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In this paper we present the first attempt of adaptation the Random Forest (RF) machine learning
algorithm to gamma/hadron separation in the TAIGA experiment (Tunka Advanced Instrument for
cosmic ray physics and Gamma-ray Astronomy). The TAIGA experiment will include HiSCORE
array with 120 wide-angle Cherenkov detectors on the area of 1 𝑘𝑚2 and 5 Imaging Atmospheric
Cherenkov Telescopes (IACT) on the same area. At the first stage of the analysis, only images
obtained by one IACT were included in consideration. The training process occurs on samples
of parameterized images obtained from Monte Carlo (MC) data for gammas and hadrons with a
‘Scaled Hillas Parameters’ standard technique. It was shown that the program effectively separates
gamma-like showers, RF method does produce stable results and is robust with respect to input
parameters and provides a simple control and setup of the procedure for extracting showers from
gamma rays.
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1. Introduction

The important goal of Very High Energy (VHE) gamma ray astronomy is to detect gamma
rays with energy around and more than 100 TeV, that requires a development of new arrays with
very large observation area (by the order of 1 𝑘𝑚2 and more) [1–3] because of tiny flux of high
energy (HE) gamma rays. In addition, it is necessary to distinguish these gamma quanta against the
background of cosmic rays, the flux of which is 104 times higher. One of the possible approaches
(hybrid method) was proposed and realized several years ago [4–6] in the experiment TAIGA
(Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy). This array is located
in Tunka Valley, 50 km off the Lake Baikal. A first part of array TAIGA has been deployed and
at present consists of 110 wide –angle stations of timing array TAIGA-HiSCORE and 3 IACTs
(Imaging Atmospheric Cherenkov Telescopes). The timing electronic allows one to measure a
time of arriving Cherenkov photons from atmospheric shower with nanosecond accuracy, that in
turn allows one to reconstruct the arriving direction of showers with accuracy 0.1-0.4 degrees [7],
and also to measure an energy and core positions of showers. Exploitation of HiSCORE array
reveals a fairly high enough threshold of gamma ray registration, 40 TeV, that practically does not
allow to carry out calibrating measurement using the Crab ‘standard candle’. The ‘imaging’ part of
the installation, 3 IACTs, were included in the array in order to improve radically the background
suppression efficiency because the images of atmospheric Cherenkov showers detected by IACT are
sensitive to the type of primary particles. As a result, every detected event is characterized by a huge
number of parameters, obtained from all detectors. And the need to adapt, develop and to apply
machine learning and classification methods for data analysis became clear. At this first stage of the
analysis, only images obtained by one IACT were included in consideration to check the possibility
of implementation, usage, and functionality of the classification Random Forest algorithm for the
given experimental data (in this work, we used the Random Forest Classifier function from the
library Scikit Learn).

On the Figure1 the telescope IACT01 and the example of an image, detected by the telescope
are presented. Details of construction can be found in [7].

Figure 1: The first telescope and the example of detected image in the TAIGA observatory.[7]
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2. Experimental samples and Monte-Carlo training samples

As an experimental sample for the analysis, we have chosen the data detected with the IACT01
in TAIGA experiment during the October, November and the first part of December 2019 year at
pointing to the source Crab Nebula (Crab – ‘standard candle source’ in TeV gamma astronomy),
published in [8]. In the TAIGA experiment a ‘wobbling’ tracking system of the telescope was
realized (see details in [9]): Experimental sample consists of ‘On’ and ‘Off’ samples. The first
one corresponds to the case when telescope follows the source in the sky, the second one, when
telescope follows a background point in the sky. Every event is characterized by ∼ 15 parameters.
Some of them represents the overall characteristics of image: Size - full brightness (full number
of photoelectrons), N_px - number of hit pixels, dens – mean photon density, Con2 – photon
concentration in image. Other parameters (so called Hillas parameters [10] characterize a position,
a direction, a width and a length of the image detected in the chamber (see Figure 1). In our method
some parameters differ for ‘On’ and ‘Off’ modes: dist (distance between the position of weighted
center of image (WC) and position of source pixel) and alpha (the angle between the line directed
to the source pixel and major axis of Hillas’s ellipse).

