Charmless B decay measurements at Belle

Yun-Tsung Lai ${ }^{a, *}$
${ }^{a}$ Kavli IPMU, University of Tokyo, Kashiwa, Japan
E-mail: yun-tsung.lai@ipmu.jp

In this report, we summarize the recent charmless B decay measurements at Belle. The studies are based on the Belle data sample of $711 \mathrm{fb}^{-1}$ or $121 \mathrm{fb}^{-1}$ collected at $\Upsilon(4 S)$ or $\Upsilon(5 S)$ resonance at the KEKB collider. Results of several decay modes are presented. In addition to their branching measurements, the structure in the two-body invariant mass are also investigated for some of the decay modes.

[^0]
1. Introduction

Charmless B decays are suppressed in Standard Model (SM), and are also sensitive to physics beyond the Standard Model (BSM) within the loop of penguin amplitude. Precise measurements on them could be a good sensitivity test against the prediction by SM. The main experimental challenge is the signal rate which is about 10^{5} times smaller than the $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s, c)$ continuum processes. Reduction of combinatorial background is hence critical. Using a Belle data sample of $711 \mathrm{fb}^{-1}$ or $121 \mathrm{fb}^{-1}$ collected at $\Upsilon(4 S)$ or $\Upsilon(5 S)$ resonance with the Belle detector [1] at the KEKB asymmetric-energy $e^{+} e^{-}$collider [2], we report the studies of the following B and B_{s}^{0} decay modes: $B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}, B^{+} \rightarrow p \bar{p} \pi^{+} \pi^{0}[3], B^{+} \rightarrow K^{+} K^{-} \pi^{+}, B^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}, B_{s}^{0} \rightarrow \eta^{\prime} X_{s \bar{s}}$ [4], $B_{s}^{0} \rightarrow \eta^{\prime} \eta$ [5], and $B_{s}^{0} \rightarrow \eta^{\prime} K_{S}^{0 \dagger}$. Their signal yields ($N_{\text {sig }}$) are measured by one or multi-dimensional extended unbinned likelihood fit on data with different variables, and branching fractions are estimated by $\mathcal{B}=\frac{N_{\text {sig }}}{\epsilon \times N_{B}}$, where ϵ is the signal reconstruction efficiency and N_{B} is the number of B events $(772 \mathrm{M}$ for B^{+}or $B^{0}, 16.6 \mathrm{M}$ for B_{s}^{0}).
2. $B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}$and $B^{+} \rightarrow p \bar{p} \pi^{+} \pi^{0}$

Baryonic B decays have various interesting features, such as the enhancement in the di-baryon low mass threshold [6], and the different angular distributions from different modes e.g. between $B^{+} \rightarrow p \bar{p} K^{+}$and $B^{+} \rightarrow p \bar{p} \pi^{+}$[7]. Signal B candidate is identified by the energy difference $\Delta E \equiv E_{B}-E_{\text {beam }}$ and the beam-energy-constrained mass $M_{\mathrm{bc}} \equiv \sqrt{E_{\text {beam }}^{2} / c^{4}-\left|p_{B} / c\right|^{2}}$, where $E_{\text {beam }}$ is the beam energy, and p_{B} and E_{B} are the momentum and energy of the reconstructed B meson, respectively. We use 2D fit with ΔE and M_{bc} to extract $N_{\text {sig }}$, and obtain $\mathcal{B}\left(B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)=(0.83 \pm$ 0.17 (stat.) ± 0.17 (syst.) $) \times 10^{-6}$ and $\mathcal{B}\left(B^{+} \rightarrow p \bar{p} \pi^{+} \pi^{0}\right)=(4.58 \pm 1.17$ (stat.) ± 0.67 (syst.) $) \times 10^{-6}$. The total measured $\mathcal{B}\left(B^{+} \rightarrow p \bar{p} \pi^{+} \pi^{0}\right)$ is about a factor of 10 smaller than the predicted $\mathcal{B}\left(B^{+} \rightarrow\right.$ $p \bar{p} \rho^{+}$) from a theoretical calculation by generalized factorization method [8]. Figure 1 shows the $M_{\pi \pi}$ distribution. A χ^{2} fit is perform on $M_{\pi^{+} \pi^{0}}$ and we obtain 86 ± 41 events for $B^{+} \rightarrow p \bar{p} \rho^{+}$. Table 1 shows the signal yields in $M_{p \bar{p}}$ bins. Branching fraction of $B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}$in the threshold enhancement region (the lowest bin) is estimated as $\left(0.35 \pm 0.13\right.$ (stat.) ± 0.07 (syst.)) $\times 10^{-6}$, which is consistent with the LHCb result [9].

