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Direct CP violation in two-body 𝐷 → 𝑃𝑃 and 𝐷 → 𝑉𝑃 decays is studied within the framework of
the topological amplitude approach for tree amplitudes and the QCD factorization approach for penguin
amplitudes. It is the interference between tree and long-distance penguin and penguin-exchange amplitudes
that pushes the CP asymmetry difference between 𝐷0 → 𝐾+𝐾− and 𝜋+𝜋− modes up to the per mille level.
Using the same mechanism, we find that the CP asymmetry can also occur at the 10−3 level in many of the
𝐷 → 𝑉𝑃 channels or otherwise be negligibly small. There are six golden modes which have sufficiently large
branching fractions and direct CP violation at the per mille level. In particular, the direct CP asymmetry
difference between 𝐷0 → 𝐾+𝐾∗− and 𝜋+𝜌− is predicted to be (−1.61± 0.33) × 10−3, which is very similar
to the counterpart in the 𝑃𝑃 sector. The LHCb’s observation of CP asymmetry difference can be explained
within the standard model without the need of new physics. The key lies in the long-distance penguin
topology (penguin and penguin-exchange) arising from final-state rescattering.
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1. Introduction

In November of 2011 LHCb announced the first evidence of CP violation in the charm sector. A
nonzero value for the difference between the time-integrated CP asymmetries of the decays 𝐷0 → 𝐾+𝐾−

and 𝐷0 → 𝜋+𝜋− [1]

Δ𝐴𝐶𝑃 ≡ 𝐴𝐶𝑃 (𝐾+𝐾−) − 𝐴𝐶𝑃 (𝜋+𝜋−) = −(0.82 ± 0.21 ± 0.11)% (1)

was reported. The significance of the measured deviation from zero is 3.5𝜎. This had triggered a flurry of
studies exploring whether this CP violation in the charm sector was consistent with the standard model (SM)
or implies new physics (NP). However, the original evidence of CP asymmetry difference was gone in 2013
and 2014 when LHCb started to use the muon tag to identify the 𝐷0 and found a positive Δ𝐴𝐶𝑃 [2]. In 2019,
LHCb finally reported the first observation of CP asymmetry in the charm system with the result at the per
mille level [3]

Δ𝐴𝐶𝑃 ≡ 𝐴𝐶𝑃 (𝐾+𝐾−) − 𝐴𝐶𝑃 (𝜋+𝜋−) = (−1.54 ± 0.29) × 10−3. (2)

The time-integrated asymmetry can be further decomposed into a direct CP asymmetry 𝑎dir
𝐶𝑃

and a
mixing-induced indirect CP asymmetry characterized by the parameter Δ𝑌 𝑓 which measures the asymmetry
between 𝐷0 → 𝑓 and �̄�0 → 𝑓 effective decay widths; that is, 𝐴𝐶𝑃 ( 𝑓 , 𝑡) ≈ 𝑎dir

𝐶𝑃
( 𝑓 ) + (𝑡/𝜏(𝐷0))Δ𝑌 𝑓 . Based

on the LHCb average of Δ𝑌 , it follows that the direct CP asymmetry difference is given by [3]

Δ𝑎dir
𝐶𝑃 = (−1.57 ± 0.29) × 10−3. (3)

In 2012 there existed two independent studies in which direct CP violation in charmed meson decays was
explored based on the topological diagram approach for tree amplitudes and the QCD-inspired approach for
penguin amplitudes [5–7]. Interestingly, both works predicted a Δ𝐴𝐶𝑃 at the per mille level with a negative
sign seven years before the LHCb’s announcement of the first observation of CP violation in the charm sector.

