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WG5 Summary

1. Introduction

The working group 5 of the international workshop on the CKM Unitarity Triangle focuses on
experimental and phenomenology progresses on physics related to direct CP violation, including
𝜙3/𝛾 determination from 𝐵 → 𝐷 (∗)𝐾 (∗) decays, charmless 𝐵 decays (𝐾𝜋 puzzle, extraction of
angle 𝜙2/𝛼 etc.). Polarization and branching fraction measurements are also topics discussed in
the working group. In this proceeding contribution, we give a brief summary of recent progresses
presented in CKM2021.

2. 𝜙3/𝛾 measurements

The determination of the standard CKM unitarity triangle angle 𝜙3 ≡ 𝛾 ≡ arg(−𝑉𝑢𝑑𝑉∗
𝑢𝑏
/𝑉𝑐𝑑𝑉∗

𝑐𝑏
)

from 𝐵 → 𝐷𝐾 and 𝐵 → �̄�𝐾 decays is theoretically extremely clean. The reason is that the
𝐵 → 𝐷𝐾 transitions receive contributions only from tree operators, and none from penguin oper-
ators; furthermore, all the relevant matrix elements can be obtained from data if enough 𝐷-decay
channels are measured. The sensitivity to 𝜙3/𝛾 arises from the interference of 𝑏 → 𝑐�̄�𝑠 and
𝑏 → 𝑢𝑐𝑠 decay amplitudes, which have a relative weak phase 𝜙3/𝛾. These quark-level transitions
mediate the 𝐵 → 𝐷𝐾 decays, with the 𝐷0 and �̄�0 subsequently decaying into a common final state,
which allows the two decay channels to interfere. Several variants of the method have been proposed:
decays into CP eigenstates [1, 2], decays into flavor states [3], decays into multibody states [4–6].
Other possibilities include the decays of neutral 𝐵 mesons [7, 8], multibody 𝐵 decays [9–12], and
𝐷∗ or 𝐷∗∗ decays [13, 14].

The above set of methods has several sources of theoretical errors. Most of them can be reduced
once more statistics becomes available. For instance, in the past the𝐷 → 𝐾𝑆𝜋

+𝜋− Dalitz plot needed
to be modeled using a sum of Breit-Wigner resonances or using the K-matrix formalism. Utilizing
the data from entangled 𝜓(3770) → 𝐷�̄� decays measured at charm factories, this uncertainty can
in principle be completely avoided [5]. The related error is now statistics-dominated. Novel sources
for correlated 𝐷 − �̄� pairs have recently been proposed [15].

Other sources of reducible uncertainties are neutral 𝐷 and 𝐾 mixing (for final states with 𝐾𝑆).
Both of these effects can be included by modifying the expressions for the decay amplitudes, taking
meson mixing into account, and then using experimentally measured mixing parameters [16–20].
Similarly, the inclusion of ΔΓ𝑠 can be important if 𝜙3/𝛾 is extracted from untagged 𝐵𝑠 → 𝐷𝜙

decays and can be achieved once ΔΓ𝑠 is well measured [21].
Likewise, CP violation in the 𝐷 system can be taken into account by appropriately modifying

the expressions for the decay amplitudes (and using the fact that in Cabibbo-allowed 𝐷 decays there
is no direct CP violation) [22–26].

Yet another source of reducible theory error are QED radiative corrections to the decay widths.
The uncertainties from this source are expected to be below present experimental sensitivity on 𝛾
so that not much work has been done on them. Since the corrections are CP conserving they can be
reabsorbed in the CP-even measured hadronic quantities and would not affect 𝛾, as long as in the
measurements the radiative corrections are treated consistently between different decay modes.

