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Propagation of light in various gradient index (GRIN) media with emphasis on closed ray tra-
jectories of light is considered. Firstly, it is examined the case without considering the light
polarization. General mechanism of deducing the expressions of corresponding deformed GRIN
profiles is introduced. The deformed GRIN profiles and their corresponding refraction indices
preserve the closed ray trajectories of light as well as the symmetries of the Hamiltonian. The
deformed versions of Maxwell fish eye and Luneburg profiles were found using the proposed
procedure.
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1. Introduction

In order to describe the propagation of light in various media the Fermat principle or the
minimal action principle states

S𝐹𝑒𝑟𝑚𝑎𝑡 =
1
o0

∫
𝑑𝑙, 𝑑𝑙 := 𝑛(r) |𝑑r/𝑑𝜏 |𝑑𝜏 (1)

where 𝑛(r) is the refraction index, and o0 is the wavelength in vacuum. This is the action of the
system on the three-dimensional curved space that has the "optical metrics" of Euclidean signature
(see. [1])

𝑑𝑙2 = 𝑛2(r)𝑑r · 𝑑r . (2)

Therefore, the symmetries of the system in a certain medium coincide with the symmetries of
the optical metrics of that particular medium. In systems with maximal number of functionally
independent integrals of motion (2𝑁 − 1 integrals for 𝑁-dimensional system), all the trajectories of
the system appear to be closed. Closeness of the trajectories makes such profiles highly relevant in
the study of cloaking and perfect imaging phenomena. The most well-known profile of this sort is
the so-called "Maxwell fish eye" profile which is defined by the metrics of sphere or the upper/lower
sheet of the two-sheet hyperboloid

𝑛𝑀 𝑓 𝑒 (r) =
𝑛0

|1 + 𝜅r2 |
, 𝜅 = ± 1

4𝑟2
0

(3)

where plus/minus sign in the expression for 𝜅 corresponds to the sphere/pseudosphere with the
radius 𝑟0, and 𝑛0 > 0. Apart from applications in cloaking and perfect imaging phenomena [2–
4], Maxwell fish eye is a common profile in quantum optics with single atoms and photons [6],
optical resonators [7], discrete spectrum radiation [5] etc. Moreover, there are many experimental
implementations of the Maxwell fish eye lenses [8–10].

Another well-known example of a spherically symmetric GRIN medium is the Luneburg lens

𝑛𝐿𝑢𝑛 (r) = 𝑛0

√︄
2 −

(
r
𝑟0

)2
. (4)

Note that the refractive index of the medium decreases from 𝑛0
√

2 at its center to 𝑛0 at its surface.
In this paper, following [18] the Hamiltonian formalism for the polarized light propagating in

optical medium is presented. Then, a general scheme of the deformation of isotropic refraction
index profiles is introduced. It allows us to restore the initial symmetries of the system after one
takes the light polarization into consideration. The deformed Maxwell Fish eye profile has the
following form

𝑛𝑠𝑀 𝑓 𝑒 (r) =
𝑛𝑀 𝑓 𝑒 (r)

2
©­«1 +

√︄
1 −

4𝜅𝑠2o2
0

𝑛0

1
𝑛𝑀 𝑓 𝑒 (r)

ª®¬ , (5)

where 𝑛𝑀 𝑓 𝑒 (r) is original Maxwell fish eye profile given by (3), and 𝑠 is the polarization of light.
For the linearly/circularly polarized we respectively have 𝑠 = 0/1. Proposed deformation restores
all the symmetries of the optical Hamiltonian with Maxwell fish eye profile which were broken after
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the inclusion of polarization.
Using similar procedures it is shown that the deformed profile corresponding to the Luneburg
refractive profile has the following form

𝑛𝑠𝐿𝑢𝑛 (r) =

√√√√
1
2
©­«𝑛2

𝐿𝑢𝑛
+

√√
𝑛4
𝐿𝑢𝑛

−
4𝑠2𝑛2

0

𝑟2
0

ª®¬. (6)

In fact, when 𝑠 → 0, the deformed profiles (5) and (6) revert back to their corresponding spinless
expressions (3) and (4) respectively. In addition, the general form for deducing the deformations of
isotropic profiles is presented.