2. CP violation in 𝐷 → 𝑃𝑃 decays

The amplitude of the singly Cabibbo-suppressed charmed meson decay in general reads

𝐴(𝐷 → 𝑃𝑃) = _𝑑 (tree + penguin) + _𝑠 (tree′ + penguin′), (4)

where _𝑝 ≡ 𝑉∗
𝑐𝑝𝑉𝑢𝑝 . Direct CP asymmetry can occur at the tree level if the tree amplitudes denoted by

“tree" and “tree′" have a nontrivial strong phase difference. For example, consider the decay 𝐷+
𝑠 → 𝐾+[

with the quark-diagram amplitudes

𝐴(𝐷+
𝑠 → 𝐾+[) = 1

√
2
[_𝑑 (𝐶 + 𝑃𝑑) + _𝑠 (𝐴 + 𝑃𝑠)] cos 𝜙 − [_𝑑𝑃𝑑 + _𝑠 (𝑇 + 𝐶 + 𝐴 + 𝑃𝑠)] sin 𝜙, (5)

where𝑇, 𝐶, 𝐴, 𝑃 are color-allowed external𝑊-emission, color-suppressed internal𝑊-emission,𝑊-annihilation
and penguin topological amplitudes, respectively, and 𝜙 is the [–[′ mixing angle. The tree topological am-
plitudes can be extracted from Cabibbo-favored 𝐷 → 𝑃𝑃 decays to be (in units of 10−6 GeV) [4]

𝑇 = 3.113 ± 0.011, 𝐶 = (2.767 ± 0.029)𝑒−(151.3±0.3)◦ ,

𝐸 = (1.48 ± 0.04)𝑒𝑖 (120.9±0.4)◦ , 𝐴 = (0.55 ± 0.03)𝑒𝑖 (23+7
−10 )

◦
, (6)

with 𝐸 being the 𝑊-exchange amplitude. It is obvious that a large DCPV (direct CP violation) at the tree
level can arise from the interference between _𝑑𝐶 and _𝑠𝑇 . Our calculation yields [4]

𝑎tree
CP (𝐷+

𝑠 → 𝐾+[) = (−0.75 ± 0.01) × 10−3, 𝑎total
CP (𝐷+

𝑠 → 𝐾+[) = (−0.81 ± 0.08) × 10−3. (7)
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CP asymmetry in this mode is dominated by the tree-level one of order 10−3. A great merit of the
diagrammatic approach is that tree DCPV can be reliably estimated as the magnitude and phase of each tree
topology can be extracted from the data.

For 𝐷0 → 𝜋+𝜋− and 𝐾+𝐾− , their topological amplitudes read

𝐴(𝐷0 → 𝜋+𝜋−) = _𝑑 (𝑇 + 𝐸𝑑) + _𝑝 (𝑃𝑝 + 𝑃𝐸 𝑝 + 𝑃𝐴𝑝),
𝐴(𝐷0 → 𝐾+𝐾−) = _𝑑 (𝑇 + 𝐸 𝑠) + _𝑝 (𝑃𝑝 + 𝑃𝐸 𝑝 + 𝑃𝐴𝑝), (8)

where summation over 𝑝 = 𝑑, 𝑠 is understood, 𝑃𝐸 and 𝑃𝐴 are penguin-exchange and penguin-annihilation
amplitudes, respectively, and the superscript 𝑞 refers to the quark involved in the associated penguin loop. In
these two decays, direct CP violation arises from the interference between tree and penguin amplitudes. The
complete expression of Δ𝑎dir

CP is given by [5]

Δ𝑎dir
CP = −1.30 × 10−3

(����𝑃𝑑 + 𝑃𝐸𝑑 + 𝑃𝐴𝑑𝑇 + 𝐸 𝑠 − Δ𝑃

����
𝐾𝐾

sin 𝛿
𝐾𝐾

+
����𝑃𝑠 + 𝑃𝐸 𝑠 + 𝑃𝐴𝑠𝑇 + 𝐸𝑑 + Δ𝑃

����
𝜋𝜋

sin 𝛿𝜋𝜋

)
, (9)

where the parameter Δ𝑃 is defined by Δ𝑃 ≡ (𝑃𝑑 + 𝑃𝐸𝑑 + 𝑃𝐴𝑑) − (𝑃𝑠 + 𝑃𝐸 𝑠 + 𝑃𝐴𝑠).
For penguin, penguin-exchange and penguin-annihilation amplitudes, we consider two QCD-inspired

approaches, namely, perturbative QCD (pQCD) and QCD factorization (QCDF). The ratio |𝑃/𝑇 | is naïvely
expected to be of order (𝛼𝑠 (`𝑐)/𝜋) ∼ O(0.1). It was found that(