The first irreducible theory error on 𝛾 thus arises from higher-order electroweak corrections and
cannot be eliminated using just experimental information. The resulting uncertainty was calculated
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Figure 1: Two dimensional confidence regions obtained for 𝜙3 - 𝑟𝐷𝐾
𝐵

(left) and 𝜙3 - 𝛿𝐷𝐾
𝐵

(right) using
𝐵+ → 𝐷0 (𝐾0

Sℎ
+ℎ−)𝐾− decays from a combined dataset at Belle and Belle II
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for the 𝐵 → 𝐷𝐾 modes in Ref. [27] and for 𝐵 → 𝐷𝜋 in Ref. [28]. The resulting uncertainty is
𝛿𝛾𝐷𝐾/𝛾 ≲ O(10−7) for the 𝐵 → 𝐷𝐾 . It can be somewhat larger for 𝐵 → 𝐷𝜋 due to a possible
accidental cancellation of matrix elements; however, an effect larger than 𝛿𝛾𝐷𝜋/𝛾 ≲ O(10−4) is
very unlikely.

In summary, tree-level 𝐵 → 𝐷𝐾 and related decays continue to provide a unique opportunity
for clean measurements of 𝜙3/𝛾 where new-physics contributions are expected to be small (see
Refs. [29, 30] for an analysis of possible new-physics effects).

New Belle results for �̄�0 → 𝐷+𝜋−/𝐾− [31] and Belle 2 for 𝐵 → 𝐷 (∗)ℎ [32] have been
presented. (Here and in the following, ℎ stands for either 𝜋 or 𝐾 .). The ratio of branching fractions
of the cabibbo favoured and cabibbo suppressed modes of this type facilitates tests of theoretical
predictions, particularly those of factorization and SU(3) symmetry breaking in QCD. The combined
Belle and Belle II [33] measurement with �̄�+ → 𝐷0(𝐾0

Sℎ
+ℎ−)𝐾− gives 𝜙3 = (78.4±11.4±0.5±1.0)◦

(statistical, systematic, 𝐷-mixing-related errors) has the total uncertainty reduced from 15◦ to 11◦

compared to the previous combination, with an uncertainty of 3◦ expected with 10 ab−1 of data at
Belle II. Two dimensional confidence regions for the observables of interest are shown in Fig. 1. A
measurement of 𝜙3 with the four-body 𝐷 decay of 𝐾0

S𝜋
+𝜋−𝜋0 is demonstrated with dataset from

Belle and the uncertainty from this single mode is expected to be 4.4◦ with the full data set of
50 ab−1 anticipated at Belle II [34].

Results presented by the LHCb collaboration include 𝐵± → 𝐷 (∗)ℎ± [35], and the current
single most precise measurement from 𝐵+ → 𝐷ℎ+ with 𝐷 → 𝐾𝑆ℎ

+ℎ−, giving 68.7+5.2
−5.1 [36].

Preliminary results for 𝐵± → 𝐷ℎ±, with 𝐷 → ℎ±ℎ∓𝜋0, as well as for the first observation of
𝐵 (𝑠) → �̄�∗(2007)𝐾±𝜋∓, were also shown. The first LHCb combination of both 𝛾 and charm
mixing measurements was presented and yields 𝛾 = 65.4+3.8

−4.2 [37]. The one dimensional 1 - CL
profiles from a combination of various 𝐵 decays is shown in Fig. 2.

The inputs on 𝐷 meson decays from the charm factories are crucial for improving the 𝜙3/𝛾
measurements. The strong-phase difference parameters for 𝐷0 → 𝐾0

Sℎ
+ℎ− using the current dataset

of 2.93 fb−1 at BESIII are reported [38–40]. These serve as important inputs for the Belle (II) and
LHCb measurements described above. The strong-phase parameters for 𝐷0 → 𝐾−𝜋+𝜋0 and
𝐷0 → 𝐾−𝜋+𝜋+𝜋− from BESIII are also presented [41]. It is demonstrated that the sensitivity of 𝛾
can be improved by a binned measurement in 𝐷0 → 𝐾−𝜋+𝜋+𝜋− phase space.
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Figure 2: One dimensional 1 - CL profiles for 𝛾 from a combination of different decays of 𝐵 meson species
at LHCb
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Several new developments that are just started to be implemented have been discussed. On
possibility, leading to a BESIII + LHCb intercollaboration effort are 𝐷0 → 𝐾𝑆𝜋

+𝜋− decays with
an unbinned model-independent analysis [42]. Further, a double Dalitz-plot analysis of the modes
𝐵0 → 𝐷0𝐾+𝜋−, 𝐷0 → 𝐾𝑆𝜋

+𝜋− [43] is expected to lead to a sensitivity of 10◦ with LHC run I & II
data, and 2.5◦ with 50/fb of data.