The paper is organized as follows. In the Second section, Hamiltonian formulation of the
geometric optical system given by the action (1) is presented. The Hamiltonian formalism for the
polarized light propagating in optical medium is formulated and a general mechanism of deducing
the deformation of isotropic refraction index profiles is proposed. In addition, a general compact
formula which describes the proposed mechanism is introduced. The duality between the Maxwell
fish eye and Coulomb profiles is presented in the Third section. In the Fourth section, applying
the proposed scheme, the duality between Lunerburg lens and the the potential of the harmonic
oscillator is illustrated. Moreover, the deformation of the Luneburg profile is explicitly found. In
the final section several concluding remarks are presented. Through the text the following notations
are used: 𝑟 := |r|, r := (𝑥1, 𝑥2, 𝑥3), p := (𝑝1, 𝑝2, 𝑝3), 𝑝 := |p|.

2. Hamiltonian formalism

Due to reparametrization-invariance of the action (1), the Hamiltonian constructed by the
standard Legendre transformation is identically zero. However, the constraint between momenta
and coordinates appears there

Φ :=
p2

𝑛2(r)
− o−2

0 = 0. (7)

Hence, in accordance with the Dirac’s constraint theory [12] the respective Hamiltonian system is
defined by the canonical Poisson brackets

{𝑥𝑖 , 𝑝 𝑗} = 𝛿𝑖 𝑗 , {𝑝𝑖 , 𝑝 𝑗} = {𝑥𝑖 , 𝑥 𝑗} = 0, (8)

and by the Hamiltonian

H0 = 𝛼(p, r)Φ = 𝛼(p, r)
(

𝑝2

𝑛2(r)
− o−2

0

)
≈ 0. (9)

Here 𝛼 is the Lagrangian multiplier which could be an arbitrary function of coordinates and
momenta, and 𝑖, 𝑗 = 1, 2, 3. The notation "weak zero", H0 ≈ 0, means that when writing down
the Hamiltonian equations of motion, we should take into account the constraint (7) only after the
differentiation,

𝑑𝑓 (r, p)
𝑑𝜏

= { 𝑓 ,H0} = { 𝑓 , 𝛼}Φ + 𝛼{ 𝑓 ,Φ} ≈ 𝛼{ 𝑓 ,Φ}. (10)
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The arbitrariness in the choice of the function 𝛼 reflects the reparametrization-invariance of (1).
For the description of the equations of motion in terms of arc-length of the original Euclidian space
one should choose (see, e.g. [13])

𝛼 =
𝑛2(r)

𝑝 + o−1
0 𝑛(r)

, ⇒ HOpt = 𝑝 − o−1
0 𝑛(r). (11)

With this choice, the equations of motion take the conventional form [14]

𝑑p
𝑑𝑙

= o−1
0 ∇𝑛(r), 𝑑r

𝑑𝑙
=

p
𝑝
, (12)

where 𝑑𝑙 := 𝛼(r, p)𝑑𝜏 is the element of arc-length. These equations describe the motion of a wave
package with center coordinate r and momentum p in the medium with refraction index 𝑛(r).

Assume we have the Hamiltonian system given by the Poisson bracket (8) and by the Hamilto-
nian

𝐻 =
𝑝2

𝑔(r) +𝑉 (r). (13)

In accordance with the Mopertuit principle, after fixing the energy surface 𝐻 = 𝐸 , we can relate its
trajectories with the optical Hamiltonian (9) with the refraction index

𝑛(r) = o0
√︁

2𝑔(r) (𝐸 −𝑉 (r)). (14)

Clearly, the optical Hamiltonian (9) (as well as the Hamiltonian (11)) with the refraction index (14)
inherits all symmetries and constants of motion of the Hamiltonian (13). Canonical transformations
preserve the symmetries of the Hamiltonians and their level surfaces. Hence, we are able to construct
the physically non-equivalent optical Hamiltonians (and refraction indices) with the same symmetry
algebra.