𝑃

𝑇

)
𝜋𝜋

≈ 0.30𝑒𝑖110◦ ,

(
𝑃

𝑇

)
𝐾𝐾

≈ 0.24𝑒𝑖110◦ , pQCD + FAT,(
𝑃

𝑇

)
𝜋𝜋

≈ 0.23𝑒−𝑖150◦ ,

(
𝑃

𝑇

)
𝐾𝐾

≈ 0.22𝑒−𝑖150◦ , QCDF + TDA, (10)

in pQCD in conjunction with the so-called factorization-assisted topological-amplitude approach (FAT) [6]
and in QCDF together with the topological diagram approach (TDA) [5, 7]. In the latter approach, we have
taken into account SU(3) breaking effects by having 𝑇𝜋𝜋 = 0.96𝑇 , 𝑇𝐾𝐾 = 1.27𝑇 and

Solution I: 𝐸𝑑 = 1.10 𝑒𝑖15.1◦𝐸 , 𝐸 𝑠 = 0.62 𝑒−𝑖19.7◦𝐸 ;
Solution II: 𝐸𝑑 = 1.10 𝑒𝑖15.1◦𝐸 , 𝐸 𝑠 = 1.42 𝑒−𝑖13.5◦𝐸 , (11)

where 𝐸𝑞 refers to the𝑊-exchange amplitude associated with 𝑐�̄� → 𝑞𝑞 (𝑞 = 𝑑, 𝑠) [4] . Based on light-cone
sum rules, the ratios����𝑃𝑇 ����

𝜋𝜋

= 0.093 ± 0.011,
����𝑃𝑇 ����

𝐾𝐾

= 0.075 ± 0.015, LCSR, (12)

were obtained in [8]. However, the magnitude of 𝑃/𝑇 turns out to be of order (0.22 ∼ 0.30) in the
QCD-inspired approaches.

After including𝑊-exchange, penguin-exchange and penguin-annihilation contributions, it follows that(
𝑃𝑠 + 𝑃𝐸 𝑠 + 𝑃𝐴𝑠
𝑇 + 𝐸𝑑 + Δ𝑃

)
𝜋𝜋

= 0.66 𝑒𝑖134◦ ,

(
𝑃𝑑 + 𝑃𝐸𝑑 + 𝑃𝐴𝑑
𝑇 + 𝐸 𝑠 − Δ𝑃

)
𝐾𝐾

= 0.45 𝑒𝑖131◦ , (13)

in pQCD+FAT [6], and(
𝑃𝑠 + 𝑃𝐸 𝑠 + 𝑃𝐴𝑠
𝑇 + 𝐸𝑑 + Δ𝑃

)
𝜋𝜋

= 0.32 𝑒𝑖176◦ ,

(
𝑃𝑑 + 𝑃𝐸𝑑 + 𝑃𝐴𝑑
𝑇 + 𝐸 𝑠 − Δ𝑃

)
𝐾𝐾

=

{
0.23 𝑒−𝑖164◦

0.23 𝑒𝑖178◦
, (14)

in QCDF for Solutions I and II of 𝑊-exchange amplitudes 𝐸𝑑 and 𝐸 𝑠 [4]. Comparing Eq. (13) with Eq.
(10), we see that the magnitude of the ratio 𝑃/𝑇 is enhanced by a factor of 2 after including 𝑃𝐸, 𝑃𝐴, 𝐸 and
Δ𝑃. Substituting Eq. (13) into Eq. (9) yields

