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1. Introduction

The Standard Model of Particle Physics (SM) has been widely successful in describing the
measured particle spectrum and composition of matter ranging from quarks and gluons to multi-
hadron systems. Such systems constitute approximately 5% of the observable matter-energy within
the Universe. Yet the theory alone cannot explain the origins of the remaining 95% of matter and
energy, dubbed ‘Dark Matter’ and ‘Dark Energy’, respectively. Further, the Standard Model does
not provide the requisite amount of charge-conjugation and parity (CP) violation to account for
the observed matter/anti-matter asymmetry. Therefore any physical description of such phenomena
requires a theory that goes beyond the Standard Model (BSM), while at the same time encompassing
the Standard Model and its predictions related to ordinary matter.

BSM theories all share certain operator traits that can be utilized in a formal study involving
lattice stochastic methods of QCD. When viewed as a low-energy effective theory of some larger
(still unknown) fundamental theory, the Standard Model, consisting of renormalizable operators of
dimension 4 or less, is augmented with BSM operators of dimension > 4. The structures of these
higher dimension operators can be determined generically assuming the larger fundamental theory
respects certain symmetries (e.g. CPT and gauge invariance). Different candidate BSM theories
will give different couplings for these higher-dimensional operators. When BSM theories are
expressed in this manner, all the benefits inherent to effective field theories (EFTs) follow through,
such as a hierarchy in operator complexity and a systematic power counting of terms. Throughout
the world experiments are taking place that aim to measure higher-dimensional operators stemming
from BSM theories via precision experiments.

But why do we need to involve QCD, let alone a discretized stochastic version of QCD, if
we are interested in physics that is BSM? The answer comes from how we intend to observe the
effects of BSM. BSM physics manifest themselves in small, minute changes in select properties of
hadronic systems. Because hadrons themselves are governed by QCD (as well as other forces), a
careful and precise accounting of the QCD aspect of these hadronic systems is needed if we are to
disentangle BSM physics from their QCD component. And because QCD is strongly interacting in
this hadronic low-energy regime, lattice QCD (LQCD) is required since it is the only method that
is able to tackle this non-perturbative regime.

Some prime examples of where BSM physics can induce small changes in hadronic properties
are in measurements of the muon anomalous magnetic moment (𝑔-2) and the nucleon electric
dipole moment (nEDM). In the former case, though the muon is not a hadron, the contribution to
its magnetic moment 𝑔 involves hadronic components, such as through vacuum polarization (see,
e.g., [1] and references within). Here BSM can potentially induce a value of 𝑔 that differs from a
pure standard model prediction. Current measurements of 𝑔-2 do suggest the possibility of BSM
physics [2, 3], and at this point the largest systematic uncertainty in calculations of this quantity is
due to its hadronic component.

If a non-zero measurement of the nEDM were obtained with todays’ experiments, this could
also give a very strong argument for the presence of BSM. As the nucleon is the quintessential
hadron, it is governed predominantly by QCD and thus LQCD is essential in simulating this system.
The nEDM will be discussed in more detail shortly.
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Figure 1: The EDM under separate parity (P) and time-reversal (T) transformations.

There are numerous other examples of where BSM physics and LQCD intersect1, particularly
when one considers non-flavor diagonal processes. In this proceeding only flavor-diagonal CP-
violating BSM processes will be considered, and in particular we will look at the quark-chromo
EDM operator and the standard 𝜃-term of LQCD. For a more general review of these processes the
reader is referred to the nice overview given in [6].

This proceeding is organized as follows: in the next section we give a cursory review of the
nEDM and its central role in potentially signalling BSM physics. Then in section 3 we discuss the
LQCD formalism. In keeping with the spirit of the Ph.D. school and workshop, we concentrate
on the symmetries of the system, violation thereof, and their implications. We then discuss the
intricacies of renormalization of BSM operators and the extra complications induced by the lattice
discretization in section 4. We then show some recent LQCD calculations related to the CP-violating
𝜃-term and qCEDM in section 5. We recapitulate in section 6.

2. The neutron EDM

CP violation leads to the existence of an electric dipole moment. To see how this occurs,
consider Figure 1. Assuming the nucleon has an EDM, which we label as 𝑑𝑛, we can compare
its behavior and that of the nucleon’s magnetic moment 𝜇 under parity (P) and time-reversal (T)

10𝜈𝛽𝛽 is another BSM example where LQCD plays a central role. See, e.g. [4, 5] and the proceeding from Davoudi.