In this work we use additionally so-called scaled parameters [11], which allow to exclude the
size dependence of the width and length parameters. The size range of MC data is divided into
bins, and for each bin ‘i’ we calculate a mean value of < 𝑤𝑖𝑑𝑡ℎ𝑖𝑔 > and variance 𝑆𝑖𝑔𝑖𝑔 for gamma
rays. For the every event 𝑤𝑖𝑑𝑡ℎ𝑖 is transformed to scaled value 𝑤𝑖𝑑𝑡ℎ𝑖𝑠𝑐 by the following formulae:

𝑤𝑖𝑑𝑡ℎ𝑖𝑠𝑐 =
𝑤𝑖𝑑𝑡ℎ𝑖− < 𝑤𝑖𝑑𝑡ℎ𝑖𝑔 >

𝑆𝑖𝑔𝑖𝑔
(1)

As a result, we have a normalized width and length distribution for gammas: they follow with
mean value 0 and variance 1 for gamma quanta and two-three times larger for hadrons.

The full MC simulation has been done (see details in [12, 13]), taking into account the design
of the installation, the optical system of the telescope, the trigger system for collecting data for the
background showers (originated from protons, helium nuclei) and showers from gamma quanta.
Basing on background ‘Off’ events a complete coordination of the different experimental and MC
image parameters has been carried out.

Our experimental final sample, selected for the analysis is 650000 events. Basing on these data,
an excess of gamma quanta from the Crab was observed in the TAIGA experiment in the energy
range of 3-30 TeV with a significance of about 5 sigma [8]. The effective cuts for gamma/background
separating were selected manually, based on the distributions of various parameters obtained in MC
simulations for gamma quanta and hadrons. Parameter alpha was used only on the latest stage,
as the most powerful and visual parameter for selecting gamma quanta (see Figure 2), because of
background events should have more or less uniform distribution by alpha in contrast to gamma
induced image concentrated up to alpha <10 degrees.

Further we also will exclude the alpha from criteria to check the new approach.
The Random Forest method is based on a collection of decision trees, and, like many other

classification and regression methods, a Random Forest is constructed on the basis of training
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Figure 2: Distribution by parameter alpha for source (‘On’) events and background (‘Off’) events detected
from Crab with following cuts: Size>125p.e.; dist= 0.36 o -1.44o, 0.024 o <Width<0.068o × (lgSize-0.047)o,
Length<0.31o,Con>0.54 [8]

samples obtained usually by Monte-Carlo method (MC). MC samples should be calculated as
similar as possible to experimental samples. It is not a simple task due to a complexity of
experimental data, as usually included many methodical details. So sometimes for the purpose of
g/h separation, the training samples for hadrons is selected from experimental ‘Off’ data. These two
these cases will be applied in this paper. Difference in gamma-like events obtained as a result of
classification for ‘On’ and ‘Off’ experimental samples is considered as an excess of gamma quanta.

3. Random Forest method

We use the Random Forest method and closely follow the method described by L. Breiman [14],
and at the first stage we repeat the approach realized in the MAGIC experiment for gamma/hadron
separation [11].

The Random Forest method is based on an ensemble of decision trees. The main step of the
method is a construction of the training and tested samples. In our case the training MC sample
includes two classes (gamma and hadrons) of events (vectors of image parameters described in
previous chapter). One binary decision tree can be constructed from this sample (root node), than
it is subdivided into two classes by one randomly chosen parameter (in our case we use more
complicated choice, see below). To measure the separation ability of an image parameter and to
optimize the cut value in the given node the Gini index is used in our program [11]. Choosing the
smallest 𝑄𝐺𝑖𝑛𝑖 corresponds to minimizing the variance of the population of gammas and hadrons
in the subsequent nodes. Minimization of the Gini index provides both the choice of the image

5
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parameter and the split value to be used. In our case for two classes the Gini index is calculated
based on 𝑁𝑔, 𝑁ℎ in the given node and the total number events in the node N [11]:

𝑄𝐺𝑖𝑛𝑖 = 1 −
(
𝑁𝑔

𝑁

)2
−
(
𝑁ℎ

𝑁

)2
(2)

This procedure subsequently is repeated, the number of nodes doubles as the number of layers
increases. The procedure stops, if there are approximately only one class of events left in the node.
In our application we used modification of the program with calculation of the mean hadronness
instead of a 0 or 1 majority vote for a class, as in [11]. For every terminal node with 𝑁𝑔 and 𝑁ℎ in
this node the parameter h (hadroness) is calculated, which is assigned to all events in this terminal
node:

ℎ =
𝑁ℎ

𝑁ℎ + 𝑁𝑔

(3)

It is possible also to limit the full depth of the tree. The example of the decision tree with
maximal depth 3 is presented in Figure 3.

