
P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
0
8

Symmetries at Null Boundaries: 3-dimensional Einstein
gravity

H. Adami,0,1 M.M. Sheikh-Jabbari,2 V. Taghiloo2,3,∗ and H. Yavartanoo1
0 Yau Mathematical Sciences Center, Tsinghua University, Beĳing 100084, China
1 Beĳing Institute of Mathematical Sciences and Applications (BIMSA), Huairou District, Beĳing
101408, P. R. China
2 School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5531, Tehran,
Iran
3 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box
45137-66731, Zanjan, Iran

Gauge transformations are usually viewed as redundancies in the description of gauge theories
and the physical observables must be gauge invariant. This should be revisited in presence of
boundaries where a part of gauge transformations to which there are non vanishing surface charges
associated, can become physical "non-proper" gauge transformations. One can use these surface
charges to label different points of the solution phase space. Here we consider the Einstein gravity
in presence of a given null boundary. We construct the maximal solution-phase space, find its
symmetries and calculate the associated surface charges. Surface charges and their algebra depend
on the slicing in solution phase space. We discuss the implications of the change of slicing in
different aspects of solution phase space, from integrability to algebra of surface charges.
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1. Introduction

Gauge theories enjoy local symmetries andwe usually treat them as redundancies in description
of theory. But in presence of boundaries a part of these transformations, large gauge transforma-
tions/diffeomorphisms, can become physical. They are large in the sense that they act non trivially
at the boundary. From the first and second Noether theorems, one can associate non vanishing
charges to these transformations. Then, these charges can be used to label different points of the
solution phase space.

In presence of boundaries in addition to bulk degrees of freedom (d.o.f) we need to account
for boundary d.o.f. In other words, we need to enlarge the Hilbert space of the theory in such a way
it includes these new boundary d.o.f. The surface charges associated with large diffeomorphisms
provide a natural way to describe these boundary d.o.f. In this talk, we focus on formulating
the Einstein gravity in three dimensions in presence of a null boundary. The main property of
3-dimensional Einstein gravity is that it does not have any bulk d.o.f. So, its dynamics only arises
from the boundary d.o.f.

To calculate the surface charges associated with large diffeomorphisms, we use the covariant
phase spacemethod [3–6] which gives the charge variation over the solution phase space. In general,
this charge variation could be non-integrable. In this regard, we provide a specific statement that
in absence of bulk (hard) modes passing through the boundary, there are specific slicings in the
solution phase space of theorywhich yield integrable expressions for the charge variation, integrable
slicing [1, 2, 7, 8]. To clarify these notions we will give an explicit example in the context of the
three-dimensional Einstein gravity.

2. Null Boundary Symmetry (NBS) Algebra, 3d Gravity Case

We consider the three-dimensional Einstein gravity in presence of the cosmological constant,
with the following action

( =
1

16c�

∫
d3G
√−6 (' − 2Λ) . (1)

Depending on Λ, Λ < 0,Λ = 0,Λ > 0 we respectively have AdS3, flat or dS3 gravities. The
stationary-action principle yields

E`a := '`a − 2Λ6`a = 0 . (2)

To construct the solution phase space of this theory, we take the following ansatz for the line element
[1, 2, 8]

3B2 = −+3E2 + 2[3E3A + 6 (3q +*3E)2 (3)

here we assume A = 0 to be a null surface, + (A = 0) = 0, and denote this null hypersurface by N .
We also assume the Taylor expandability of the line element and write it as

+ = 2
(
[^ − mE[ + Umq[

)
A + O(A2) ,

* = U−[Υ
Ω2 A + O(A

2) ,

6 = Ω − 2[_ A + O(A2) .

