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We compute the double differential rate of �̄→  ̄ℓ+ℓ− at O(U) in QED, using a mesonic effective
theory framework. While soft and soft collinear logarithms cancel at the differential level in any set
of kinematic variables, the cancellation of hard collinear logarithms ln<ℓ depends on the choice
of differential variables even in the photon-inclusive case. Crucially, using gauge invariance, we
show that structure-dependent QED corrections do not lead to additional hard collinear logs. Using
photon energy cuts, emulating the LHCb procedure, we report a correction to ' of ≈ 1.7% due
to QED. This correction is accidentally small due to the cuts and is expected to be largely captured
by PHOTOS. Finally, the effect of migration of radiation is discussed, whereby QED corrections
at larger @2 (lepton pair momentum squared) can “leak" into lower values. This effect could be
relevant in view of charmonium resonances and is deserving of further attention.
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1. Introduction

In the Standard Model (SM), lepton flavours couple to gauge bosons with the same coupling
strength, giving rise to the concept of lepton flavour universality (LFU). Thus, an important test of
the SM is to consider LFU ratios, and compare theory with experiment. An example is ' , defined
as the ratio of branching fractions of �→  `+`− and �→  4+4−,

' 
[
@2

min, @
2
max

]
=

∫ @2
max

@2
min

3@2 3Γ(�→ `+`−)
3@2∫ @2

max
@2

min
3@2 3Γ(�→ 4+4−)

3@2

, (1)

in bins of @2 = (ℓ+ + ℓ−)2 (the lepton pair momentum squared). The advantage of such ratios is that
(non-perturbative) QCD corrections cancel as they are independent of the lepton flavour.

However, since 2014, the LHCb collaboration has been reporting discrepancies,

' 
[
1.1GeV2, 6GeV2] = 0.846+0.042+0.013

−0.039−0.012 , (2)

with the latest measurment [1], whereas in theory, one expects

' 
[
1.1GeV2, 6GeV2] ≈ 1 + ΔQED , (3)

where the matter of ΔQED correction is the subject of this proceeding. Ignoring the latter, Eq. (2)
implies a 3.1 f deviation and, together with other deviations in �-physics, has created quite some
excitement.

Let us turn to QED. The crucial point is that the lepton masses do break LFU and that their
scales are so different from the 1 mass scale that they can give rise to significant corrections.
Concretely, the fine structure constant U

c
≈ 2 · 10−3 is enhanced by collinear logs by an order of

magnitude U
c

ln <4
<�
& 2-3 % and with order one coefficient can amount up to 10% [2, 3]. In practice

the situation is more subtle as the experiment aims to subtract ΔQED from the result reported in (2)
by using the PHOTOSMonte Carlo tool. Thus, the title of this proceeding is slightly misleading and
the crucial question is how large the corrections beyond PHOTOS are, as the latter treats the mesons
as point particles. In computing the QED corrections to �→  ℓ+ℓ− at the double differential level
(in @2 and the lepton angle), we are able to give a largely positive answer, namely that ' is a rather
safe observable.

2. Framework

2.1 Effective meson theory

We start from an effective meson theory, where the �̄→  ̄ℓ1ℓ̄2 decay is mediated by

LEFT
int = 6eff !

`+EFT
` + h.c. , (4)

a lepton-hadron current interaction

!` ≡ ℓ̄1W
` (�+ + ��W5)ℓ2, +EFT

` =
∑
=≥0

5
(=)
± (0)
=!

(−�2)= [(�`�†) ∓ �†(�` )] , (5)
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where the leptons ℓ1,2 are kept generic, 6eff ≡ 2��√
2
_CKM, �+ (�) ≡ − U

2c�9(10) are Wilson coef-

ficients, 5 (=)± (0) represent the =th derivative of the form factor 5±(@2), evaluated at @2 = 0, and
�` is the covariant derivative, used to enforce gauge invariance in minimal form. This framework
goes beyond scalar QED (treating the mesons as point particles) in expanding the form factor. The
matching condition for the expansion is the reproduction of the leading oder (LO) matrix element

〈 ̄ |+` |�̄〉 = 5+(@2) (?�+? )` + 5−(@2) (?�−? )` = 〈 ̄ |+EFT
` |�̄〉 + O(4) , (6)

where +` ≡ B̄W` (1 − W5)1. Other than that, mesons are treated as pointlike particles. That is to say
the itself photon does not resolve the mesons. An important aspect to clarify are the kinematics as
they control the IR-safety.

