the scenario with restricted dimensions. The formulation discussed is valid for periodic boundary
conditions and scenarios with scalar fields. Using this representation we obtain that some known
behavior of Feynman amplitudes at 1-loop are indeed valid up to all loops, as the behavior for the
small- and large-box regimes. For further details see Refs. [1, 2].
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