Δ𝑎dir
CP ≈ −1.0 × 10−3, pQCD + FAT. (15)
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It is obvious from Eq. (14) that the CP asymmetry difference is very small, of order 10−4 or less, in
QCDF+TDA owing to the reason that the phases 𝛿𝜋𝜋 and 𝛿𝐾𝐾 are not far from 180◦ in QCDF. Even
if the phases are allowed to have 25◦ uncertainties, the resultant Δ𝑎dir

CP is still too small compared to
experiment. There is one crucial difference in the treatment of the penguin-exchange amplitude in pQCD
and QCDF approaches. In pQCD, the factorizable penguin-exchange amplitude 𝑃𝐸 𝑓 is proportional to
〈𝑃𝑃 | (�̄�𝑞)

𝑆+𝑃 |0〉〈0| (𝑞𝑐)𝑆−𝑃 |𝐷〉. It was assumed in [6] that 〈𝑃1𝑃2 | (𝑞1𝑞2 |0〉 = 〈𝑃1𝑃2 |𝑆〉〈𝑆 |𝑞1𝑞2 |0〉 was
dominated by the isosinglet heavier scalar resonancs such as 𝑓0 (1370), 𝑓0 (1500) and 𝑓0 (1710) with the light
resonances 𝑓0 (500), 𝑓0 (980) and 𝑎0 (980) being neglected. In QCDF, 𝑃𝐸 𝑓 is expressed in terms of the
twist-2 LCDA Φ𝑀 and the twist-3 one Φ𝑚. This explains why the magnitude of the ratio 𝑃/𝑇 is enhanced
by a factor of 2 after including 𝑃𝐸, 𝑃𝐴, 𝐸 and Δ𝑃 in pQCD+FAT, but no so in QCDF+TDA.

It is known that in the diagrammatic approach, all the topological tree amplitudes except𝑇 are dominated
by nonfactorizable long-distance effects. This implies that, contrary to 𝐵 physics, the underlying mechanism
of hadronic charm decays is dominated by nonperturbative physics. This is why even until today we still don’t
have a QCD-inspired theory to describe the nonleptonic decays of charmed mesons. By the same token,
it is natural to expect that penguin topology 𝑃 and 𝑃𝐸 also receive long-distance contributions. Indeed,
we have pointed out in [7] the importance of a resonant-like final-state rescattering which has the same
topology as the topological graph 𝑃 and 𝑃𝐸 . In 2012 we have made the ansatz that (𝑃 +𝑃𝐸)LD is of the same
order of magnitude as 𝐸 and flavor independent. Very recently, this ansatz was shown to be justified in the
diagrammatic approach under the SU(3) limit; that is, (𝑃 + 𝑃𝐸)LD = 𝐸LD ≈ 𝐸 [9]. Then we have(

𝑃𝑠 + 𝑃𝐸 𝑠 + 𝑃𝐴𝑠 + (𝑃 + 𝑃𝐸)LD

𝑇 + 𝐸𝑑 + Δ𝑃

)
𝜋𝜋

= 0.77 𝑒𝑖114◦ ,(
𝑃𝑑 + 𝑃𝐸𝑑 + 𝑃𝐴𝑑 + (𝑃 + 𝑃𝐸)LD

𝑇 + 𝐸 𝑠 − Δ𝑃

)
𝐾𝐾

=

{
0.45 𝑒𝑖137◦ solution I
0.45 𝑒𝑖120◦ solution II

. (16)

Consequently [4],

Δ𝑎dir
𝐶𝑃 =

{
(−1.14 ± 0.26) × 10−3 solution I
(−1.25 ± 0.25) × 10−3 solution II

, QCDF + TDA. (17)

Although both QCD-inspired approaches predicted a Δ𝐴𝐶𝑃 of order 10−3 with a negative sign, the
mechanisms responsible for CP violation are quite different. Δ𝑎dir

