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In this work we derive an analytical mass formula for the charmonium states. Starting from the
two-body Hamiltonian with the Cornell potential, we use a version of the uncertainty relation
(which depends on the 𝑛 and 𝑙 quantum numbers) and write the momentum in terms of the relative
coordinate. Minimizing the obtained Hamiltonian with respect to this coordinate we determine
the equilibrium separation and calculate the energy of the state, which depends on the charm
mass, on the coupling constant and on the string tension. We include the spin interactions. These
parameters are fixed through a fit of the existing data. We obtain a good fit of the data. This
mass formula can be useful to make a first estimate of new states and can also be easily adapted
to multiquark systems such as the X,Y and Z states.
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1. Introduction

Since the discovery of charm, the chamonium (𝑐 − 𝑐) system has been one of the best tools
to understand the color force. The charmonium spectrum has been measured experimentally with
great accuracy [1]. The lowest lying states have been calculated with lattice QCD [2] and good
agreement with data was found. After reproducing the spectrum, the next step in understanding the
QCD interaction is to decompose the obtained masses into the individual contributions of the short
range one-gluon exhcange, the long range confining potential, the spin contribution, ... etc. This
study has not yet been done in lattice QCD and here is where models can be useful. In the case of
heavy quarkonium states (charmonium and bottomonium), modelling is simpler because the system
is, to a good approximation, non-relativistic.

In this work we study the charmonium spectrum using a simple analytical model. We treat the
system non-relativistically and use the Cornell quark-antiquark potential [3]. However, instead of
solving the Schrödinger equation, we simply use the uncertainty relation to substitute the momentum
by the associate spatial coordinate in the expression of the Hamiltonian. Then, we minimize the
Hamiltonian with respect to this coordinate to find the equilibrium radius of the system. This
procedure, sometimes called variational approach or variational principle (VP), is widely used in
textbooks of quantum mechanics to develop the intuition of the students [4]. In the case of the
hydrogen atom, it is surprisingly succesful. Recently, the VP was introduced in the study the heavy
quarkonium spectrum in Ref. [5]. In the present work, we improve the formalism of [5] combining
the variational principle and the spin formalism as implemented in [6] in an analytical way. With
this improvement, we can calculate, for example, the [𝑐 − 𝐽/𝜓 mass difference.

2. Formalism

The Cornell quark-antiquark potencial is given by [3]:

𝑉 (𝑟) = −4
3
𝛼𝑠

𝑟
+ 𝑏𝑟 (1)

where 𝛼𝑠 (= 𝑔2
𝑠/4𝜋) is QCD fine structure constant and b is the string tension. The Hamiltonian can

be written as:

𝐻 = 𝑚𝑐 + 𝑚�̄� +
𝑝2
𝑟

2`
+ 𝑙 (𝑙 + 1)

2`𝑟2 +𝑉 (𝑟) (2)

where 𝑚𝑐 (= 𝑚�̄�) is the charm mass, ` is the reduced mass and 𝑙 is the angular momentum. In order
to apply the uncertainty relation, we follow [5] and define the symmetrical point, 𝑢 = 𝑟/

√
3, and

the symmetrical momentum, 𝛽𝑢 = 𝑝𝑟/
√

3. They are the radial position and momentum with equal
components in cartesian coordinates. The uncertainty relation can then be written as:

𝑢 · 𝛽𝑢 =
𝛿

3
(3)

with [5]

𝛿 = (
√︁

2(𝑛 − 1) + 𝑙 + 3)𝛿𝑛, (1−𝑙) +
(
2(𝑛 − 1) + 𝑙 + 3

2

)
(1 − 𝛿𝑛, (1−𝑙) ) (4)
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In the above equation 𝛿𝑛, (1−𝑙) is the Kronecker delta. Inserting (4) into (3) and the latter into (2) we
find:

𝐻𝑉𝑃 = 𝑚𝑐 + 𝑚�̄� +
𝛿2 + 𝑙 (𝑙 + 1)

6`
1
𝑢2 +𝑉 (

√
3𝑢) (5)

Minimizing this new Hamiltonian with respect to 𝑢, we find the equilibrium value 𝑢 = 𝑢𝑚𝑖𝑛 and the
corresponding energy for each 𝑛 and 𝑙 combination, obtaining thus the full spectrum.