When taking into account light polarization we should add to the scalar Lagrangian 𝐿0 =

p¤r − 𝑝 + 𝜆−1
0 𝑛 the additional term 𝐿1 = −𝑠A(p) ¤p, where 𝑠 is spin of photon, and A is the the

vector-potential of "Berry monopole" (i.e. the potential of the magnetic (Dirac) monopole located
at the origin of momentum space) [13]

F :=
𝜕

𝜕p
× A(p) = p

𝑝3 (15)

From the Hamiltonian viewpoint this means to preserve the form of the Hamiltonian (9) and
replace the canonical Poisson brackets (8) by the twisted ones

{𝑥𝑖 , 𝑝 𝑗} = 𝛿𝑖 𝑗 , {𝑥𝑖 , 𝑥 𝑗} = 𝑠𝜀𝑖 𝑗𝑘𝐹𝑘 (p), {𝑝𝑖 , 𝑝 𝑗} = 0, (16)

where 𝑖, 𝑗 , 𝑘 = 1, 2, 3, and 𝐹𝑘 are the components of Berry monopole (15). On this phase space the
rotation generators take the form

J = r × p + 𝑠
p
𝑝

(17)

while the equations of motion read

𝑑p
𝑑𝑙

= o−1
0 ∇𝑛(r), 𝑑r

𝑑𝑙
=

p
𝑝
− 𝑠

o0
F × ∇𝑛(r), (18)
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However, the above procedure, i.e. twisting the Poisson bracket with preservation of the Hamilto-
nian, violates the non-kinematical (hidden) symmetry of the system. To get the profiles admitting
the symmetries in the presence of polarization, we use the following observation [16] (see [17] for
its quantum counterpart). Assume we have the three-dimensional rotationally-invariant system

H0 =
𝑝2

2𝑔(𝑟) +𝑉 (𝑟), {𝑝𝑖 , 𝑥 𝑗} = 𝛿𝑖 𝑗 , {𝑝𝑖 , 𝑝 𝑗} = {𝑥𝑖 , 𝑥 𝑗} = 0. (19)

For the inclusion of interaction with magnetic monopole, we should switch from the canonical
Poisson brackets to the twisted ones:

{𝑝𝑖 , 𝑥 𝑗} = 𝛿𝑖 𝑗 , {𝑝𝑖 , 𝑝 𝑗} = 𝑠𝜀𝑖 𝑗𝑘
𝑥𝑘

𝑟3 , {𝑥𝑖 , 𝑥 𝑗} = 0. (20)

The rotation generators then read

J = r × p + 𝑠
r
𝑟

: {𝐽𝑖 , 𝐽 𝑗} = 𝜀𝑖 𝑗𝑘𝐽𝑘 . (21)

By modifying the initial Hamiltonian to

H𝑠 =
𝑝2

2𝑔(𝑟) +
𝑠2

2𝑔(𝑟)𝑟2 +𝑉 (𝑟), (22)

we find that trajectories of the system preserve their form, but the plane which they belong to, fails
to be orthogonal to the axis J. Instead, it turns to the constant angle

cos 𝜃0 =
𝑠

|J| . (23)

For the systems with hidden symmetries one can find the appropriate modifications of the hidden
symmetry generators respecting the inclusion of the monopole field.