Figure 1: $M_{\pi^{+} \pi^{-}}$(left) and $M_{\pi^{+} \pi^{0}}$ (right) distributions of $B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}$and $B^{+} \rightarrow p \bar{p} \pi^{+} \pi^{0}$, respectively.

[^1]Table 1: Fitted yields of $B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}\left(0.6 \mathrm{GeV} / c^{2}<M_{\pi^{+} \pi^{-}}<1.22 \mathrm{GeV} / c^{2}\right)$ and $B^{+} \rightarrow p \bar{p} \pi^{+} \pi^{0}\left(M_{\pi^{+} \pi^{0}}<\right.$ $1.3 \mathrm{GeV} / c^{2}$) in $M_{p \bar{p}}$ bins.

$M_{p \bar{p}}\left(\mathrm{GeV} / c^{2}\right)$	Yield of $B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}$	Yield of $B^{+} \rightarrow p \bar{p} \pi^{+} \pi^{0}$
$M_{p \bar{p}}<2.85$	$26.1_{-9.1}^{+10.0}$	$133.5_{-25.2}^{+266.6}$
$2.85<M_{p \bar{p}}<3.128$	$19.6_{-9.3}^{+10.2}$	$12.3-9.7$
$3.128<M_{p \bar{p}}$	$29.1_{-13.1}^{+16.2}$	$-3.8_{-13.8}^{+15.1}$

3. $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$

Compared to previous measurement by Belle [10], $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$result is updated with a re-optimized binning to study the property of the structure and localized $\mathcal{A}_{C P}$ at low $M_{K^{+} K^{-}}$region which were also observed in BaBar [11] and LHCb [12-14]. Signal yields and $\mathcal{A}_{C P}$ are extracted by using 2D fit with ΔE and M_{bc} within each $M_{K^{+} K^{-}}$bins, and Figure 2 shows the results. The structure at $M_{K^{+} K^{-}}<1.1 \mathrm{GeV} / c^{2}$ has an $\mathcal{A}_{C P}$ of -0.90 ± 0.17 (stat.) ± 0.03 (syst.) with a significance of 4.8σ. Helicity angle ($\theta_{\text {hel }}$, defined as the angle between B^{+}and K^{+}in the $K^{+} K^{-}$rest frame) for signal events within $M_{K^{+} K^{-}}<1.1 \mathrm{GeV} / c^{2}$ is shown in Figure 3. The distribution is consistent with a coherent sum of spin-0 and spin-1 the most.

Figure 2: Differential branching fraction (left) and $\mathcal{A}_{C P}$ (right) distributions as a function of $M_{K^{+} K^{-}}$for $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$.

4. $B^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$

The major challenge in the $B^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ measurement is the shower leakage [15] due to two π^{0} in the reconstruction, and the correlation between energy and other variables. e.g. between ΔE and $M_{\pi \pi}$. To handle those effects, we require the momentum to be greater $0.5 \mathrm{GeV} / c^{2}$ for all π^{0} candidates. By a 3D fit with $\Delta E, M_{\mathrm{bc}}$, and a Neural-Network [16] output discriminant for continuum suppression [17], we obtain inclusive $\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}\right)=(19.0 \pm 1.5$ (stat.) ± 1.4 (syst.) $) \times 10^{-6}$ and $\mathcal{A}_{C P}=(9.2 \pm 6.8($ stat. $) \pm 0.5($ syst. $)) \%$. We use the ${ }_{s} \mathcal{P}$ lot technique [18] to isolate signal on $M_{\pi \pi}$ distribution, and perform a 2D binned fit on the histogram to extract the signal model composition as shown in Figure 4. In addition to the $B^{+} \rightarrow \rho(770)^{+} \pi^{0}$ structure at low $M_{\pi^{+} \pi^{0}, \text { min }}$

Figure 3: The helicity angle distribution with applying efficiency correction and comparisons to different models, where the LHCb model is from Ref. [13].
region ${ }^{\dagger}$, and we also observe a new structure at $M_{\pi^{0} \pi^{0}}$ region, which is modeled by an incoherent sum of $f_{0}(980), f_{2}(1270)$, and $f_{0}(500)$. A combined branching fraction for this $\pi^{0} \pi^{0}$ structure is measured as $(6.9 \pm 0.9($ stat. $) \pm 0.6($ syst. $)) \times 10^{-6}$, which has a significance of 9.2σ. A large $\mathcal{A}_{C P}$ is seen at $M_{\pi^{0} \pi^{0}} \sim 1.4 \mathrm{GeV} / c^{2}$ as shown in Figure 5.

