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1. Introduction

Studies in the works [1–4] have established the correspondence between asymptotic (infinitely
wide) fully connected neural networks (NN) and Gaussian processes (GP). In particular, the results
of [1, 2] showed that the function defined by a single-layer fully-connected NN with infinitely many
hidden units, and random independent zero-mean weights and biases is equivalent to a GP. Later
these results were extended to arbitrarily deep fully-connected NN with infinitely many hidden
units in each layer [3, 4]. This discovery of the asymptotic equivalence between NN and GPs
provides obtaining an analytic form for the prior over functions encoded by NN architectures and
initializations. Rather than considering NNs to be determined by a learning parameter space distri-
bution, this relationship allows one to consider NNs themselves as samples from a function space
distribution. Such uncovering of an explicit prior over functions can be analytically investigated
and therefore provides means for a theoretical understanding of deep learning. For example, in the
work [5] predictions for learning curves of deep NNs trained on polynomial regression problems
were derived, and in [6] predictions of NN outputs with high accuracy were obtained by using the
NN-GP relationship.

The basic idea behind these studies is that a set of NNs fθ,n : X → Y with learning parameters
θ and width n admits a limit n → ∞ in which the networks are equivalent to GP, that is f have a
Gaussian distribution on the function space: f ∼ exp

{
−

∫
d |X |x d |X |x ′ f (x)K(x, x ′) f (x ′)

}
, where

K(x, x ′) is the GP kernel. Clearly, in practice one is interested in networks with finite width n. It
is supposed that they can be drawn from a distribution that receives 1/n corrections relative to the
Gaussian distribution, i.e., from a non-Gaussian process (NGP), see e.g., [7]. It is worth noting
that from the technical point of view studing neural networks with close-to-Gaussian distribution
on function space are to some extent analogous to perturbative quantum field theory ([8] and refs
therein).

However, fully-connected networks are rarely used in practice, as they are unable to exploit
such important properties of data as their possible invariance with respect to continuous or discrete
groups of transformations. This disadvantage is eliminated in the architecture of convolutional
neural networks (CNN; see, e.g., [9]). In particular, classical CNNs are very successful in the
image recognition domain because they ensure equivariance to translations. Therefore, recently the
equivalence between NNs and GPs was extended to deep convolutional neural networks [10, 11]. In
this case, if each hidden layer has an infinite number of convolutional filters (that is infinite number
of channels), the network prior is equivalent to a GP. There have been many recent attempts [12–18]
to generalize translation-invariant usual CNNs to other symmetry transformations. In particular,
the important result of the work [15] is the proof that convolutional structure is not just a sufficient,
but also a necessary condition for equivariance to the action of a compact group. Equivariance
guarantees that exactly the same filters are applied to each part the input image regardless of
position and that the network can detect any given object equally well regardless of its location
respecting data symmetry properties. The formalism used in this studies is based on concepts from
representation theory and non-commutative Fourier harmonic analysis. From a mathematical point
of view, the relevance of Fourier theoretic ideas in this domain is a consequence of the fact that
neuron activations form representation space of the underlying symmetry group. It is worth noting
that the Fourier formulation also exists for the usual CNNs with translational equivariance [19, 20],
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and the corresponding neural network implementations demonstrate good performance.
It is important that the above mentioned works [10, 11] on establishing the relations between

CNNs and GP deal only with translational equivariance and only in the real spaces (RS) of images
(not in the Fourier spaces (FS)). On the other hand there exists investigations of equivariant neural
processes [21] but without established relations with CNNs in the appropriate limit. The present
work is the first step towards filling the gap between equivariance of CNNs and the corresponding
GPs.

2. Many-channel CNNs in Fourier Space

2.1 General Setup

For simplicity of presentation we consider 1D convolutional networks with layers and fil-
ters being circles S1. In this particular case one can consider usual discrete real space with
circularly-padded activations [10, 22] and discrete Fourier transform [19]. However, having in
mind generalization of the present approach to more complicated symmetries (e.g., spherical SO(3)
symmetry), which does not consistent with discretization, we shall consider activations and filters
as functions on continuous index space as in [15, 16]. In this case the discretization needed for
practical realization of the CNNs is achieved by appropriate cutoff of the Fourier series [14, 16].

Our analysis is straightforward to extend to higher dimensional torus with SO(2) symmetry
along each dimension. Generalization to the cases of more complicated symmetries (like, spherical
symmetry SO(3) or Euclidean group E(2)) will be considered in subsequent works.