Other ideas involve 𝑏-flavored baryons (these decays are unique for LHCb) [44], e.g, Λ0
𝑏
→

𝐷Λ(→ 𝑝𝜋−)𝐾−. Λ decay are difficult to reconstruct, and a preliminary study of Λ∗0 → 𝑝𝐾− has
been performed instead [45]. Even if CPV measured, the complexity of baryons vs. mesons makes
it non-trivial to extract 𝜙3/𝛾.

By combining all modes, the hope is to exceed the precision quoted in the LHCb and Belle 2
performance papers.

3. Charmless 𝐵 decays

Charmless 𝐵 decays are ideal places to search for physics beyond the Standard Model (SM) as
amplitudes from tree-level contributions (with the 𝑏 → 𝑢 transition) and loop-level contributions
(with the 𝑏 → 𝑠 or 𝑏 → 𝑑 transition) are at a similar level and both are suppressed in the SM.
New physics entering into loop diagrams can be revealed by comparing measured quantities with
predictions from the SM. Interesting observables are branching fractions, time-dependent and time-
independent CP violation. These observables can also be used to extract CKM parameters, such
as the angle 𝛼. Comparing CKM parameters obtained from different processes offers alternative
methods for new physics hunting.

3.1 Theory of non-leptonic two-body 𝐵 decays

A generic SM amplitude for a 𝐵 decay is a product of CKM factors, Wilson coefficients that
are known perturbatively up to next-to-next-to-leading-logarithmic accuracy in the SM [46–50],
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and hadronic matrix elements. Nonperturbative QCD dynamics makes the calculation of the latter
a challenge. While the matrix elements for leptonic and semi-leptonic decays can be parameterized
in terms of decay constants and form factors, respectively, the theory for non-leptonic decays relies
on some form of factorization. QCD factorization [51–53] allows for systematic calculations to
arbitrary order in 𝛼𝑠 and leading power Λ/𝑚𝑏, while pQCD [54–56] is based on 𝑘𝑇 factorization
and avoids end-point singularities. Both approaches have countless phenomenological applications.
A different approach relies on flavor symmetries (e.g. 𝑆𝑈 (3) or isospin) [57]; however, inclusion
of symmetry breaking can be difficult. The combination of factorization and symmetry leads to the
factorization-assisted topological-amplitude approach [58–60].

In WG5, several (recent) developments in QCD factorization were further discussed. While
tree amplitudes are known at next-to-next-to-leading order (NNLO) for quite some time [61, 62],
the prediction of direct CP asymmetries at next-to-leading order (NLO) requires also the penguin
amplitudes at NNLO [63] (also QED corrections are now available [64]). There is still some tension
between theory and experiment in some modes; both theoretical and experimental uncertainties are
still non-negligible. For a discussion of the “𝐾𝜋” puzzle, see Sec. 3.2. Recent theoretical effort [65]
on the discrepancy between SM theory and experiment for the �̄�0

(𝑠) → 𝐷+
(𝑠) {𝜋

−, 𝐾−} has also
been discussed. QCD factorization for these modes is particularly clean, and the size of power
corrections has been estimated to be tiny [65]. Nevertheless, some of the measured branching ratios
are in significant tension with the SM prediction. The origin of these discrepancies is still under
discussion [66, 67], but physics beyond the SM could be an alternative explanation [68, 69]. Lastly,
the results of a fit to data of flavor-𝑆𝑈 (3) invariant amplitudes, based on a topological decomposition
of the subamplitides for 𝐵 → 𝑃𝑃 decays [70], have been presented [71]. Among the results is a
set of “transformation rules”, used to obtain constraints on amplitudes in QCD factorization. In the
future, both further theoretical progress and new experimental data will help to address some of the
above-mentioned discrepancies.