For applying this observation on the systems with polarized light, we should choose the appro-
priate integrable system with magnetic monopole, and then perform the canonical transformation
(29) which yields the Poisson brackets for polarized light (20). Afterwards we need to solve the
following equation

𝑟2 + 𝑠2

𝑝2 − 2𝑔(𝑝) (𝐸 −𝑉 (𝑝)) = 0, ⇒ 𝑝 =
𝑛𝑠
𝑖𝑛𝑣

(𝑟)
o0

. (24)

So, to preserve the qualitative properties of scalar wave trajectories for the propagating polarized
light, we should replace it with the modified index 𝑛𝑠 (𝑟) which is the solution (with respect to 𝑝)
of the following equation:

𝑝 =
1
o0

𝑛
©­«
√︄
𝑟2 + 𝑠2

𝑝2
ª®¬ , ⇒ 𝑝 = 𝑛𝑠 (𝑟), (25)

where 𝑠 is polarization of light.
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3. Coulomb-Fisheye duality

The first illustration of the procedures described in the previous section is the relation between
the Coulomb Hamiltonian which defines the so-called Coulomb refraction index profile and the
free-particle Hamiltonian on the three-dimensional sphere, which defines the "Maxwell Fisheye"
refraction index (see e.g. [15]). Firstly, we fix the energy surface of the Coulomb Hamiltonian and
get the respective refraction index

𝐻𝐶𝑜𝑢𝑙 − 𝐸 :=
𝑝2

2
− 𝛾

𝑟
− 𝐸 = 0, ⇒ 𝑛𝐶𝑜𝑢𝑙 = o0

√︁
2(𝐸 + 𝛾/𝑟), where 𝛾 > 0. (26)

The constants of motion of the Coulomb problem (and of the respective optical Hamiltonian)
are given by the rotational momentum and by the Runge-Lenz vector

L = r × p, A = L × p + 𝛾
r
𝑟

(27)

which form the algebra

{𝐴𝑖 , 𝐴 𝑗} = −2𝜀𝑖 𝑗𝑘𝐻𝐶𝑜𝑢𝑙𝐿𝑘 , {𝐴𝑖 , 𝐿 𝑗} = 𝜀𝑖 𝑗𝑘𝐴𝑘 , {𝐿𝑖 , 𝐿 𝑗} = 𝜀𝑖 𝑗𝑘𝐿𝑘 . (28)

Now, let us perform a simple canonical transformation,

(p, r) → (−r, p). (29)

As a result, the first equation in (26) reads

𝑟2 − 2𝛾
𝑝

− 2𝐸 = 0 ⇒ 𝑝 − 2𝛾
𝑟2 − 2𝐸

= 0 (30)

Interpreting the second equation as an optical Hamiltonian, we get the refraction index profile
known as the "Maxwell Fisheye" (3) with the parameters 𝜅, 𝑛0 defined as follows

𝜅 := − 1
2𝐸

,
𝑛0
o0

:= 2𝜖𝜅𝛾, (31)

where 𝜖 = −sgn(𝑟2 + 1/𝜅).
The integrals of motion (27) result in the symmetry generators of the optical Hamiltonian with

the Maxwell Fisheye refraction index

L → L, A → T
2𝜅

, T =

(
1 − 𝜅𝑟2

)
p + 2𝜅(rp)r =

(
2 − 𝑛0

𝑛𝑀 𝑓 𝑒 (r)

)
p + 2𝜅(rp)r. (32)

These integrals form the 𝑠𝑜(4) algebra for 𝜅 > 0, and 𝑠𝑜(1.3) algebra for 𝜅 < 0:

{𝐿𝑖 , 𝐿 𝑗} = 𝜀𝑖 𝑗𝑘𝐿𝑘 , {𝑇𝑖 , 𝐿 𝑗} = 𝜀𝑖 𝑗𝑘𝑇𝑘 , {𝑇𝑖 , 𝑇𝑗} = 4𝜅𝜀𝑖 𝑗𝑘𝐿𝑘 . (33)

