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1. Introduction

Processes involving a flavour change by two units, so called Δ� = 2 processes, are one of the
most powerful means to test New Physics (NP) effects that go beyond the Standard Model (SM).
They arise in the neutral meson mixing processes �0− �̄0,  0−  ̄0, �0

B,3
− �̄0

B,3
. These processes

can probe NP scales which exceed the reach of the LHC at CERN by several orders of magnitude
and are therefore of great interest in the search for physics beyond the SM.

The mixing of the neutral meson decays is described by the Schrödinger equation

8
3

3C
|k〉 = �̂ |k〉 , (1)

for the two-component state |k〉 describing a neutral meson "0 and its anti-particle "0

|k〉 =
(
|"0〉
|"0〉

)
, (2)

governed by the Hamiltonian

�̂ = "̂ − 8
2
Γ̂ =

(
" − 8

2Γ "12 − 8
2Γ12

"∗12 −
8
2Γ
∗
12 " − 8

2Γ

)
, (3)

where �%) invariance has been imposed. The matrices "̂ and Γ̂ are hermitian and describe off-
shell and on-shell transitions between the two neutral mesons states, respectively. In the following
we will focus on the virtual contributions which generate neutral meson mixing, characterized by
the off-diagonal matrix element "12. Physical observables involving meson mixing are expressed
as a function of "12, like the mixing parameter G12 = 2|"12 |/Γ in the �0 − �̄0 system, with the
averaged decay rate Γ. The quantity "12 can be split into a SM and a beyond the SM (BSM) piece
as follows:

"12 =
[
"12

]
SM +

[
"12

]
BSM . (4)

Following the discussion in [1], we will focus on the BSM part of the matrix element "12,
which for a neutral meson "0 is given by[

"
8 9

12
]
BSM =

1
2<" 0

〈"0 |H 8 9

Δ�=2 |"0〉(`) + O (dim-8) , (5)

where<" 0 denotes themass of the neutral meson andH 8 9

Δ�=2 is the effective Hamiltonian governing
Δ� = 2 transitions of the form 9 → 8. In our convention the mesonmixing processes �0− �̄0,  0−
 ̄0, �0

B,3
− �̄0

B,3
are described by the flavour indices 8 9 = 2D, B3, B1, 31. For simplicity we neglect

contributions from dimension-eight operators in eq. (5).
In the following sections we will derive a master formula similar as in the case for Y′/Y [2–5],

the (6 − 2)` [6, 7] and Δ� = 1 transitions [8], but now for the matrix element
[
"
8 9

12
]
BSM; first in the

Weak Effective Theory (WET) [9] valid below the electroweak (EW) scale, discussed in Section 2,
and secondly in the SM Effective Theory (SMEFT) above the EW scale in Section 3. The findings
will be summarized in Section 4.
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2. WET master formula

The WET is the effective theory valid below the EW scale which includes all SM particles
except the,, /, C, �. In this theory the interaction Hamiltonian governing Δ� = 2 processes reads:

H 8 9

Δ�=2 =
∑
0

�
8 9
0 &

8 9
0 + h.c. , (6)

where the sum runs over local operators &8 90 , which are weighted by the corresponding Wilson
coefficients �8 90 . In the case of �0 − �̄0 the operators take the form:

&2DVLL = [2̄W`%!D] [2̄W
`%!D] ,

&2DLR,1 = [2̄W`%!D] [2̄W
`%'D] , &2DLR,2 = [2̄%!D] [2̄%'D] ,

&2DSLL,1 = [2̄%!D] [2̄%!D] , &2DSLL,2 = −[2̄f`a%!D] [2̄f
`a%!D] ,

and similar for the other neutral meson mixings with obvious flavour replacements. These operators
can then be used to compute the BSM contribution to the "12 element via eq. (5). For this purpose
the matrix elements of the operators have to be computed, which we take from Lattice QCD
(LQCD):

• For the case of �0 − �̄0 mixing, FNAL/MILC calculated bag factors for # 5 = 2 + 1 [10] for
the full set of Δ� = 2 operators, which we use in our calculations.

• In the case of  0 −  ̄0 mixing we use the FLAG average for # 5 = 2 + 1 [11, 12].

• For the case of �B,3 − �̄B,3 mixing the full set of matrix elements has been calculated with
LQCDmethods for # 5 = 2+1 by FNAL/MILC [13] and for # 5 = 2+1+1 by HPQCD [14].
We use the averages of the bag factors from HPQCD and FNAL/MILC, as given in [14].

