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The imaging Cherenkov telescopes TAIGA-IACT, located in the Tunka valley of the
republic Buryatia, accumulate a lot of data in a short period of time which must be
efficiently and quickly analyzed. One of the methods of such analysis is the machine
learning, which has proven its effectiveness in many technological and scientific fields
in recent years. The aim of the work is to study the possibility of the machine learning
application to solve the tasks set for TAIGA-IACT: the identification of the primary
particle of cosmic rays and reconstruction their physical parameters. In the work the
method of Convolutional Neural Networks (CNN) was applied to process and analyze
Monte-Carlo events simulated with CORSIKA. Also various CNN architectures for the
processing were considered.  It  has been demonstrated that  this  method gives good
results in the determining the type of primary particles of Extensive Air Shower (EAS)
and the reconstruction of gamma-rays energy. The results are significantly improved in
the case of stereoscopic observations. 
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1. Introduction

To create a more complete picture of the evolution of the Universe and check the adequacy
of theoretical models, it is necessary to investigate the interactions of elementary particles in the
energy range above 100 TeV to study the phenomena in the Universe [1]. The main objective of
the gamma-ray astronomy is the identification and research of high-energy gamma radiation
sources.  Such objects  include  supernova  remnants,  active  galactic  nuclei,  and much more.
Measuring the flux, energy spectrum and direction of arrival of gamma photons helps to find
answers  regarding  the  generation  mechanism  of  high  energy  gamma  radiation  and  the
morphology of sources.

At the moment, gamma radiation can be observed both from space and from the surface.
The registration of gamma quanta with energies of TeVs is several orders of magnitude lower
than  photons  with  lower  energies;  therefore,  they  are  registered  using  ground-based
installations. Ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs) are the main
instruments for observation of the high-energy gamma radiation. These telescopes register not
the gamma quanta (or  cosmic rays)  themselves, but  the Cherenkov radiation arising in  the
process of the Extensive Air Shower (EAS) generated by them.

TAIGA-IACT is a part of the hybrid installation TAIGA (Tunka Advanced Instrument for
cosmic ray physics and Gamma-ray Astronomy), located in the Tunka valley of the republic
Buryatia [2]. These telescopes have large spherical segmented mirrors with a camera in the
focus of the mirrors. The cameras contain a matrix of 560-590 photomultipliers (PMT). The
main task of the TAIGA-IACT is to separate gamma events from the cosmic ray background
and reconstruct the parameters of the primary particle.

One  of  the  standard  methods  for  image  processing  obtained  by  IACTs is  the  Hillas
parameter method [3]. The essence of this method is that the spot in the camera is described by
an ellipse with  certain  parameters,  according to which the classification  and restoration of
events are carried out. At the moment the use of convolutional neural networks [4] as one of the
methods of machine learning for TAIGA-IACT image processing has not been implemented to
real data, therefore this work allowed us to study the prospects of using this method. It is known
that other IACT installations [5, 6] have shown promising results in image analysis of model
data using convolutional neural networks. CNNs were also used for the TAIGA-IACT model
data  of  one  telescope  [7,  8].  However  an  imbalance  of  particle  fluxes  is  observed  in  an
experiment, thus it is necessary to consider the classification of events in the case of an unequal
ratio of gamma quanta and hadrons. TAIGA-IACT also consists of two telescopes [2], so the
CNN method will provide the estimation the quality of event energy reconstruction in the case
of joint observations by several telescopes.

The method of convolutional neural networks which was applied for processing of Monte-
Carlo events is presented in this article. Several convolutional neural network structures have
been  developed,  trained  and  tested.  The  quality  of  event  classification  and  event  energy
reconstruction  were  evaluated.  The  case  of  observations  of  joint  gamma events  with  two
telescopes (stereo-mode) was also considered and compared with the observations with one
telescope  (mono-mode).  Results  have  been demonstrated  that  CNNs improve  the  selection
(around 100 times) for unbalanced ratio of gamma quanta and hadrons compared to the equal
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ratio.  Also  increasing  the  number  of  telescopes  during  observations  linearly  improves  the
accuracy of determining the energy of events. 