Once the minimization and performed, 𝑢𝑚𝑖𝑛 is found and 𝑉 (
√

3𝑢) = 𝑉 (
√

3𝑢𝑚𝑖𝑛) is computed,
the energy of the spin interaction is introduced as a perturbation (as in [6]). As usual, we consider
the three components of the spin interaction: spin-spin (𝑉𝑆𝑆), spin-orbit(𝑉𝐿𝑆) and tensor (𝑉𝑇 ). They
are given by:

𝑉𝑠𝑝𝑖𝑛 (𝑟) = 𝑉𝑆𝑆 (𝑟) +𝑉𝐿𝑆 (𝑟) +𝑉𝑇 (𝑟) = 𝐶𝑆𝑆 (𝑟) Sc·Sc̄ + 𝐶𝐿𝑆 (𝑟) L·S + 𝐶𝑇 (𝑟) ⟨Scc̄⟩ (6)

For the Cornell potential, the coefficients are given by:

𝐶𝑆𝑆 (𝑟) =
32𝜋𝛼𝑠

9𝑚2
𝑐

(
𝜎
√
𝜋

)3
𝑒−𝜎

2𝑟2
(7)

𝐶𝐿𝑆 (𝑟) =
2𝛼𝑠

𝑚2
𝑐

1
𝑟3 − 𝑏

2𝑚2
𝑐

1
𝑟

(8)

𝐶𝑇 (𝑟) =
4𝛼𝑠

𝑚2
𝑐

1
𝑟3 (9)

where 𝜎 = 0.5859 GeV is a smearing parameter, taken from [6]. To evaluate the scalar products in
(6) we use S2 = S2

c + S2
c̄ + 2 Sc · Sc̄ and J2 = L2 + S2 + 2 L · S. Finally, ⟨Scc̄⟩ is given by:

⟨Scc̄⟩ =


0, if 𝑙 = 0 or 𝑆 = 0,
− 2𝑙

(2𝑙+3) , if 𝐽 = 𝑙 + 1, 𝑙 ≠ 0 and 𝑆 = 1,
+2, if 𝐽 = 𝑙, 𝑙 ≠ 0 and 𝑆 = 1,
− 2(𝑙+1)

(2𝑙−1) , if 𝐽 = 𝑙 − 1, 𝑙 ≠ 0 and 𝑆 = 1.

(10)

Substituting (7), (8), (9) and (10) in (6) and adding this total spin contribution to the energy of the
system, (5), we find the masses of the states with 𝑛, 𝑙 and 𝑠 quantum numbers. They are given by:

𝑀 (𝑐𝑐) = 2𝑚𝑐 +
𝛿2 + 𝑙 (𝑙 + 1)

6`
1

(2𝑢𝑚𝑖𝑛)2 +𝑉 (
√

3𝑢𝑚𝑖𝑛) +𝑉𝑠𝑝𝑖𝑛 (
√

3𝑢𝑚𝑖𝑛) (11)

As it can be seen, the charmonium spectrum calculated with the above formula, depends on three
parameters, 𝑚𝑐, 𝛼 and 𝑏, which can be determined by fitting the experimentally measured spectrum.