As indicated by the `-dependence in eq. (5), the matrix elements from LQCD are evaluated at
a certain renormalization scale, which is different for each of the meson mixing processes. In order
to cancel this scale dependence, the Wilson coefficients of the effective Hamiltonian in eq. (6) have
to be evaluated at the same scale, using renormalization group equations (RGEs). For this purpose
we use the one-loop and two-loop RGEs [15] for the Wilson coefficients in question. The one-loop
running is performed, using the Python package wilson [16] and adopting the WCxf convention
[17] for the Wilson coefficients.

The consideration of two-loop RGE effects introduces further scheme-dependence in the cal-
culation in the form of evanescent operators. The careful treatment of these effects, using the shift
method outlined in [18] is discussed in detail in Ref. [1].

Having now all the relevant ingredients at hand, the master formula for
[
"
8 9

12
]
BSM at the EW

scale `ew can be written as

2
[
"
8 9

12
]
BSM = (Δ"8 9)exp

∑
0

%
8 9
0 (`ew) �8 90 (`ew) , (7)
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Figure 1: The QCD RG evolution at NLO [solid] versus LO [dashed] for some of the coefficients %8 90 (`)
for �B − �̄B mixing. The coloured band around the NLO results shows the hadronic uncertainties from the
matrix elements. The vertical dashed line indicates `ew = 160GeV.

%VLL %SLL,1 %SLL,2 %LR,1 %LR,2

 0 0.102(2) -4.32(16) -7.93(37) -8.55(28) 14.14(82)
�0 0.56(4) -2.20(11) -4.04(28) -4.23(22) 6.18(44)
�3 2.67(10) -4.99(28) -9.05(68) -10.29(54) 12.75(50)
�B 1.15(4) -2.24(13) -4.08(26) -4.20(18) 5.22(21)

Table 1: The values of the coefficients%8 90 (`ew) entering theWETmaster formula inEq. (7) at `ew = 160GeV
using as input the MS-NDR matrix elements at the low-energy scale. The shown uncertainties are due to the
matrix elements or the bag factors and their corresponding chiral enhancement factors.

where the expression is normalized to the experimental mass difference of the mesons, (Δ")exp,
and where the %0 factors contain the hadronic matrix elements as well as the RG evolution of the
Wilson coefficients from the EW scale down to the hadronic scale. The %0 factors evaluated at `ew
are shown for each sector in Tab. 1, and are given for other bases in Ref. [1]. The QCD evolution
of several %B10 factors is shown in Fig. 1. It is largest (∼10%) for the LR operators and negligible
for the VLL one. Similar conclusions can be drawn for the other sectors.

3. SMEFT master formula

In this section we discuss the analogous master formula as in eq. (7), but in the context of
SMEFT degrees of freedom. The SMEFT is the effective theory above the EW scale, incorporating
the full SM content [19]. The part of the SMEFT master formula below the EW scale is identical
to the one in the previous section. The only difference is the addition of the tree-level [20] and
one-loop matching [21, 22] from SMEFT onto WET, as well as the SMEFT running above the EW
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Figure 2: The maximal NP scale Λ for a 10% effect in 2
[
"
8 9

12
]
BSM/(Δ"8 9 )exp for �B (blue), �3 (red) and

 0 (green), respectively.

scale [23–25], which again has been performed using wilson. The SMEFT master formula is then
given by

2
[
"
8 9

12
]
BSM = (Δ"8 9)exp

∑
0

%
8 9
0 (Λ)

[
C0

]
8 9
(Λ) , (8)

where now the sum runs over the SMEFT Wilson coefficients. The values of the SMEFT %0

factors are given in Ref. [1]. Their form depends on the basis chosen for the SMEFT operators.
In particular, the Yukawa running effects and the resulting back-rotation of the Wilson coefficients
[26] has to be taken into account, when changing from one basis to another.

Applying eq. (8) to the Wilson coefficients of the operators

[O (1)
q@
]8 9 = (q†8

←→D`q) (@̄8W`@ 9) , (9)

leads to the bounds for the NP scale Λ shown in Fig. 2 for the different sectors. The bounds range
from several to about a hundred TeV, depending on the process and flavour structure of the operator.

4. Summary

We have presented a master formula for the Wilson coefficients describing Δ� = 2 effects in
the WET below the EW scale, as well as in the SMEFT above the EW scale. Two-loop running
below the EW scale has been taken account, as well as one-loop matching and running contributions
in the SMEFT. The formulae are completely general and allow to compute the contribution of any
model to neutral meson mixing, provided it has been matched onto the SMEFT or WET.
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