2. Method of convolutional neural networks

Neural networks are mathematical representations of neurons work in the brain [4]. So, in
one neuron the weighted signals coming from the previous neurons are summed up. After that
the neuron generates an output signal through the activation function. Neurons multilayered
form a neural network. During the training with some examples weights are adjusted between
neurons through the backpropagation method [9] which is an analogue of the gradient descent
method. This method allows to reduce the error between the predicted by network and the true
result through the calculation of derivatives.

Convolutional neural networks (CNN) appeared as a result of studying the visual cortex of
the brain [4]. It was found out that in the visual cortex there is a small local receptor field that
reacts to visual irritants located in a limited area of the visual field. This led to the emergence of
a new structure in neural networks – convolutional layers. Convolutional layers use a small-
sized weight matrix ("local receptor field"), which is called a filter or kernel. With its help a
sequential “scan” of the image takes place through the convolution operation. This operation
allows to identify common structures and features in the images regardless of their location, on
the basis of which ordinary neurons allocate the necessary response. Due to this CNN is one of
the best ways to analyze images. CNNs also help to solve several data processing tasks (in our
case,  classification and regression)  with minimal  changes in  the structure,  for  example,  by
changing only the activation function. 

2.1 Used CNN architectures

In this work the programming of convolutional neural networks was carried out in Python
using a special Tensorflow library together with Keras [10]. Schematic images of the network
architectures developed during debugging are shown in Figure 1. During the debugging the
numerical  values  of  some  hyperparameters  of  neural  networks  (such  as  the  learning  rate,
dropout chance) were determined. As can be seen from the figure, two or three convolutional
layers depending on the task were used in the models. The regression problem had to use more
convolutional layers compared to the classification network.  This is due to the fact that the
regression problem requires a more thorough analysis of the image, since the image depends on
many factors: the type of primary particle, the distance to the telescope, and other factors. Also,
the main differences between these networks are related to the output value due to changes in
the activation function and the method of calculating the error. Mean squared error calculation
was used for the regression task, while binary cross entropy loss calculation were applied in
classification network. Dropout and Pooling layers helped with the overfitting problem [4].

Along with user developed user structures the architectures of well-known networks were
also studied: ResNet и GoogLeNet. These networks showed one of the best results in ImageNet
Large Scale Visual Recognition Challenge [11]. For comparison they were reduced in such a
way  that  the  number  of  trained  parameters  approximately  coincided  with  the  number  of
parameters in user networks. Their simplified structure is also shown in Figure 1. 
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Figure 1: The CNN architectures used in work on processing and analysis of simulated Monte-
Carlo events of TAIGA-IACT

3. Model data

The training and testing of  neural  networks was carried out  on three different  sets of
Monte-Carlo events simulated with CORSIKA [12]. A description of each set is presented in
Table 1. Set №1 and №2 were used for classification and regression, while the third set was only
applied to study the quality of energy reconstruction in stereo-mode. It should be noted that due
to the small number of events in the first set, its artificial expansion were occurred by rotating
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the images relative to the center of the camera by every 60 degrees. Thus, the first set was
expanded in 6 times.

Set
Total events (gamma/proton)

Train and validation
ratio

Energies

1
30 000

(17 500 / 12 500)
2:1

Hadron: 2-100 TeV
γ: 1-60 TeV

2
200 000

(100 000 / 100 000)
3:1

Hadron: 5-100 TeV
γ: 2-50 TeV

3 18 000 (only gamma) 2:1 1-50 TeV
Table 1: The description of Monte-Carlo data

The following steps were performed as a preprocessing of images to improve training.
Single pixels were removed during the image cleaning process. Then each image was squared
by shifting the pixels relative to each other [13]. Images with a size of 31x31 pixels were

obtained as a result of this transformation. Also the amplitude of each pixelxi in each image

was scaled as follows: 

x̃i=
1
9

ln  (1+xi ) , (1)

where  i  is the pixel number in the image,̃xi is the scaled pixel amplitude. The number 9

limits the change of x̃i in the range of values from 0 to 1, since the maximum value of the

pixel amplitude in the training and validation set is unknown in advance. 

4. The study of the obtained results

As mentioned above, the main objectives of the TAIGA-IACT are:

• The selection of gamma-ray events from the hadron background (classification);

• The restoration of  parameters of  the primary particle  (regression),  in  particular,  the
energy.

The results of using CNN to solve these problems are presented further in the article. 