We consider a series of L + 1 convolutional layers, l = 0, . . . , L. Since we consider a toy
model intended for developing the general approach, for further simplicity we omit bias terms in
the CNNs:

• on the one hand, non-zero biases can be easily restored in the expressions below;

• on the other hand, CNNs do not necessarily require non-zero biases, and there exist well
known architectures like ResNet with realizations where the convolution layers have no
biases1.

The parameters of the network. These are the convolutional filters, ωl
i j(ν) with channel indices

i, j and filter spatial location ν = ϕ/2π ∈ R/Z, where ϕ is the angular coordinate on S1. Further
details about our notation are as follows:

• We use Roman letters to index channels and Greek letters for spatial location.

• To make expressions as easy readable as possible, we denote functions on spatial space and
their Fourier transforms by the same letters but with spatial variable in parenthesis while the
respective Fourier components are denoted by letters with Greek indices. For example, ω(ν)
denotes spacial function and ωα denotes α-component of its Fourier transform.

1https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt
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• According to general aproach to the NN-GP correspondence [1–4, 10, 11], it is assumed the
Gaussian prior on the filter weights in the Fourier space,

ωl
i j,β ∼ N

(
0,
σ2
ω

nl

)
, (2.1)

where

– σ2
ω is the weight variance,

– nl is the number of channels (filters) in layer l.

Thus all the ωl
i j,β are i.i.d. normally distributed random variables.

Functions on a circle and the network inputs. It is well known (see, e.g., [23, 24]) that the
Fourier components fα of a function on S1

f (ν) =
∞∑

α=−∞

fαei2παν , ν ∈ R/Z , (2.2)

transforms under the action of SO(2) as a one-dimensional representations:

Tg(µ) f (ν) ≡ f (ν + µ)

=

∞∑
α=−∞

(
Tα(g(µ)) fα

)
ei2παν =

∞∑
α=−∞

fαei2πα(ν+µ)

⇒ Tα(g(µ)) fα = ei2παµ fα . (2.3)

Let X denote a set of input data (images) (training set, validation set, or both). Input data
xi(ν) ∈ X on S1 can be expanded into Fourier series

xi(ν) =
∞∑

α=−∞

xi,αei2παν , (2.4)

where i is the channel index. Since xi(ν) are real,

x̄i,α = xi,−α , (2.5)

the bar over a character denotes the complex conjugate. Finite dimensionality of the input data is
achieved by cutting off the Fourier series at some value Q of the component index

x(Q)i (ν) =

Q∑
α=−Q

xi,αei2παν , x(Q)i (ν) ∈ X
(Q) (2.6)

The set of such functions with finite series will be denoted by X(Q) and its dimension is |X(Q) | =
n0(Q + 1) (for real-valued quantities). For intermediary expressions it is convenient to use the
complete Fourier series (2.4), and to perform transition to finite-dimensional quantities at the final
stage.
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Pre-activations, and activations. The network has activations yl(ν; x) and pre-activations zl(ν; x)
for each input image x ∈ X. They are defined by the following mappings from layer to layer:

yli (ν; x) =

{
xi(ν) l = 0

φ(RS)
(
zl−1
i (ν; x)

)
l > 0

, zli(ν; x) =
nl∑
j=1

∫ 1/2

−1/2
dν′ ω̄l

i j(ν
′)ylj(ν + ν

′; x) . (2.7)

As it is seen, the pre-activations zli(ν; x) are defined by the cross-correlation2 for the functions on
S1. Though in the real space all functions are real-valued, we keep the genuine definition of the
cross-correlation with complex conjugate first multiplier because we use the complex-valued form
of the Fourier transform. Also we explicitly indicate the dependence of yli (ν; x) and zli(ν; x) on the
input x. The function φ(RS) defines a nonlinearity in the real space; following to [16] we do not
require that it has pointwise nature.

After the Fourier transform similar to that of the input data (2.4), the relations (2.7) take the
form

yli,α(x) =

{
xi,α l = 0

φα

(
z̄l−1
i,• (x), z

l−1
i,• (x)

)
l > 0

, zli,α(x) =
nl∑
j=1

ω̄l
i j,αy

l
j,α(x) , (2.8)

where zl−1
i,• means that φα may depend on any of the Fourier components. According to the general

property, the cross-correlation in (2.7) becomes the pointwise multiplication (2.8) in the Fourier
space.

Following to [16], we choose the quadratic nonlinearity in the Fourier space:

yli,α(x) =
∞∑
β=0

z̄l−1
i,β (x)z

l−1
i,α+β(x) . (2.9)

A few comments to the chosen form of the nonlinearity are in order:

• we have chosen the simplest form of the quadratic FS nonlinearity which does not lead to
increasing in the number of channels in a subsequent layer (cf. [16]);

• the left hand side of (2.9) transforms according to the definite (defined by the Fourier com-
ponent index α) irreducible representation (irrep) of the SO(2) group;

• since the nonlinearity (2.9) has the form of cross-correlation in the Fourier space, in the real
space it corresponds to local (pointwise) quadratic activation function; as it was noticed in
[19], together with appropriate linear term such a nonlinearity can approximate the famous
ReLU function [25]; for simplicity we omit such a linear term in (2.9).