Figure 3: Example of one decision tree with 3 layers. Blue nodes have mostly hadrons, the red ones have
most gamma quanta, other nodes have a mixed composition.

The accuracy of classification with one tree is not good enough, so the procedure of clas-
sification is carried out usually with many trees (in our program the optimal value occurred to
be around 100 trees), that dramatically improves the separation ability of the method. To obtain
independent trees with the same training sample a ‘bootstrap sample’ [11] is used for each tree
by sampling n times with return from the original training sample, which contains n events. This
procedure guarantees that the event image parameter distributions are statistically identical, but in
each bootstrap sample there will be on average (1 – 1/e) original training events, the rest events are
copies [11]. If we carry out 𝑁𝑡𝑟𝑒𝑒𝑠 the final hadronness for the every ‘i’ event can be recalculated
as mean value averaged by all trees.

< ℎ𝑖 >=
∑︁ ℎ𝑖

𝑁𝑡𝑟𝑒𝑒𝑠

(4)
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The example of distribution of all events by this parameter is presented in Figure 4 from [11]
for the case of equal number of primary gamma-quanta and hadrons in the training sample.

The distribution by hadronness depends on many factors, the better algorithm, the narrower
peaks for gamma quanta (left) and for hadrons (right) should appear. This is a very important
parameter, because it indicates if the event belongs to the class of gammas or hadrons. It seems
natural to introduce one boundary, 𝐻𝑐𝑢𝑡 , dividing the selected events into two classes: gamma and
hadrons at 𝐻𝑐𝑢𝑡 = 0.5. But in our case the classes are not equivalent because of the tiny flow of
gamma quanta in the cosmic ray stream, and it is necessary to distinguish gamma quanta well, so
this value requires optimization.

Figure 4: Example of hadronness distribution for the gamma sample (black lines) and for the hadron sample
(red lines) after RF classification [11]

4. Results of classification obtained with the training and test samples

Here we tune the RF program parameters based on the training MC samples. Main of these
parameters directly determine the final results and accuracy. We have found optimal values of the
number of trees and depth of trees, number of trials in random split selection, number of events in
terminal nodes, types of parameters which effectively take part in RF classification, the effective
criteria for successfulness of classification necessary for our scientific tasks.

As the main criteria of successfulness of classification we have chosen 3 main parameters:
𝑄 𝑓 𝑎𝑐𝑡𝑜𝑟 is widely used in gamma astronomy for estimation of gamma quanta extracting efficiency
from hadron background; Y𝑔 (a part of primary gamma-quanta classified as gamma), Yℎ (a part
of primary hadron events classified as gamma, sometimes it is called ‘background suppression
efficiency’) Below we present the way of calculation of these three values, where N(1→2) means
the number of primary events of class 1 which were classified during the RF procedure as events of
class 2:

7
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Y𝑔 =
𝑁 (𝑔− > 𝑔)

𝑁 (𝑔− > 𝑔) + 𝑁 (𝑔− > ℎ) (5)

Yℎ =
𝑁 (ℎ− > 𝑔)

𝑁 (ℎ− > ℎ) + 𝑁 (ℎ− > 𝑔) (6)

𝑄 𝑓 𝑎𝑐 =
Y𝑔√
Yℎ

(7)

Primary gamma training sample contains 67767 MC simulated showers in the interval 1-50 TeV
distributed in accordance with a power-law spectrum ∼ 𝐸−2.6. This sample was was reduced by
criteria Size> 60 ph.e. (photoelectrons) and dist <23 (see chapter 2). The final sample of gamma
quanta contains 440000 events. Primary hadron training file contains 484000 simulated showers
[12] produced by primary protons and helium in the interval 2-100 TeV with the same slope. The
final hadron sample contains 140000 events with Size> 60 ph.e. and dist <23 (see chapter 2). For
every tree we have generated bootstrap sample containing the equal number of gammas and hadrons
18438. The test sample generated by the same way, consists of 4609 hadrons and 4609 gamma
events. At the first step of analysis two very important program parameters – the optimal number
of trees and parameter 𝐻𝑐𝑢𝑡 (a main classificator in our approach) were considered. In the Table 1
the dependence of Y𝑔, Yℎ, 𝑄 𝑓 𝑎𝑐 on the number of trees is presented for two values of limit 𝐻𝑐𝑢𝑡 .