4.1. The classification task

Training  and  validation  were  applied  on  the  first  and  second  sets.  The  accuracy  of
determining  the  event  class  was  95-96%  regardless  of  the  set.  This  result  showed  the
independence of the rotated images during CNN operation. Due to the peculiarities of the filters
of convolutional networks this result was expected [4, 13].

To  estimate  the  classification  and  subsequent  comparison,  the  quality  parameter  of
selection  Q was considered, which can be defined as the ratio of the significance criterion  S
before  and  after  selection  by  the  neural  network  (the  significance  criterion  in  modeling
determines how many times the expected signal exceeds the background): 

Q=
Safter

Sbefore

=
Ng

√N g+Nhg

⁄
Ngammas

√N total

, (2)
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where  Ng – the number of true gamma events identified by the CNN as gammas,  Nhg – the

number of proton events identified by the CNN as gammas events, Ngammas – the total number

of  gamma events  in  the set,  Ntotal –  the  number  of  all  events  in  the  set.  Since  the CNN

classification gives the probability that  the event is  a gamma quantum the class separation
threshold was defined in such a way that approximately 50% of the true gamma quanta were
determined correctly. Therefore, the threshold was approximately 0.97.

It is known [14] that the fluxes of gamma quanta and hadrons differ greatly (approximately
1:10 000) in a real experiment, so the parameter Q was calculated in the case of different ratios
of gamma photons and hadrons. The results of calculating the quality parameter of selection are
demonstrated  in  Table  2.  The table  shows that  there is  no  improvement  in  the  quality  of
classification with an equal ratio of gamma quanta and protons. But there is a good suppression
of proton events with unequal ratio, but the significance S becomes small (1 sigma). Among the
various structures of convolutional networks GoogLeNet gives the best result. 

The ratio of
gamma and

hadrons

Applied CNN
architectures

Safter Q

1:1 User CNN 107.24 1.07
1:100 User CNN 3.69 4.11
1:1000 User CNN 0.92 5.04
1:1000 ResNet 1.04 5.72
1:1000 GoogLeNet 1.13 6.21

Table 2: Data classification with different class balance 

4.2 The regression task

In the case of regression the evaluation measure was the relative error in determining the
energy δ which is defined as follows: 

δ=
∣Epred− Etrue∣

Etrue

, (3)

where Epred – the energy predicted by CNN, Etrue – the true energy value. In this task the CNNs

tried to restore the energy of events in the case of a mixed set (there are gamma quanta and
hadrons in the set), and in the case of a set of only gamma quanta. Figure 2 shows the relative
error distributions (denoted as rel_err on the graph) for both cases. Thus, it is demonstrated that
the median value of the relative error for the mixed set is 32%, while the “clear” set is 23-25%.
At the same time it can be seen that different CNN structures does not greatly improve the
result, by no more than 3%. The best result in determining energy is given by the GoogLeNet.
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a)

b)
Figure 2: The distribution of relative error of energy reconstruction in case of mixed (gammas
and protons) events (a) and in case of only gamma-photons (b) 

The study of event energy recovery in the case of the stereo mode and comparison with the
mono mode was carried out only for gamma events and using the user CNN model. The second
telescope was taken into account when modifying the network as follows. In the regression user
architecture an additional input has been added with the same number of convolutional layers as
the first input (see Fig. 1). After that the two inputs, or channels, were combined using dense
layers.

The results of the evaluation of the energy determination and comparison with the mono-
mode are presented in Figure 3. As can be seen in the figure, stereoscopic observations double
the accuracy of energy recovery. Thus, the relative error decreased from 23% to 14%. 
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Figure 3: The distribution of relative error of energy reconstruction for stereo- and mono-modes
of TAIGA-IACT for gamma-photons events 

5. Conclusion

For ground-based TAIGA-IACTs there is a problem of reliably determining the type of
recorded events,  as well  as the problem of  restoring the initial  parameters of particles that
generate  EASs.  The  method  of  convolutional  neural  networks  was  applied  to  solve  these
problems.

The  results  demonstrated  that  CNN  classification  suppresses  the  proton  background
greatly (around 100 times), but significance is low (around 1 sigma). Energy reconstruction
showed the around 24% relative error for one telescope, and 14% – for two telescopes. ResNet
and GoogLeNet demonstrated a slight results improvement in both particle type and energy
determination.

Thus, in perspective this method can be used for the energy restoration, as it gives good
results. Also CNN for good background suppression can be considered as additional selection
threshold 
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