2.2 Kinematics

Weconsider two sets of variables for the differential distribution of �̄(?�) →  ̄ (? )ℓ+(ℓ+)ℓ−(ℓ−)W(:)
process, assuming that radiation is not detected:

{@2
0, 20} =


@2
ℓ
= (ℓ1 + ℓ2)2, 2ℓ = −

( ®ℓ1 · ®? 
| ®ℓ1 | | ®? |

)
@−RF

[“Hadron collider” variables] ,

@2
0 = (?� − ? )

2 , 20 = −
( ®ℓ1 · ®? 
| ®ℓ1 | | ®? |

)
@0−RF

[“B-factory” variables] ,

(7)
where @ − RF and @0 − RF denotes the rest frames (RF) of

@ ≡ ℓ+ + ℓ− , @0 ≡ ?� − ? = @ + : , (8)

and 2ℓ ≡ cos \ℓ , 20 ≡ cos \0. This is illustrated in Fig. 1.
For the real radiation, one needs to integrate over the photon momentum, and for this purpose,

we define a cut-off for the photon energy (related to detector resolution) in a Lorentz invariant way

?̄2
� ≡ (?� − :)2 ≥ <2

� (1 − Xex) , (9)

using the experimentally reconstructed mass of the � meson.

3. Computations and IR-safe Differential Variables {@2
0, 20}

In computing the real and virtual parts, we employ phase space slicing to separate the IR
sensitive terms into integrals that can be computed analytically. This leads to numerically stable
cancellation of the IR divergences.

The differential rate is parameterised as follows

32Γ�̄→ ̄ ℓ1ℓ̄2
(Xex) = 32ΓLO + U

c

∑
8, 9

&̂8&̂ 9

(
H8 9 + F (0)8 9

(Xex)
)
3@2

0320 + O(U2)

= 32ΓLO
[
1 + Δ(0) (@2

0, 20; Xex)
]
3@2

0320 + O(U2) , (10)

where 32ΓLO corresponds to the LO differential rate, the indices 8, 9 run over all charged particles
in the decay, andH and F stand for the virtual and real contributions respectively. The charges &̂8
are defined such that

∑
8 &̂8 = 0, cf. [3].
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Figure 1: Decay kinematics for the different RFs of interest. The dashed line corresponds to the decay axis,
defined by the direction of the outgoing kaon.

In order to separate IR sensitive regions of the real integration, the two cutoff phase space
slicing procedure [4] is employed. It requires the introduction of two small unphysical parameters
{lB, l2} that allows the separation of the real part as follows

F (0)
8 9
(Xex) =

32ΓLO

3@232ℓ
F̃ (B)
8 9
(lB) + F̃ (ℎ2) (0)8 9

(X) + ΔF (0)
8 9
(X) , (11)

where X = {lB, l2 , Xex}, and B and ℎ2 stand for ‘soft’ and ‘hard-collinear’. By hard collinear
divergences, we mean any photon emission with energy above the soft cut-off lB, collinear to either
lepton in the final state.

This procedure allows us to compute the IR sensitive real integrals F̃ (B)
8 9

and F̃ (ℎ2) (0)
8 9

ana-
lytically up to terms of O(l2,B) which are negligible. The relevant dependence on the unphysical
cut-offs is logarithmic and cancel in the sum of the three terms. The numerical integration in ΔF (0)

8 9

is performed in the region where

?̄2
� ≤ <2

� (1 − lB) , : ·ℓ1,2 ≥ l2<2
� . (12)

We find that the soft and soft-collinear divergences cancel at the double differential level,
independent of the choice of differential variables and photon energy cut-off Xex. This is expected,
by virtue of the KLN theorem. The hard-collinear logarithms (ln<ℓ) are more interesting as the
KLN theorem guarantees their cancellation in the fully inclusive case (i.e. photon inclusive and
integration over differential variables (7)). Thus, the question is: Does the cancellation survive in
any of the two sets of differential variables used? It turns out that {@2

0, 20} are the collinear-safe
variables, whereas for {@2, 2ℓ}, the hard-collinear logs do not cancel. This effect is at the heart of the
10% QED corrections quoted in the introduction. Intuitively, the {@2

0, 20} variables are collinear-
safe since for those, the � and  mesons can be thought of as one particle (with 4-momentum
?� − ? ) and then its decay is analogous to a / → ℓ+ℓ− decay which is non-differential and IR
finite by the KLN theorem.
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For the outlook on ' , a central result of our work is that we were able to show, using gauge
invariance and the lepton equation of motion, that structure-dependent corrections (absent in our
calculation, since we treated photon interactions with the mesons as scalar interactions) do not
contribute to hard-collinear logarithms ln<ℓ (cf. section 3.4 of [3]). If this was not the case then it
would be very hard to justify a solid

4. Results in terms of Plots

We present the results as plots of QED corrections normalised with the LO differential rate, ie.

Δ(0) (@2
0; Xex) =

(
3ΓLO

3@2
0

)−1
3Γ(Xex)
3@2

0

���
U
, (13)

with the numerator and denominator separately integrated over the angular variable 20 (defined in
(7)). Our main plots are given in Figs. 2 and 3, cf. the main paper for further plots [3].