3.2 𝐾𝜋 puzzle

The so-called "𝐾𝜋" puzzle is a long-standing issue in charmless 𝐵 decays. Naive Isospin
relationship indicates that the direct CP violation of 𝐵+ → 𝐾+𝜋0, 𝐴𝐶𝑃 (𝐵+ → 𝐾+𝜋0) is equal to
𝐴𝐶𝑃 (𝐵0 → 𝐾+𝜋−). However, the world averages of the experimental results [72] give 𝐴𝐶𝑃 (𝐵+ →
𝐾+𝜋0) = (+4.0 ± 2.1)% and 𝐴𝐶𝑃 (𝐵0 → 𝐾+𝜋−) = (−8.4 ± 0.4)%. There are around 6𝜎 difference
between the two, whether it is due to strong dynamic effects or due to new physics is still unknown.
To reduce the impacts from strong dynamics, a more precise test based on QCD sum rule [73] is
suggested where

𝐴𝐶𝑃 (𝐵0 → 𝐾+𝜋+) + 𝐴𝐶𝑃 (𝐵+ → 𝐾0𝜋+) 𝐵(𝐵
+ → 𝐾0𝜋+)𝜏𝐵0

𝐵(𝐵0 → 𝐾+𝜋−)𝜏𝐵+
= (1)

𝐴𝐶𝑃 (𝐵+ → 𝐾+𝜋0) 2𝐵(𝐵+ → 𝐾+𝜋0)𝜏𝐵0

𝐵(𝐵0 → 𝐾+𝜋−)𝜏𝐵+
+ 𝐴𝐶𝑃 (𝐵0 → 𝐾0𝜋0) 2𝐵(𝐵0 → 𝐾0𝜋0)𝜏𝐵0

𝐵(𝐵0 → 𝐾+𝜋−)𝜏𝐵+
.

One can find that in addition to the observables in 𝐵0 → 𝐾+𝜋+ and 𝐵+ → 𝐾+𝜋0 decays, CP
violation and branching fraction measurements are also needed for 𝐵+ → 𝐾0𝜋+ and 𝐵0 → 𝐾0𝜋0.
The last one is especially challenge and needs more efforts from experimental side.

The LHCb experiment, supposed to perform less well on neutral final states, is trying to make
its contribution in understanding the puzzle by further improving the CP violation measurement on
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Figure 3: Invariant-mass distribution of the selected candidates with fits overlayed for 𝐵+ → 𝐾+𝜋0 (left)
and 𝐵− → 𝐾−𝜋0 (right).

𝐵+ → 𝐾+𝜋0 [74]. The invariant mass distributions of the selected 𝐵± → 𝐾±𝜋0 are shown in Fig. 3.
The invariant-mass resolution is larger and background level is higher than those with charged
final states [75], however, the results are still quite promising and indicate potential of the LHCb
detector on neutral final states. The direct CP asymmetry of this decay has been measured to be
(2.5± 1.5± 0.6± 0.3)%, where the first uncertainty is statistical, the second systematic and the last
one due to external inputs. This is the most precise determination to date. By combining with the
previous measurements, the new world average is obtained to be 𝐴𝐶𝑃 (𝐵+ → 𝐾+𝜋0) = (3.1±1.7)%,
which leads to 𝐴𝐶𝑃 (𝐵+ → 𝐾+𝜋0) − 𝐴𝐶𝑃 (𝐵0 → 𝐾+𝜋−) = (11.5 ± 1.4)%, further enhancing the
discrepancy to be more than 8𝜎.