Figure 4: Projection of the fit result to ${ }_{s} \mathcal{W}$ eights $M_{\pi^{+} \pi^{0}, \min }-\mathrm{vs}-M_{\pi^{0} \pi^{0}}$ histogram.

Figure 5: ${ }_{s}$ Weights $\mathcal{A}_{C P}$ as a function of $M_{\pi^{0} \pi^{0}}$ for $M_{\pi^{+} \pi^{0}, \min }>1.9 \mathrm{GeV} / c^{2}$. The first few bins are combined due to low number of events.

[^2]5. $B_{s}^{0} \rightarrow \eta^{\prime} X_{s \bar{s}}, B_{s}^{0} \rightarrow \eta^{\prime} \eta$, and $B_{s}^{0} \rightarrow \eta^{\prime} K_{S}^{0}$

As B decays with η^{\prime} in the final state have been observed firstly by CLEO [19, 20], we have found some special properties in this particle and decays involving it. η^{\prime} mass is higher than the expectation from symmetry considerations [21]. Measurements of $\mathcal{B}\left(B \rightarrow \eta^{\prime} X_{s}\right)$ [23-25] also show unexpected enhancement compared with SM prediction [22]. Any new observation on decays with η^{\prime} could provide further information to understand its property.

We report the first measurement on $B_{s}^{0} \rightarrow \eta^{\prime} X_{s \bar{s}}$ based on a semi-inclusive method [4]. Simulation of $X_{s \bar{s}}$ fragmentation is performed with PYTHIA 6 [26] with a flat mass distribution. $X_{s \bar{s}}$ candidates are reconstructed with two kaons ($K^{+} K^{-}$or $K^{ \pm} K_{S}^{0}$ with $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$) and up to four pions with at most one $\pi^{0} . \eta^{\prime}$ candidates are reconstructed with $\pi^{+} \pi^{-} \eta$ and $\eta \rightarrow \gamma \gamma . N_{\text {sig }}$ is extracted by a 1 D fit on M_{bc} with $-0.12 \mathrm{GeV}<\Delta E<0.05 \mathrm{GeV}$ in $M_{X_{s \bar{s}}}$ bins. As none of the bins shows significant yield, we set an upper limit on $\mathcal{B}\left(B_{s}^{0} \rightarrow \eta^{\prime} X_{s \bar{s}}\right)$ as 1.4×10^{-3} at 90% confidence level (C.L.).

Branching fraction and $C P$ asymmetry of $B_{s}^{0} \rightarrow \eta^{\prime} \eta$ decay could be affected by various BSM scenarios [28]. Along with the results of other $B_{d, s}^{0} \rightarrow \eta \eta, \eta^{\prime} \eta, \eta^{\prime} \eta^{\prime}$ modes, measurement on $B_{s}^{0} \rightarrow \eta^{\prime} \eta$ is helpful to extract $C P$-violating parameters from $\mathrm{SU}(3) / \mathrm{U}(3)$ symmetry [29]. $N_{\text {sig }}$ of $B_{s}^{0} \rightarrow \eta^{\prime} \eta$ is extracted by 3D fit with $\Delta E, M_{\mathrm{bc}}$, and $M_{\eta^{\prime}}$. We obtain 2.7 ± 2.5 events and set upper limits of $f_{s} \times \mathcal{B}\left(B_{s}^{0} \rightarrow \eta^{\prime} \eta\right)$ and $\mathcal{B}\left(B_{s}^{0} \rightarrow \eta^{\prime} \eta\right)$ as 1.3×10^{-5} and 6.5×10^{-5} at 90% C.L., respectively, where f_{s} is the fraction of $B_{s}^{(*) 0} \bar{B}_{s}^{(*) 0}$ in $b \bar{b}$ events and its world average is 0.201 ± 0.031 [27].
$B_{s}^{0} \rightarrow \eta^{\prime} K_{S}^{0}$ decay contains contributions from gluonic and electroweak penguin amplitudes, such that it is sensitive to BSM physics [28] which can affect both decay rate and $C P$ asymmetries. $N_{\text {sig }}$ of $B_{s}^{0} \rightarrow \eta^{\prime} K_{S}^{0}$ is extracted by 3 D fit with $\Delta E, M_{\mathrm{bc}}$, and $M_{\eta^{\prime}}$. We obtain -3.21 ± 1.85 events and set upper limits of $f_{s} \times \mathcal{B}\left(B_{s}^{0} \rightarrow \eta^{\prime} K_{S}^{0}\right)$ and $\mathcal{B}\left(B_{s}^{0} \rightarrow \eta^{\prime} K_{S}^{0}\right)$ as 1.64×10^{-5} and 8.16×10^{-5} at 90% C.L., respectively.