Fig. 2 is divided into the @2
0- and @

2-variable on the left and right and bottom and top correspond
to neutral and charged mesons respectively. For @2

0 in the photon inclusive case (dashed lines and
Xex = X

inc
ex ), the ln<ℓ terms cancel, as previously stated, and thus radiative corrections are small

(O( U
c
)). In the charged case, the “hard-collinear” logs of the kaon mass, ln< , (bottom left) do

seem to give rise to a sizeable physical effect (up to ∼ 2%). On the other hand, in the variable @2,
the hard-collinear logarithms do not cancel at the differential level, and this explains why none of
the lines remain close to zero. Of course, when one integrates over @2 in the fully inclusive case, the
hard-collinear logs have to cancel, which we have checked analytically. This can be seen from the
dashed lines on plots on the RHS in Fig. 2 going from positive to negative values with increasing
@2. For a photon energy cut-off corresponding to Xex = 0.1, which is in between the values used for
electrons and muons by LHCb, the QED effects are sizeable and are of course more pronounced for
electrons as can be seen from the plots.

Estimating the QED correction to ' based on our short distance analysis, using photon cuts
to emulate the LHCb procedure [1], we find

ΔQED' ≈
ΔΓ ``

Γ ``

����<rec
�
=5.175GeV

@2
0 ∈[1,6]GeV

2
− ΔΓ 44

Γ 44

����<rec
�
=4.88GeV

@2
0 ∈[1,6]GeV

2
≈ +1.7% , (14)

which is accidentally small due to the cuts in use. In [2], a correction of ΔQED' ≈ 3% was
reported, where a tight angle cut was applied, in addition to photon energy cuts. This highlights
the importance of building a dedicated Monte Carlo based directly on matrix elements in order
to verify PHOTOS [5], which is used to simulate QED corrections in the experimental analysis of
LHCb. This will be discussed in [6].

However, the migration of radiation effect needs to be properly assessed, in view of the
charmonium resonances which are currently not included in the results above and are difficult
to handle in experiment. The effect is illustrated in Fig. 3 by choosing different shapes of @2-
dependence for the form factors. Specifically, we do so by plotting the constant part of the form
factors (dashed lines) versus the @2-expanded form factor (solid line) to linear order (cf. Eq. (5)).
The pale pink colour corresponds to a photon cut-off of Xex = 0.1, while the dark red colour
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Figure 2: The relative sizes of QED corrections are shown as a function of @2
0. The top and bottom plots

represent the neutral and charged meson cases respectively. The left and right plots correspond to results
differential in @2

0 and @
2 respectively.

corresponds to the fully inclusive case. It is found that the effect of the form factors is small when
differential in @2

0. However, for @
2 the size of the relative corrections are significantly affected by

the form factors (cf. Fig. 3). The effects are larger when one is more photon inclusive. This is due
to the fact that, for the @2 distribution, a fixed value of @2 probes higher values of @2

0, and the looser
the photon energy cut-off, the wider is the range of @2

0 that is probed (in fact, in the fully-inclusive
case, the entire spectrum is probed).

While this effect is sizeable, it is significantly exacerbated when one considers charmonium
resonances. Thus, one needs to make sure that the experimental analysis properly takes these effects
into account. We will discuss them in a forthcoming publication [6].

5. Conclusion

Our results show that it is important to properly take into account QED corrections, as these are
enhanced by hard-collinear logarithms of the lepton mass. Soft and soft-collinear divergences are
universal and cancel at the differential level. They resurface as ln Xex effects and should be properly
taken into account by the PHOTOS tool used in experiment.1 Hard-collinear divergences are more
interesting as they are higher in energy and could probe the mesonic structure. Moreover, they may
not cancel, depending on the choice of differential variables (even in the fully photon inclusive case).
However, since we were able to show, using gauge invariance, that structure-dependent corrections

1PHOTOS employs a splitting function approach which captures the leading logs of the point-like particles and resums
the soft logs to all orders à la YFS. The virtual corrections are indirectly inferred from the KLN theorem which again
captures the leading logs. The approach in [2] is similar in spirit to PHOTOS.
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Figure 3: The effects of migration of radiation are shown. The left and right plots represent relative QED
corrections in @2

0 and @
2 respectively. Dashed lines correspond to a constant form factor, while the solid line

includes the first derivative of the form factor (see Eq. (5)).

do not lead to further hard-collinear logs of the ln<ℓ-type, PHOTOS can, in principle, be expected
to be a reliable tool. Note that the same does not apply to the ln< -type “collinear” logs, since the
 -meson itself contains substructure.

Our results show that migration effects in the @2-variable are sizeable for larger photon energy
cut-offs. Consequently, care needs to be taken when the charmonium resonances, with their
pronounced @2-dependence, come into play. We hope to address their significance to ' in future
work [6].

Hence, the LFU observable ' , and others of the same type such as ' ∗ or '� , seem robust
with regard to QED corrections. That is, structure-dependent corrections cannot be expected
to overthrow the main picture. Sizeable effects such as the ln< -terms and the migration of
charmonium resonancesmight andwill becomemore relevant in the future. Hence, QEDcorrections
will keep the community occupied, be it for establishing LFU or precision CKM-element extraction.
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