𝐶𝑃
comes from the interference between

the tree 𝑇 + 𝐸 and the short-distance penguin 𝑃 + 𝑃𝐸 amplitudes in pQCD+FAT, while it is the interference
between tree and long-distance penguin amplitudes that pushes CP asymmetry difference up to the per mille
level. As we shall see in Sec. 3 below, these two different mechanisms can be discriminated in 𝐷 → 𝑉𝑃

decays.
We thus see that LHCb’s observation of CP asymmetry difference can be explained within the SM

without the need of NP. The key lies in the long-distance penguin topology 𝑃 + 𝑃𝐸 arising from final-state
rescattering. A similar but different idea was proposed in Ref. [11]. When the amplitudes in Eq. (8) were
re-expressed in terms of𝑈-spin components, Δ𝑈 = 0 and Δ𝑈 = 1, it was argued in Ref. [11] that the ratio of
Δ𝑈 = 0 over Δ𝑈 = 1 matrix elements required a non-perturbative enhancement of the penguin contraction
of tree operators in order to accommodate the LHCb measurement of Δ𝑎dir

𝐶𝑃
.

3. CP violation in 𝐷 → 𝑉𝑃 decays

For 𝐷 → 𝑉𝑃 decays, there exist two different types of topological diagrams since the spectator quark
of the charmed meson may end up in the pseudoscalar or vector meson. For topological color-allowed
tree amplitude 𝑇 and color-suppressed amplitude 𝐶 in 𝐷 → 𝑉𝑃 decays, the subscript 𝑃 (𝑉) implies that
the pseudoscalar (vector) meson contains the spectator quark of the charmed meson. For the 𝑊-exchange
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Table 1: Topological amplitudes obtained from Cabibbo-favored 𝐷 → 𝑉𝑃 decays. The amplitude sizes are quoted in
units of 10−6 (𝜖 · 𝑝𝐷) and the strong phases in units of degrees.

|𝑇𝑉 | |𝑇𝑃 | 𝛿𝑇𝑃 |𝐶𝑉 | 𝛿𝐶𝑉 |𝐶𝑃 | 𝛿𝐶𝑃 |𝐸𝑉 | 𝛿𝐸𝑉
2.19 ± 0.03 3.56 ± 0.06 61 ± 5 1.69 ± 0.04 220 ± 3 2.02 ± 0.02 201 ± 1 0.58 ± 0.06 283 ± 5

|𝐸𝑃 | 𝛿𝐸𝑃 |𝐴𝑉 | 𝛿𝐴𝑉 |𝐴𝑃 | 𝛿𝐴𝑃 𝜒2
min fit quality

1.69 ± 0.03 108 ± 3 0.23 ± 0.02 77 ± 5 0.18 ± 0.03 111+13
−10 7.06 6.99%

amplitude 𝐸 and𝑊-annihilation 𝐴 with the final state 𝑞1𝑞2, the subscript 𝑃 (𝑉) denotes that the pseudoscalar
(vector) meson contains the antiquark 𝑞2.

By performing a 𝜒2 fit to the Cabibbo-favored (CF) 𝐷 → 𝑉𝑃 decays, we have extracted the magnitudes
and strong phases of the topological amplitudes 𝑇𝑉 , 𝐶𝑉 , 𝐸𝑉 , 𝐴𝑉 and 𝑇𝑃 , 𝐶𝑃 , 𝐸𝑃 , 𝐴𝑃 from the measured
partial widths and found five solutions with local 𝜒2 minima restricted to 𝜒2

min < 10. [10]. Although all
five solutions generally fit the CF modes well, they led to very different predictions for some of the singly
Cabibbo-suppressed (SCS) decays. Especially, the 𝐷0 → 𝜋0𝜔, 𝐷+ → 𝜋+𝜌0 and 𝐷+ → 𝜋+𝜔 decays were
very useful in discriminating among different solutions. We found that one of the solutions which we called
(S3’) gives a best accommodation of SCS data, while other solutions were ruled out. The magnitudes and
relative phases of various topological amplitudes are listed in Table 1. The topological amplitudes of all
these solutions respect the hierarchy pattern:

|𝑇𝑃 | > |𝑇𝑉 | >∼ |𝐶𝑃 | > |𝐶𝑉 | >∼ |𝐸𝑃 | > |𝐸𝑉 | > |𝐴𝑃,𝑉 |. (18)