Now, let us consider the Coulomb system with Dirac monopole which is known as "MICZ-Kepler
system" [19]. It is defined by the twisted Poisson brackets (20) and by the Hamiltonian

𝐻𝑀𝐼𝐶𝑍 =
𝑝2

2
+ 𝑠2

2𝑟2 − 𝛾

𝑟
. (34)
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Besides the conserved angular momentum (21), this system has the conserved Runge-Lenz vector

A𝑠 = J × p + 𝛾
r
𝑟
, (35)

which form the following symmetry algebra (28) (with the replacement (L,A) → (J,A𝑠)). After
performing canonical transformation (29), we get

𝐻𝑀𝐼𝐶𝑍 = 𝐸 ⇔ 𝑟2 + 𝑠2

𝑝2 − 2𝛾
𝑝

− 2𝐸 = 0. (36)

Solvinq this quadratic (on 𝑝) equation, we get the refraction index given by the expression (5),
where the notation (31) is used.

The rotation generator (21) transforms to (17), and the Runge-Lenz vector (35) transforms to
T𝑠/𝜅, where

T𝑠 =

(
2 − 𝑛0

𝑛𝑠
𝑀 𝑓 𝑒

(r)

)
p + 2𝜅(rp)r + 2𝜅𝑠

𝑛𝑠
𝑀 𝑓 𝑒

(r) J. (37)

Along with (17), these generators form the symmetry algebra of the original Maxwell Fisheye
profile (33) (where (L,T) are replaced by (J,T𝑠).

4. Oscillator-Luneburg duality

Another interesting illustration of the scheme, proposed at the end of the first section, is
the duality between the refractive profile corresponding to the well-known Luneburg lens and the
Hamiltionian of the harmonic oscillator. Assume we have the Hamiltonian of the harmonic oscillator
in presence of the magnetic monopole. So, we have 𝑉 (r) = 𝜔2r2/2 and hence the Hamiltonian
reads

𝐻 =
𝑝2

2
+ 𝜔2𝑟2

2
+ 𝑠2

2𝑟2 (38)

As described in the first section, after fixing the energy surface 𝐻 = 𝐸 of the Hamiltonian (38) and
performing the canonical transformation (29) we arrive to the following equation:

𝑟2 + 𝜔2𝑝2 + 𝑠2

𝑝2 − 2𝐸 = 0 (39)

By solving the equation (39) in terms of 𝑝, we interpret the solution as the deformed refractive
index profile in the optical Hamiltonian. Introducing the notations

𝑟2
0 := 𝐸, 𝑛0 :=

𝑟0
𝜔
, (40)

we arrive to the final form of the deformed Luneburg profile

𝑛𝑠𝐿𝑢𝑛 (r) =

√√√√
1
2
©­«𝑛2

𝐿𝑢𝑛
+

√√
𝑛4
𝐿𝑢𝑛

−
4𝑠2𝑛2

0

𝑟2
0

ª®¬. (41)

Obviously, the above presented expression for the deformed Luneburg profile in the limit 𝑠 → 0
transforms to Eq.(4).

7
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Figure 1: Luneburg refraction index profile for 𝑠 = 0 and 𝑠 = 1 when 𝑛0 = 1.5, 𝑟0 = 5.

5. Concluding Remarks

In this paper, the results regarding the Maxwell Fisheye profile obtained in [11, 18] were
reviewed. In addition, a general mechanism of finding the deformed versions of different refractive
profiles were proposed. Using the proposed scheme, the expressions of deformed profiles for the
Maxwell Fisheye and Luneburg profiles were found. The properties of the deformed profiles were
examined. For the deformed Luneburg profile the refractive index notably differs from the initial
profile at the vicinity of 𝑟 ∼ 𝑟0. The proposed modification scheme is applicable for any isotropic
refraction index 𝑛(𝑟), see (25). Proposed deformation preserves the additional symmetries of the
system (if any), and thus, guarantees the closeness of trajectories of polarized light.
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