3.3 CP violation in three-body charmless 𝐵 decays

Using data collected during year 2011-2012, LHCb has found very complicated and interesting
CP violation pattern over the three-body phase space of 𝐵+ decaying into ℎ+ℎ−ℎ′+ final states,
where ℎ and ℎ′ are kaons or pions [76, 77]. Whether these complicated CP violation pattern is due
to new physics contribution or not is still unknown. To solve this problem, understanding strong
dynamics over the phase space is needed. The LHCb experiment has performed amplitude analyses
of 𝐵+ → 𝜋+𝜋−𝜋+ and 𝐵+ → 𝐾+𝐾−𝜋+ to obtain CP violation for each of the resonant contributions
and thus sheds more light on the puzzle [78–80].

In the amplitude analysis of 𝐵+ → 𝜋+𝜋−𝜋+ [78, 79], three different models have been applied
to describe the 𝜋+𝜋− 𝑆-wave, namely, the Isobar model where different resonant contributions are
explicitly considered and described with dedicated line-shapes, the K-matrix model where unitary
condition is preserved and a quasi-model-independent method. The K-matrix model uses a five-
pole and five-channel matrix, obtained from scattering experiments and the production vector is
determined from data. The quasi-model-dependent method determines amplitudes in different
intervals of 𝑚𝜋+𝜋− directly from data, thus avoiding any model assumption. The three descriptions
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Figure 4: The CP asymmetry obtained from data with fits superimposed as a function of cos \hel in the
regions below and above the 𝜌(770) resonance pole (left) and𝑚𝜋+ 𝜋− distribution in the 𝑓2 (1270) mass region
with the corresponding CP asymmetry (right).

of 𝑆-wave give consistent results, and show large CP violation in 𝑆-wave at low𝑚𝜋+𝜋− . CP violation
generated due to 𝑆-wave and 𝑃-wave interference is also observed for the first time. In addition, a
first observation of CP violation in tensor particle ( 𝑓2(1270)) is obtained. The newly observed CP
violation sources are clearly shown in Fig. 4.

The Isobar model is used in the amplitude analysis of 𝐵+ → 𝐾+𝐾−𝜋+, with contributions from
𝜙(1020), 𝐾∗(892)0, 𝐾∗(1430)0, 𝜌(1450)0, 𝑓2(1270), a non-resonant contribution in 𝑚𝐾+𝜋− and a
non-resonant contribution in 𝑚𝐾+𝐾− described by a re-scattering model [80]. CP violation is found
to be as large as (−66.4 ± 3.8 ± 1.9)% for the 𝐾+𝐾− non-resonant contribution, which responses
for almost all the CP violation observed in the 𝐵+ → 𝐾+𝐾−𝜋+ decays.

Branching fractions are important inputs for understanding three-body charmless 𝐵 decays and
are needed to obtain absolute branching fractions of each quasi-two-body decays. Using full data
sets collected by the LHCb experiment, the most precise branching fraction ratios of these decays
has been obtained where the uncertainties are at 1% level or less [81].

3.4 New opportunities

The angle 𝛼 is a key input to the CKM global fit and is important for new physics searches. It is
currently one of the least known CKM parameters, new ideas are essential to improve its sensitivity,
in addition to add more data samples. To fully use the information from the 𝐵 → 4𝜋 system,
ideas are proposed to use the resonant behaviour to solve the ambiguities on 𝛼 [82], to reduce bias
and systematic uncertainties [83] and to open the possibility for precision SU(3) measurement in
𝐵0 → 𝑎±1 𝜋

∓ [84].
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3.5 Rediscovery of charmless 𝐵 decays from Belle II

The Belle II experiment has started to collect data in 2019 and using the new data samples, it
can already make re-discovery of the channels seen before in the Belle detector.