As in the case of 𝐷 → 𝑃𝑃 decays, we make a similar ansatz for the long-distance contributions to
𝑃 + 𝑃𝐸𝑉,𝑃 , namely,

(𝑃 + 𝑃𝐸𝑉 )LD ≈ 𝐸𝑃 , (𝑃 + 𝑃𝐸𝑃)LD ≈ 𝐸𝑉 . (19)

The calculated CP asymmetries of the SCS 𝐷 → 𝑉𝑃 decays are exhibited in Table 2. From Table 2 we
identify several golden modes which have large branching fractions and sizeable CP asymmetries at the order
of 10−3:

𝐷0 → 𝜋+𝜌− , 𝐾+𝐾∗− , 𝐷+ → [𝜌+, 𝐾+𝐾
∗0
, 𝐷+

𝑠 → 𝜋+𝐾∗0, 𝜋0𝐾∗+. (20)

It is interesting to notice that the CP asymmetry difference defined by

Δ𝑎𝑉𝑃𝐶𝑃 ≡ 𝑎𝐶𝑃 (𝐾+𝐾∗−) − 𝑎𝐶𝑃 (𝜋+𝜌−), (21)

in analogy to Δ𝐴𝐶𝑃 defined in Eq. (2) for the corresponding 𝑃𝑃 final states, is predicted to be (−1.61 ±
0.33) × 10−3, which is very similar to the observed CP asymmetry difference between 𝐷0 → 𝐾+𝐾− and
𝐷0 → 𝜋+𝜋− . This is an attractive and measurable observable in the near future. It is thus desirable to first
search for CP violation in the aforementioned golden modes.

From Table 2 it is evident that the predicted CP asymmetries given in Ref. [12] based on the pQCD+FAT
approach are generally smaller than ours by one to two orders of magnitude. In this approach the factorizable
penguin-exchange amplitude 𝑃𝐸 𝑓

𝑉 (𝑃) is proportional to 〈𝑉𝑃(𝑃𝑉) | (�̄�𝑞)
𝑆+𝑃 |0〉〈0| (𝑞𝑐)𝑆−𝑃 |𝐷〉. It was evaluated

in the pole model by assuming its dominance by resonant pseudoscalars. It was shown in Ref. [12] that there
was a numerical coincidence that the short-distance 𝑃𝑉 and 𝑃𝐸 𝑓

𝑉
canceled each other. As a consequence,

CP asymmetries in 𝐷0 → 𝜋±𝜌∓ and 𝐷0 → 𝐾±𝐾∗∓ decays are very small of order 10−5. They are also very
small in QCDF+TDA for a reason quite different from FAT: various phase angles become smaller or even
close to zero after including the contributions from 𝑃𝐸, 𝑃𝐴 and 𝑊-exchange to the ratio of 𝑃/𝑇 . It is the
long-distance penguin topology that explains why our predictions of CP asymmetries in 𝐷0 → 𝜋±𝜌∓ and
𝐷0 → 𝐾±𝐾∗∓ are much bigger than those in pQCD+FAT.
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Table 2: Direct CP asymmetries of singly Cabibbo-suppressed 𝐷 → 𝑉𝑃 decays (in units of 10−3), where 𝑎 (tree)
dir denotes

CP asymmetry arising from purely tree amplitudes. The superscript (t+p) denotes tree plus QCD-penguin amplitudes,
(t+pe+pa+s) for tree plus 𝑃𝐸, 𝑃𝐴 and 𝑆 amplitudes, (t+peLD) for tree plus long-distance 𝑃𝐸 amplitude induced from
final-state rescattering and “tot” for the total amplitude. The predictions from [12] in the FAT approach with the 𝜌 − 𝜔
mixing are listed in the last column for comparison.