(4)
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All functions which appear in these expansions, are generic functions of E and q. They have
geometrical meanings, specially we can think about ^,U,Υ andΩ as surface gravity, velocity aspect
of the boundary, angular momentum aspect and area density respectively. Einstein’s equations at
leading order expansion of A lead to

DEΘ; − ^Θ; +
1

� − 2
Θ2
; = 0 , (5a)

DE (ΩH) −Ωmq^ = 0 , (5b)
DEΘ= + ^Θ= + Θ;Θ= −

(
∇̄�H� + H�H�

)
− Λ = 0 . (5c)

The first two equations are Raychaudhuri and Damour’s equations respectively. Here we have also
introduced three further geometric quantities

Θ; =
DEΩ
Ω

, Θ= =
_

Ω
, H =

Υ

2Ω
+
mq[

2[
. (6)

For latter convenience we introduce the differential operators DE and LU which their action on a
codimension one function $F (E, q) of weight F is defined through [2, 6]

DE$F =mE$F − LU$F , (7a)
LU$F =Umq$F + F$FmqU , (7b)

whereU is a function of weight −1. Weights of different functions can be found in Table 1.

F = −1 U , . , .̃
F = 0 [ , ) ,, , Θ; , Θ= , ^ , Γ , )̃ , ,̃ , P , mE
F = 1 Ω , _ ,H , mq
F = 2 Υ , J

Table 1: Weight F for various quantities defined and used in this section.

Solution phase space. A careful analysis of Einstein’s equations shows the solution phase space
is parameterized by three codimension one functions: [(E, q),Ω(E, q) andΥ(E, q). In other words,
the determination of these boundary data yields a unique solution. We interpret them as labels for
the boundary degrees of freedom. Based on these kinds of symmetry analyses, it has been shown
that the boundary d.o.f on a generic null surface show a local thermodynamic description [9].

Null boundary preserving diffeomorphisms. Diffeomorphisms generated by the vector field

b = ) mE + A (DE) −,) mA +
(
. − A [

Ω
mq)

)
mq + O(A2) (8)

keep A = 0 as a null surface. Our null boundary preserving diffeomorphisms are specified by three
symmetry generators, ) = ) (E, q),, = , (E, q) and. = . (E, q). They are called supertranslation,
superscaling and superrotation respectively. Since the Einstein equations are covariant, these
diffeomorphisms move us in the solution space, namely

Xb[ = 2[DE) + )mE[ −,[ + .mq[ , (9a)
XbΩ = )ΩΘ; + mq [Ω(. + U))] , (9b)
XbΥ = )DEΥ + L (.+)U)Υ +Ω(mq, − Γmq)) . (9c)
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Algebra of null boundary symmetries. It is well known that the large diffeomorphisms make an
algebra. In our case, due to the explicit field dependence of them (8), we need to use the adjusted
Lie bracket [10, 11]. If we do so, then we will have

[b ()1,,1, .1), b ()2,,2, .2)]adj. bracket = b ()12,,12, .12) (10)

where

)12 =
(
)1mE + .1mq

)
)2 − (1↔ 2), (11a)

,12 =
(
)1mE + .1mq

)
,2 − (1↔ 2), (11b)

.12 =
(
)1mE + .1mq

)
.2 − (1↔ 2). (11c)

The above algebra is Diff(N) A Weyl(N) [1, 7], where Diff(N) is generated by ),. and Weyl(N)
which denotes the Weyl scaling onN , is generated by, . We refer to it as null boundary symmetry
algebra.

Surface charges. So far we have constructed the solution phase space and also studied its sym-
metries. Now the natural question is what are the surface charges associated with these symmetries.
To answer this question we use the covariant phase space method (CPSM) [3–5], which yields the
following expression for the charge variation

/X& b =
1

16c�

∫
NE

3q
(
,XΩ + .XΥ + )/XA

)
, (12)

with
/XA = −2ΩXΘ +ΩΘX[

[
− ΓXΩ + UXΥ . (13)

Here we have introduced a new quantity

Γ := −2^ + 2Θ + mE[
[
−
Umq[
[

. (14)

and our integral is taken over a E-constant cross section of the null boundary N which we denote
it by NE . As it is clear from the surface charge expression (12), the charge variation, /X& b , is not
integrable. So, we need to separate the charge variation into the integrable and non-integrable (flux)
parts. To do so, we need to adopt some physical criteria. In this regard, we use the representation
theorem [3, 4] in the covariant phase space method to split the charge variation. This theorem states
the charge algebra is the same as the algebra of the symmetry generators up to a central extension
term. We separate the charge variation in such a way it leads to a field independent central extension
term. By using this criterion, we get