To test the Isospin sum rules in the 𝐵 → 𝐾𝜋 system, branching fraction and CP violation have
been measured for all the four decays, 𝐵0 → 𝐾+𝜋−, 𝐵+ → 𝐾0𝜋+, 𝐵+ → 𝐾+𝜋0 and 𝐵0 → 𝐾0𝜋0,
where a 5𝜎 re-observation of the 𝐵0 → 𝐾0𝜋0 decay has been obtained [85, 86]. The branching
fraction of 𝐵0 → 𝐾0𝜋0 is determined to be (8.5+1.7

−1.6 ± 1.2) × 10−6 and CP asymmetry to be
−0.40+0.46

−0.44 ± 0.04, where the first uncertainties are statistical and the second systematic. Using
these early results, the sensitivity for the Isospin test is at a precision of 0.13, which is expected to
be reduced to around 0.03 with the full data samples collected by Belle II till 2030.

The Belle II experiment is also designed to play a major role in the measurement of the angle 𝛼.
Previous results of 𝐵0 → 𝜋0𝜋0 from B-factories show large discrepancy from theoretical predictions
though with large uncertainties, it is thus important to confirm this discrepancy or deny it. Belle II
has looked into this channel and found 14+6.8

−5.6 events, not significant yet [87]. However, the results
show that the Belle-II detector works as expected and have large potential to improve the precision
on the angle 𝛼 in the future.

4. Other CP violation and polarisation measurements

The CP violation and polarisation measurements in some interesting decay modes aid the
searches for new physics. There are coherent deviations, up to 5.3𝜎, in the measured and theo-
retical branching fractions in hadronic two-body 𝐵 meson decays, as reported here [88, 89]. The
discrepancy can be explained only by a downward shift from the SM amplitude of the order of 10%.
The possible new physics contributions to these deviations are studied by building a new model
that contains heavy vector-like quarks and heavy SU(2) gauge multiplet. This analysis suggest
possibilities of W’ from an additional SU(2)𝐿 that partially cancel the SM color allowed amplitude.
A more dedicated analysis at collider experiments for low-dijet mass and broad width regime is
important to exclude any such possibility.

4.1 CP violation in baryon decays at LHCb

The measurements of CP violating observables are established in 𝐾 , 𝐵 and 𝐷 meson decays
and are consistent with the SM predictions; but it is not observed in baryonic decays yet. CP
violation searches in baryonic decays are carried out at LHCb in the modes Ξ−

𝑏
→ 𝑝𝐾−𝐾− [90],

Λ0
𝑏
→ 𝐷𝑝𝐾− [91], and Λ0

𝑏
→ 𝑝𝜋−𝜋+𝜋− [92]. The search for CP violation in Ξ−

𝑏
→ 𝑝𝐾−𝐾− decays

is facilitated via an amplitude analysis allowing for CP violation effects. This is the first of such
measurements in any baryon decays. The model includes sufficiently well established resonances by
adding them iteratively to maximize the change in negative log likelihood. There are no significant
CP violation in any of the contributing components.

In Λ0
𝑏
→ 𝐷𝑝𝐾− decays, the favoured and suppressed 𝐷 decays to a pair of changed kaon

and pion are analysed. The presence of interference between 𝑏 → 𝑐 and 𝑏 → 𝑢 amplitudes
give access to the CKM angle 𝛾. Hence, 𝑏-baryon decays to final states involving a single charm
meson are promising for measurements of CP violation effects. The suppressed decay mode
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Figure 5: Invariant-mass distributions of the selected candidates with fits overlayed for Λ0
𝑏
→ [𝐾−𝜋+]𝐷 𝑝𝐾−

(left) and Λ0
𝑏
→ [𝐾+𝜋−]𝐷 𝑝𝐾− (right).

Λ0
𝑏
→ [𝐾+𝜋−]𝐷 𝑝𝐾− is observed for the first time with a yield of 241 ± 22. There are 1437 ±

92 events from the favoured decay mode; the fit projections are shown in Fig. 5. The efficiency
corrections are determined as a function of the phase space variables, 𝑀2(𝐷𝑝) and 𝑀2(𝑝𝐾−) from
simulation. The CP asymmetry is measured in the integrated phase space as well as in the region
involving excited Λ∗ states. The are no significant CP violation observed.