𝐻𝑐𝑢𝑡 <0.5 𝐻𝑐𝑢𝑡 < 0.05
N trees Y𝑔 Yℎ 𝑄 𝑓 𝑎𝑐 Y𝑔 Yℎ 𝑄 𝑓 𝑎𝑐

1 0.79 0.137 2.13 0.79 0.137 2.13
10 0.86 0.123 2.45 0.44 0.017 3.32
100 0.85 0.109 2.57 0.38 0.096 3.88
1000 0.85 0.110 2.57 0.39 0.011 3.75
10000 0.85 0.111 2.57 0.39 0.011 3.75

Table 1: Dependence of 𝑄 𝑓 𝑎𝑐 on the number of trees and on limit of parameter 𝐻𝑐𝑢𝑡

𝑄 𝑓 𝑎𝑐 value is very sensitive to the number of trees only at the small number of trees, and the
difference in 𝑄 𝑓 𝑎𝑐 at 𝑁𝑡𝑟𝑒𝑒𝑠 >100 is practically absent. 𝑁𝑡𝑟𝑒𝑒𝑠=100 will be used in further analysis.

The absolute value of 𝑄 𝑓 𝑎𝑐 for the 𝐻𝑐𝑢𝑡 =0.05 is obviously larger than for the standard value
𝐻𝑐𝑢𝑡=0.5. To search for the optimal 𝐻𝑐𝑢𝑡 parameter in the Table 2 the more detailed dependence
𝑄 𝑓 𝑎𝑐 (𝐻𝑐𝑢𝑡 ) is presented. 𝐻𝑐𝑢𝑡=0.05 will be used in further analysis.

Every event is characterized by a vector of image parameters, but not all of them are identical for
classification. Some of them are very sensitive to the type of primary particles: width, length, con2,
dens. They must be included in the procedure of RF classification (we call them RF parameters).
But Size determines the energy threshold, and dist parameter determines the effective radius of
shower collection around the telescope. This is a reason why sometimes we introduce the cuts by

8
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𝐻𝑐𝑢𝑡 Y𝑔 Yℎ 𝑄 𝑓 𝑎𝑐

0.2 0.652 0.042 3.182
0.15 0.595 0.030 3.385
0.10 0.512 0.019 3.658
0.05 0.382 0.0096 3.889
0.02 0.244 0.0.005 3.430

Table 2: Dependence of 𝑄 𝑓 𝑎𝑐 on the limit of parameter ‘hadronness’, 𝐻𝑐𝑢𝑡

these parameters before RF classification. In the Table 3 and Table 4 the dependence of 𝑄 𝑓 𝑎𝑐 on
the threshold value of image size and dist is presented.

Size Y𝑔 Yℎ 𝑄 𝑓 𝑎𝑐

60 0.280 0.013 2.45
125 0.382 0.0096 3.89
140 0.394 0.0091 4.12
150 0.406 0.0079 4.57
160 0.412 0.0099 4.14
180 0.432 0.0085 4.67

Table 3: Dependence of 𝑄 𝑓 𝑎𝑐 on the threshold value of image size

dist, cm Y𝑔 Yℎ 𝑄 𝑓 𝑎𝑐

23 0.38 0.0096 3.89
18 0.34 0.0089 3.62
13 0.33 0.0063 4.16
8 0.46 0.0097 4.67
5 0.39 0.0023 8.09

Table 4: Dependence of 𝑄 𝑓 𝑎𝑐 on the threshold value of of parameter dist for events with size>125 ph.e.

Based on these results we have chosen optimal values of threshold size in the interval 125-150
ph.e. and dist in the interval dist<13 cm for further analysis. The final way of random split selection
in every node was as follows. All parameters width, length, dens, con2, dist, size were used in
optimization at the given nod. From them, only one parameter with minimal 𝑄𝐺𝑖𝑛𝑖 index is used
for splitting events onto two classes. It is necessary to emphasize that up to now we did not include
in the vector of parameters the parameter alpha.