Taking into account the transformation of Fourier modes under the rotation group (2.3) and
the fact that the nonlinearity (2.9) has equivariant form, it is readily seen that the defining equations
(2.8) (and hence the CNN) are explicitly equivariant. In particular, by induction starting from
y0
i = xi(ν) we have

zli,α(Tg(µ)x) = ei2παµzli,α(x) ,

yli,α(Tg(µ)x) = ei2παµyli,α(x) , (2.10)
2Remind that though the networks are called “convolutional”, the mapping for pre-activations are usually defined by

the cross-correlation (closely related to the convolution operation).
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Activation covariance. One of the most important quantity for the derivation of the CNN-GP
correspondence is the uncentered covariance matrix K l of the activations yl, defined as [10]:

K l
α,α′ (x, x ′)

def
≡

1
nl

nl∑
i=1

ȳli,α(x)y
l
i,α′(x

′) . (2.11)

Notice that

• K l for l > 0 are random variables indexed by two inputs x, x ′ and two Fourier component
indices α, α′;

• K0 is the deterministic covariance of inputs;

• according to the definition, K l is transformed under rotation of the inputs as follows

K l
α,α′

(
Tg(µ)x,Tg(µ′)x ′

)
= ei2π(α′µ′−αµ)K l

α,α′ (x, x ′) . (2.12)

2.2 Convergence of top-layer pre-activations to normal random vector with explicit
equivariance

In this section, following to the general approach presented in [10], we show that the top-layer
pre-activations zLα converge in distribution to a normal random vector with a particular covariance
matrix as number of the channels in hidden layers are taken to infinity: min

{
n1, . . . , nL

}
→∞ (the

number of channels in the top-layer nL+1 remains fixed). Our main distinction from the work [10]
is that in the passage to the limit we keep the explicit equivariance with respect to the symmetry of
input data (SO(2) group in the considered case).

First of all we notice that since ωi j,α defined in (2.1) are i.i.d. variables, they satisfy

E[ωl
i j,αω

l
i′ j′,α′] = E[ω̄

l
i j,αω̄

l
i′ j′,α′] = 0 , (2.13)

E[ω̄l
i j,αω

l
i′ j′,α′] = E[ω

l
i j,αω̄

l
i′ j′,α′] =

σ2
w

2nl
δii′δj j′δαα′ , (2.14)

The pre-activations zl are linear combinations of theGaussian variablesωl, specified by the previous
layer’s activations yl. Thus for the conditioned on yl pre-activations one has

E[z̄li,α(x)z
l
i,α′(x

′)] =
σ2
w

2
δαα′K l

αα′(x, x ′) . (2.15)

In the derivation of (2.15) the relations (2.8), (2.13), (2.14) and (2.11) were used. Since a linear
combination of Gaussian variables is itself a Gaussian we can conclude that(

zl |yl
)
∼ NC

(
0, Γ̃

)
, (2.16)

where NC
(
0, Γ̃

)
is the circularly-symmetric central complex normal distribution (see, e.g., [26]),

and the covariance Γ̃ reads

Γ̃
l
αα′(x, x ′) =

σ2
w

2
δαα′K l

αα′(x, x ′) ⊗ Inl+1 . (2.17)
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According to (2.16) and (2.17) the normal distribution of
(
zl |yl

)
depends only on K l. Thus

similarly to [10] we can conclude that the random variable
(
zl |K l

)
has the same distribution:

(zl |K l) ∼ NC(0, Γ̃).
Now by means of the relation (2.8) we can express the covariance (2.11) via the pre-activations,

take nl →∞ limit and use the weak law of large numbers (cf. [10]):

K l
αα′(x, x ′) =

1
nl

nl∑
i=1

φ̄α

(
z̄l−1
i, · (x), z

l−1
i, · (x)

)
φα′

(
z̄l−1
i, · (x

′), zl−1
i, · (x

′)

)
−−−−→
nl→∞

Ez∼NC(0,Γl−1)[φ̄α

(
z̄l−1
·, · (x), z

l−1
·, · (x)

)
φα′

(
z̄l−1
·, · (x

′), zl−1
·, · (x

′)

)
]

=
1
Z

∫ 
∏
γ≥0,x

dz̄γ,xzγ,x


∑
β

zβ,x z̄α+β,x
∑
β′

z̄β′,x′zα′+β′,x′

× exp

{
−

∑
δ, x̃;δ′, x̃′

z̄δ, x̃
(
Γ
l−1

)−1

δ, x̃;δ′, x̃′
zδ′, x̃′

}
, (2.18)

whereZ is the normalization factor, Γl−1
α,x;α′,x ≡ Γ

l−1
αα′(x, x ′) is defined by the relation

Γ
l−1
αα′(x, x ′) =

σ2
w

2
δαα′K l−1

αα′(x, x ′) , (2.19)

and we have used the nonlinearity (2.9). The expression (2.18) is written in the matrix form for
easier perception.