The CP asymmetry in Λ0
𝑏
→ 𝑝𝜋−𝜋+𝜋− decays is measured using triple product correlations

as well as energy test method. The 𝑇-odd observables are built using the momenta ®𝑝𝑖 of three
final state particles in the centre-of-mass frame of Λ0

𝑏
. There is a rich resonant structure in the

decay, with the dominant contributions proceeding through 𝑁∗, 𝑎−1 , Δ++ and 𝜌0. Asymmetries are
measured in the integrated phase space as well as in bins of the phase space to enhance sensitivity
to local CP violation effects. There are no evidence of local CP asymmetry in any of the phase
space bins.

4.2 Polarisation measurement in 𝐵 → 𝑉𝑉 decays at LHCb

The decays of 𝐵 meson into two vector particles are described in terms of three angular
variables: helicity angles of the two vector decays and the angle between their decay planes. The
observed deviations on the longitudinal polarisation fraction, 𝑓𝐿 from the SM expectations using
helicity counting rules by Belle and BaBar experiments motivated to have extensive theoretical
studies including QCD effects and new physics. The main approaches in QCD have been through
QCD factorisation, perturbative QCD, and soft-collinear effective theory.

A set of 𝑓𝐿 measurements are presented from the LHCb experiment. The 𝑓𝐿 in 𝐵0
𝑠 → 𝐽/𝜓(→

`+`−)𝐾+𝐾− decays is measured [93]. The decay proceeds via mainly 𝜙(1020) with modest
presence of 𝑓0(980). The result obtained is 𝑓𝐿 = 0.5186±0.0029±0.0023. A similar measurement
is performed for the 𝐽/𝜓 → 𝑒+𝑒− decay channel [94]. Here, partially reconstructed events form
one of the dominant sources of background along with the random combinatorial events. The result
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𝑓𝐿 = 0.530 ± 0.029 ± 0.013 is compatible with the SM prediction. The measurement in the decay
mode 𝐵0 → 𝐷∗−𝐷∗+

𝑠 (→ 𝐷+
𝑠𝛾) results in 𝑓𝐿 = 0.578 ± 0.010 ± 0.011 [95]. The polarisations in

these decays involving 𝑏 → 𝑐 transitions is relatively low and in agreement with QCD factorisation
predictions. Any 𝑒 − ` lepton anomaly observed in 𝑓𝐿 measurements are ruled out at a very good
precision level.

Polarisation measurements different charmless 𝐵 decays are also presented from LHCb [96–
99]. There is potential good agreement with different theoretical predictions in these decay modes.
It is observed that the polarisations are different between 𝐵0 → 𝐾∗0𝐾

∗0
and 𝐵0

𝑠 → 𝐾∗0𝐾
∗0

. This
could be due to any possible deficit in 𝑏 → 𝑠 compared to 𝑏 → 𝑐 in new physics framework.

5. Summary

Measurements of the CKM angle 𝛾 provide a stringent test of CP violation in the SM. More and
more precise measurements are carried out by LHCb and Belle experiments. With the start of Run 3
at LHCb and more data at Belle II, the precision on 𝛾 is expected to go below 1◦. Inputs on 𝐷 meson
decays from BESIII plays an important role in achieving this goal. Novel ideas and new decay
modes will aid for further improvements. Charmless 𝐵 decays are sensitive to the CKM angles and
𝐵mixing phases. A set of new measurements in two- and three-body modes are presented by LHCb
and Belle. The precision is expected to improve further with more such measurements at Belle II.

Multibody decays are interesting probes to search for CP violation due to their rich resonant
substructure. The searches in baryonic decays at LHCb don’t provide any evidence for𝐶𝑃 violation
at the moment. However, the sensitivity is expected to improve with the larger dataset anticipated at
the Run 3 of LHCb experiment. Polarisation measurements in 𝐵 → 𝑉𝑉 decays also provide tests of
new physics scenarios. There are no disagreements observed in the measurements presented from
LHCb.
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