6. Summary

We report the results of several charmless B decays using Belle data collected at $\Upsilon(4 S)$ or $\Upsilon(5 S)$ resonance. In addition to branching fraction measurement, we also look into the distribution of two-body invariant mass of $B^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}, B^{+} \rightarrow p \bar{p} \pi^{+} \pi^{0}, B^{+} \rightarrow K^{+} K^{-} \pi^{+}$, and $B^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$ to study their decay structure. We do not observe significant signal yield for $B_{s}^{0} \rightarrow \eta^{\prime} X_{s \bar{s}}, B_{s}^{0} \rightarrow \eta^{\prime} \eta$, and $B_{s}^{0} \rightarrow \eta^{\prime} K_{S}^{0}$, and upper limits on branching fraction are estimated at 90% C.L.. In near future, larger data set from Belle II [30] can further improve the measurement on these decay modes.

References

[1] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
[2] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T.Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.
[3] K. Chu et al. (Belle Collaboration), Phys. Rev. D 101, 052012 (2020).
[4] S. Dubey et al. (Belle Collaboration), Phys. Rev. D 104, 012007 (2021).
[5] N.K. Nisar et al. (Belle Collaboration), Phys. Rev. D 104, L031101 (2021).
[6] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 88, 181803 (2002).
[7] J. Wei et al. (Belle Collaboration), Phys. Lett. B 659, 80 (2008).
[8] C. Q. Geng, Y. K. Hsiao, and J. N. Ng, Phys. Rev. D 75, 094013 (2007).
[9] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 96, 051103 (2017).
[10] C.-L. Hsu et al. (Belle Collaboration), Phys. Red. D 96, 031101(R) (2017).
[11] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 99, 221801 (2017).
[12] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 011801 (2014).
[13] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 123, 231802 (2019).
[14] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 011801 (2014).
[15] K. Miyabayashi, Nucl. Instrum. Methods Phys. Res., Sect. A 494, 298 (2002).
[16] M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006).
[17] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The modified moments used in this paper are described in S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
[18] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
[19] T.E. Browder et al. (CLEO Collaboration), Phys. Rev. Lett., 81, 1786, 1998.
[20] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D, 68, 011101, 2003.
[21] K. Ottnad and C. Urbach (ETM Collaboration), Phys. Rev. D 97, 054508 (2018).
[22] A. Datta, X.-G. He, and S. Pakvasa, Phys. Lett. B 419, 369 (1998).
[23] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 68, 011101 (2003).
[24] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 061801 (2004).
[25] K. Nishimura et al. (Belle Collaboration), Phys. Rev. Lett. 105, 191803 (2010).
[26] T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 06026 (2006).
[27] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[28] E. Kou et al., Prog. Theor. Exp. Phys. 123C01 (2019).
[29] Y.-K. Hsiao, C.-F. Chang, and X.-G. He, Phys. Rev. D 93, 114002 (2016).
[30] T. Abe et al. (Belle II Collaboration), arXiv:1011.0352 [physics.ins-det], (2010).

[^0]: *On behalf of the Belle Collaboration.
 *Speaker

[^1]: ${ }^{\dagger}$ Throughout this paper, inclusion of charge-conjugate decay modes is always implied.

[^2]: ${ }^{\ddagger} M_{\pi^{+} \pi^{0}, \text { min }}$ refers to the smaller of two $M_{\pi^{+} \pi^{0}}$ values in a reconstructed B candidate.