As usual, for the calculation of the Gaussian-like integral we add to the exponential of (2.18)
the terms with external sources, namely∑

δ,x

(
J̄δ,xzδ,x + z̄δ,x Jδ,x

)
, (2.20)

so that the integral (2.19) can be expressed as follows

K l
αα′(x, x ′) =

∑
β

d
dJβ,x

d
dJ̄α+β,x

∑
η

d
dJη,x

d
dJ̄α′+η,x′

exp

{ ∑
γ,x;γ′,x′

J̄γ,xΓl−1
γx,γ′x′Jγ′x′

} �����
J̄=J=0

=
σ4
w

4

[
δα0δα′0

∑
β

K l−1
β,β (x, x)

∑
η

K l−1
η,η (x

′, x ′)

+ δαα′
∑
β

K̄ l−1
β,β (x, x ′)K l−1

α+β,α′+β(x, x ′)

]
, (2.21)
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Thus for α, α′ , 0 we have

K l
αα′(x, x ′) =

σ4
w

4
δαα′

[∑
β

K̄ l−1
β,β (x, x ′)K l−1

α+β,α′+β(x, x ′)

]

≡
σ4
w

4
δαα′

[
K l−1 ?K l−1]

α,α′
(x, x ′) , (2.22)

so that we can explicitly express KL
αα′(x, x ′) via K0

αα′(x, x ′) as follows

KL
αα′(x, x ′) =

(
σ2
w

2

)2L

δαα′
[

K0 ?K0 ? · · ·?K0︸                   ︷︷                   ︸
2L times

]
α,α′
(x, x ′) , α, α′ , 0 . (2.23)

For K l
00(x, x ′) we have the recursive relation:

K l
00(x, x ′) =

σ4
w

4

[∑
β

K l−1
β,β (x, x)

∑
η

K l−1
η,η (x

′, x ′) +
∑
β

K̄ l−1
β,β (x, x ′)K l−1

β,β (x, x ′)

]
. (2.24)

Unfortunately, we do not have an explicit solution to this recursion.
According to [15, 16], the last convolutional layer has to produce invariant with respect to

transformations of the input data. In the Fourier space formulation, that means using only zero
mode of the activation:

zL+1
i (x) =

L+1∑
j=1

ωL
ij y

L
j,0(x) , (2.25)

The zero modes have real values (see (2.5)); therefore if ωL
ij is real, all the quantities in (2.25) are

also real. The respective covariance reads:

KL+1
00 (x, x ′) =

1
nL+1

L+1∑
i=1

ȳL+1
i,0 (x)y

L+1
i,0 (x

′)

=
σ4
w

4

[∑
β

KL
β,β(x, x)

∑
η

KL
η,η(x

′, x ′) +
∑
β

K̄L
β,β(x, x ′)KL

β,β(x, x ′)

]
, (2.26)

and also obviously real. Thus the covariance for the equivalent Gaussian process has the form

Γ̃
L+1(x, x ′) =

σ2
w

2
KL+1

00 (x, x ′) ⊗ 1nL+2 , (2.27)

and the output of the SO(2)-equivariant convolutional neural network can be expressed as aGaussian
process in terms of its input,

zL+1
i (x) ∼ GP

(
0, Γ̃L+1

)
. (2.28)

Proving this was the main goal of this work.
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3. Conclusion

In this work we have derived the many-channel limit for CNNs with SO(2) symmetry in
the Fourier space with explicit equivariance at each step of the derivation and calculated the
corresponding equivariant GP kernel in the case of Fourier space quadratic nonlinearity. All the
subtleties and mathematically rigorous proofs for the expressions obtained are quite similar to the
case of classical CNNs and can be found in [10].

In this paper we considered only scalar activations as in [15]. Many applications require using
more general vector-valued neuron activations with the appropriate properties of equivariance. Such
NNs are described in the framework of steerable convolutional neural networks [13, 27] which use
induced representations. A derivation of the relationship of such CNNs with the appropriately
defined vector-valued equivariant GPs [21] will be presented in a subsequent work.
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