&I
b =

1
16c�

∫
NE

3q {, Ω + . Υ + ) (−ΓΩ + UΥ)} , (15)

and
�b (X6; 6) = 1

16c�

∫
NE

3q)

[
−2ΩXΘ +ΩΘX[

[
+ΩXΓ − ΥXU

]
. (16)

By using the modified bracket [10], we get the surface charge algebra is the same as null boundary
symmetry algebra without any central extension term.
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Change of slicing. In this part, we introduce the notion of change of slicing on solution phase
space [1, 2, 6–8]. To do so, we explain it in an example. Let us consider the following field
dependent combinations of the symmetry generators

,̃ = , − Γ) − (. + )U) mqP ,
)̃ = ΩΘ) + mq [Ω(. + )U)] ,
.̃ = . + )U .

Now, we rewrite the charge variation in terms of these generators

X& =
1

16c�

∫
NE

3q
(
,̃XΩ + .̃ XJ + )̃XP

)
where

J := Υ +ΩmqP, P := ln
[

Θ2 .

If we assume these new generators are field independent, X)̃ = X.̃ = X,̃ = 0, we get an integrable
expression for the charge variation. HereΩ, J and P are entropy aspect charge, angular momentum
aspect charge and expansion aspect charge respectively. In this integrable slicing, transformation
laws take the following diagonal form

XbΩ = )̃ ,

XbP ≈ − ,̃ ,

XbJ ≈ 2Jmq.̃ + .̃ mqJ .

Because we changed the symmetry generators and subsequently their conjugate charges, the charge
algebra also changes. So, in this slicing, it yields

{Ω(E, q),Ω(E, q′)} = {P(E, q),P(E, q′)} = 0,
{Ω(E, q),P(E, q′)} = 16c�X (q − q′) ,
{J (E, q),Ω(E, q′)} = {J (E, q),P(E, q′)} = 0,

{J (E, q),J (E, q′)} = 16c�
(
J (E, q′)mq − J (E, q)m ′q

)
X (q − q′) .

this is the Heisenberg ⊕ Witt algebra [1, 2]. It is worth to emphasis that integrable slicings are
not unique. The main question is about the existence of these kinds of integrable slicings. In this
regard, we suggest the following integrability conjecture [1, 2]:

In the absence of genuine flux passing through the boundary, there are specific slicings, integrable
slicings, such that the charge variation becomes integrable.

This conjecture clarifies why we got integrable slicing in three-dimensional Einstein gravity. Ein-
stein gravity in this dimension does not involve any bulk propagating mode. So, according to the
integrability conjecture, we expect to find integrable slicing.

In order to check this conjecture, we studied topologically massive gravity (TMG) in three-
dimensions [7]. Unlike the Einstein gravity in three dimensions, this theory has a chiral massive
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propagating mode. So, we expect in presence of this mode, we can not obtain integrable slicing.
This expectation is exactly what we observed. Another natural test for our conjecture is the Einstein
gravity in higher dimensions [2]. In this case, we also have bulk propagating gravitons and by
repeating the same analyses, we observed there is no integrable slicing due to the passage of the
gravitons through the boundary.

3. Outlook

We studied boundary symmetries near a generic null boundary in three dimensional Einstein
gravity. This work is motivated by questions regarding black holes. In this case, we constructed the
solution phase space of the theory and we have also studied the symmetries of the solution phase
space and by using the covariant phase space method we computed the surface charges associated
with these symmetries. We found our solution phase space is parameterized by three codimension
one functions, entropy aspect charge, angular momentum aspect charge and expansion aspect
charge. Corresponding to these boundary data we got three symmetry generators, supertranslation,
superscaling and superrotation.

As our other important result, we established that in the three-dimensional Einstein gravity,
there exists a basis on solution phase space in which the charge variation becomes integrable.
In other words, the non-integrability of charges in three-dimensional gravity may be removed by
working on a particular state/field-dependent basis. We discussed that the integrable basis is not
unique. Finally, we observed the charge algebra is a slicing dependent concept. For example in an
special slicing we get the Heisenberg ⊕ Witt algebra. The quantization of this algebra would be
helpful to understand the quantum nature of the gravity.
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