Mode 𝑎
(tree)
dir 𝑎

(t+p)
dir 𝑎

(t+pe+pa+s)
dir 𝑎

(t+peLD )
dir 𝑎

(tot)
dir 𝑎

(tot)
dir [12]

𝐷0 → 𝜋+𝜌− 0 −0.00 ± 0.00 −0.011 ± 0.000 0.77 ± 0.22 0.76 ± 0.22 −0.03
𝐷0 → 𝜋−𝜌+ 0 0.01 ± 0.00 0.008 ± 0.001 −0.13 ± 0.08 −0.11 ± 0.08 −0.01
𝐷0 → 𝜋0𝜌0 0 −0.01 ± 0.00 −0.004 ± 0.000 0.28 ± 0.16 0.27 ± 0.16 −0.03
𝐷0 → 𝐾+𝐾∗− 0 −0.01 ± 0.01 0.011 ± 0.000 −0.85 ± 0.24 −0.85 ± 0.24 −0.01
𝐷0 → 𝐾−𝐾∗+ 0 −0.03 ± 0.00 −0.009 ± 0.000 0.08 ± 0.09 0.04 ± 0.09 0
𝐷0 → 𝐾0𝐾

∗0 −0.03 ± 0.02 −0.03 ± 0.02 −0.03 ± 0.02 −0.03 ± 0.02 −0.03 ± 0.02 −0.7
𝐷0 → 𝐾

0
𝐾∗0 1.07 ± 0.12 1.07 ± 0.12 1.07 ± 0.12 1.07 ± 0.12 1.07 ± 0.12 −0.7

𝐷+ → 𝜋+𝜌0 0 0.33 ± 0.02 0.10 ± 0.01 0.83 ± 1.36 1.26 ± 1.34 0.5
𝐷+ → 𝜋0𝜌+ 0 0.10 ± 0.01 0.04 ± 0.00 −0.58 ± 0.52 −0.44 ± 0.52 0.2
𝐷+ → [𝜌+ −1.85 ± 0.51 −1.97 ± 0.54 −1.93 ± 0.55 −2.31 ± 0.92 −2.50 ± 0.98 −0.6
𝐷+ → [ ′𝜌+ 0.23 ± 0.05 0.20 ± 0.05 0.21 ± 0.05 0.39 ± 0.16 0.34 ± 0.15 0.5
𝐷+ → 𝐾+𝐾

∗0 −0.11 ± 0.01 −0.14 ± 0.01 −0.11 ± 0.01 −0.77 ± 0.24 −0.80 ± 0.24 0.2
𝐷+ → 𝐾

0
𝐾∗+ −0.04 ± 0.01 −0.05 ± 0.01 −0.05 ± 0.01 −0.06 ± 0.06 0.04 ± 0.07 0.04

𝐷+
𝑠 → 𝜋+𝐾∗0 0.18 ± 0.02 0.24 ± 0.02 0.19 ± 0.02 1.25 ± 0.41 1.32 ± 0.41 −0.1

𝐷+
𝑠 → 𝜋0𝐾∗+ 0.13 ± 0.02 0.12 ± 0.03 0.11 ± 0.03 1.35 ± 0.40 1.31 ± 0.40 −0.2

𝐷+
𝑠 → 𝐾+𝜌0 0.14 ± 0.03 0.11 ± 0.02 0.15 ± 0.03 −0.26 ± 0.12 −0.29 ± 0.12 0.3

𝐷+
𝑠 → 𝐾0𝜌+ 0.06 ± 0.02 0.08 ± 0.02 0.08 ± 0.02 −0.10 ± 0.10 −0.07 ± 0.10 0.3
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