5. Results of classification obtained in experiment

A full primary experimental sample being analyzed in this work consists of 1500000 events.
As it is described in the chapter 2, these events were detected with the IACT01 in experiment

9
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TAIGA during the October, November and the first part of December 2019 year at pointing the
source Crab Nebula (Crab – ‘standard candle source’ in TeV gamma astronomy). The first result of
observation of gamma quantum from Crab in experiment TAIGAs was published in [8]. This result
was shown in Figure 2. As it was mentioned in chapter 2 experimental sample is divided into ‘On’
and ‘Off’ samples. The ‘On’ sample corresponds to the case when telescope follows the source
in the sky, and we should observe some excess of gamma events from Crab in this sample. In the
‘Off’ sample one can expect only fake gamma quanta. Since background events have more or less
uniform distribution by alpha in contrast to gamma induced image, concentrated up to alpha < 10
degrees, the excess of gamma quanta is calculated as

𝐸𝑥𝑐𝑒𝑠𝑠 = 𝑁𝑂𝑁 (𝑎𝑙 𝑝ℎ𝑎 < 10◦) − 𝑁𝑂𝐹𝐹 (𝑎𝑙 𝑝ℎ𝑎 < 10◦) (8)

Figure 5: : Distribution of parameter alpha, obtained after RF classification of the experimental sample
‘On’ and experimental sample ‘Off’ for different Size threshold: (a) Size >125 ph.e., (b) Size >150 ph.e.
with fixing these parameters as input threshold for RF classification; c) Size >125 p.e. + Size as parameter
included in classification; d) Size >150 p.e. + Size as parameter included in classification.

After excluding the events with Size < 60 ph.e. and dist >23 cm, the final sample contains
666462 events. After introduction of a cut on Size >125 ph.e., only 378515 are left, and at cut
Size >150 ph.e. statistics decrease to 315220 events. Both these samples were used as test samples
for procedure of Random Forest classification. In the next Figure 5 we present the variants of
calculations, when RF classification was carried out without parameter alpha. This case is most
close to the Figure 2, obtained in experiment TAIGA by manual way. Numerical values of Excess
are shown in the Table 5.

We can compare the best results in Table 5 and Figure 5 (case a), obtained by Random Forest
method, with Figure 2, where it was obtained manually. It is seen from the Figure 5 that Random
Forest method gives the results very similar to the results, obtained in the experiment TAIGA on
the same experimental data sample. Larger value of excess (237 against 162) and slightly less
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Size
𝑁𝑂𝑛

(alpha<10)
𝑁𝑂 𝑓 𝑓

(alpha<10)
Excess (alpha<10) Significance

b) Size as threshold >150p.e. 1059 875 184 4.18
a) Size as threshold >125 p.e. 1316 1069 237 4.8
d) Size as parameter

and as threshold
>150 p.e. 937 742 195 4.75

c) Size as parameter
and as threshold

>125 p.e. 1163 939 224 4.8

Table 5: Results of application of RF method for classification of experimental events.

significance (4.8 sigma against 5.6 sigma in Figure 2, is connected with the fact that parameter dist
was not limited as in [8]. It resulted to the larger radius of shower collection.

6. Conclusions

In TAIGA experiment the first attempt of application of Random Forest algorithm for the
selection of tiny flow of high energy gamma rays above a very large flow of cosmic ray’s background
has shown the efficiency of RF approach.

1. Based on the training samples, obtained from the Monte Carlo data for primary gamma quanta
and hadrons, the optimal settings of the program parameters, such as the number of trees,
the depth of trees, an optimization of event parameters, criteria of efficiency of classification
and other technical details, were searched for and established. It is shown that the method
produces stable results and is robust to input parameters.

2. A similar optimization was carried out on the experimental samples ‘ON ‘(when the telescope
is directed to the source) and ‘OFF’ (when the telescope is directed to the background of the
sky). The dependence on the alpha parameter showed the possibility of separating events
initiated by gamma quanta from the background of hadrons.

3. The obtained result is compared to the method of background suppression by semi-empirical
selection of parameters used in the TAIGA experiment. It is shown that RF method gives the
similar number of selected gamma quanta, but RF method requires much less efforts for the
analysis. The much simpler control and tuning of the gamma-ray shower extraction procedure
allows to hope to use this method for multidimensional analysis of events, obtained by hybrid
method in TAIGA experiment.
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