3. Results

To find the best values of the parameters 𝑚𝑐, 𝛼 and 𝑏, we perform a least-square fit, in which
we minimize the quantity 𝜒2 defined as:

𝜒2 =

𝑛∑︁
𝑖

(𝑀 𝑡ℎ𝑒𝑜
𝑖 − 𝑀

𝑒𝑥𝑝

𝑖
)2 · 𝑤𝑖 (12)
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where the weight 𝑤𝑖 = 1 is the same for all the states. Fitting the data we find 𝑚𝑐 = 1.5461 GeV,
𝛼𝑠 = 0.7972 and 𝑏 = 0.1787 GeV2. The spectrum is shown in Fig. 1. As it can be seen, the
overall agreement between the VP formula (11) and the data is quite good. Looking at [𝑐 (1𝑆) and
𝐽/𝜓(1𝑆), we can observe that the introduction of spin interactions produced a shift in the levels in
the right direction, but not strong enough. The experimental mass difference between [𝑐 (1𝑆) and
𝐽/𝜓(1𝑆) is 113 MeV and in our model only 30 MeV.

Another way to show the quality of the fit is through the ratio Theory/Experiment. The same
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Figure 1: Charmonium spectrum. The colored dashed lines are the experimental data from [1]. The solid
lines are our results with 𝛼𝑠 = 0.7972, 𝑏 = 0.1787 GeV2 and 𝑚𝑐 = 𝑚�̄� = 1.5461 GeV.

numbers shown in Fig. 1 are displayed again in Table 1. Looking at the last column we can see that
the biggest discrepancy between experimental data and model predictions is of the order of 2%.

4. Conclusion

We have derived a new mass formula for the charmonium spectrum. It is based on the use of the
uncertainty relation and on the variational principle. The quark-antiquark interaction is described by
the Cornell potential. Spin interactions are included as perturbations. The mass formula reproduces
the energy levels with 2 % accuracy.

This formula can be used to make approximate predictions of unmeasured energy levels. It can
also be applied to the study of four-quark states, such as the very recently observed 𝑇4𝑐 [6] and 𝑇+

𝑐𝑐

[7] and others [8], provided that they are treated as diquark-antidiquark systems.
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𝑛(2𝑠+1) 𝑙 𝑗 𝑢𝑚𝑖𝑛 VP Meson Exp VP/Exp
11𝑆0 1.2114 3.0485 [𝑐 (1𝑆) 2.9839 1.02
13𝑆1 1.2114 3.0782 𝐽/𝜓(1𝑆) 3.0969 0.99
13𝑃0 1.9657 3.3571 𝜒𝑐0(1𝑃) 3.4147 0.98
13𝑃1 1.9657 3.5658 𝜒𝑐1(1𝑃) 3.5107 1.02
11𝑃1 1.9657 3.5017 ℎ𝑐 (1𝑃) 3.5254 0.99
13𝑃2 1.9657 3.4966 𝜒𝑐2(1𝑃) 3.5562 0.98
21𝑆0 2.3188 3.6677 [𝑐 (2𝑆) 3.6375 1.01
23𝑆1 2.3188 3.6682 𝜓(2𝑆) 3.6861 1.00
13𝐷1 2.7161 3.8193 𝜓(1𝐷) 3.7737 1.01
13𝐷2 2.7161 3.8675 - - -
11𝐷2 2.7161 3.8403 - - -
13𝐷3 2.7161 3.8299 - - -
23𝑃0 2.9312 3.8935 - - -
23𝑃1 2.9312 3.9524 - - -
21𝑃1 2.9312 3.9297 - - -
23𝑃2 2.9312 3.9234 𝜒𝑐2(2𝑃) 3.9225 1.00
31𝑆0 3.2902 4.0747 - - -
33𝑆1 3.2902 4.0747 𝜓(3𝑆) 4.0390 1.01
23𝐷1 3.5176 4.1622 𝜓(2𝐷) 4.1910 0.99
23𝐷2 3.5176 4.1794 - - -
21𝐷2 3.5176 4.1645 - - -
23𝐷3 3.5176 4.1547 - - -
41𝑆0 4.1248 4.3984 - - -
43𝑆1 4.1248 4.3984 𝜓(4𝑆) 4.4210 0.99

Table 1: Masses of the 𝑐𝑐 states. All the masses are in GeV, and 𝑢𝑚𝑖𝑛, in GeV−1. Experimental data are
from [1].
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