3



P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
1
8

Nucleon EDM on the Lattice Thomas Luu

transformations. A P-transformation leaves 𝜇 unchanged, while 𝑑𝑛 switches direction, whereas
a T-transformation does the opposite. Thus the system is not invariant under either P- or T-
transformations, indicating that these symmetries are violated in the presence of a permanent 𝑑𝑛.
Due to overall CPT invariance, this implies that the combined operation of CP is itself violated due
to the existence of 𝑑𝑛.

Conversely, if there are sources of CP-violation, one can expect the existence of a permanent 𝑑𝑛.
Within the Standard Model itself there is CP violation coming from the Cabibbo–Kobayashi–Maskawa
(CKM) matrix for weak interactions. However, the amount of CP violation due to the weak interac-
tion is insufficient to explain the observed matter/anti-matter asymmetry. The value of the induced
nEDM due to this source of CP violation is predicted to be |𝑑𝑛 | ∼ 1-6 × 10−32 e-cm [7], which
is currently about 6 orders of magnitude below current experimental bound of |𝑑𝑛 | < 1.8 × 10−26

e-cm [8].
Because of the large separation between the predicted nEDM due to the CKM matrix and current

experimental bounds, any definitive measurement of a nEDM larger than the weak prediction in the
foreseeable future could originate from either the QCD 𝜃-term,

−
𝑛 𝑓 𝑔

2𝜃

32𝜋2 𝐹𝜇𝜈 �̃�
𝜇𝜈 (1)

or BSM sources such as, for example, the qCEDM operator,

𝑂
𝑖 𝑗

C (𝑥) = �̄�𝑖 (𝑥)𝛾5𝜎𝜇𝜈𝐹𝜇𝜈 (𝑥)𝜓 𝑗 (𝑥) . (2)

The various terms showing up in Equation 1 and Equation 2 will be defined and discussed in more
detail in the following section. We only note here that both terms are CP violating, and that the
qCEDM operator has scaling (or engineering) dimension of five. Typically BSM operators have
dimension five or greater. Figure 2 shows diagrammatic examples of other CP-violating BSM
operators.

Any nEDM measurement would provide a clean and precise indication of potential new physics.
It is therefore important to predict the pattern of observed EDMs of not only nucleons, but larger
nuclei as well as atomic and molecular EDMs, so as to be able to distinguish between different
BSM theories and the 𝜃-term [9]. Here LQCD is an essential tool in performing the calculations
relevant for these predictions.

3. Lattice QCD 101

The QCD Lagrangian is based off local SU(3) color symmetry and is given by

LQCD = −1
4
𝐹𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 + 𝜓 𝑓

(
𝑖 /𝐷 − 𝑚 𝑓

)
𝜓 𝑓 , (3)

where 𝜓 𝑓 is one of 𝑁 𝑓 fermion quark fields with flavor 𝑓 that carries both color and spinor degrees
of freedom and 𝑚 𝑓 is the quark mass of that flavor. Here repeated indices are summed and Roman
letters indicate color degrees of freedom and Greek symbols for spinor degrees of freedom. The
index 𝑎 in this case runs from 𝑎 = 1 . . . 8, while the index 𝑓 runs from 𝑓 = 1 . . . 𝑁𝐹 , the number of
fermion flavors.
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Figure 2: Diagrammatic representations of some CP-violating BSM operators.

The field tensor 𝐹𝑎
𝜇𝜈 describing the kinematics of the gluon gauge fields is

𝐹𝑎
𝜇𝜈 = 𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴𝑎

𝜇 − 𝑔0 𝑓𝑎𝑏𝑐𝐴
𝑏
𝜇𝐴

𝑐
𝜈 , (4)

and the covariant derivative /𝐷 = 𝛾𝜇𝐷𝜇, which provides the coupling between the quarks and gluons
with coupling strength 𝑔0, is

𝐷𝜇 = 𝜕𝜇1 + 𝑖𝑔0𝑇
𝑎𝐴𝑎

𝜇 , (5)

The generators 𝑇𝑎 of SU(3) satisfy the following Lie algebra,[
𝑇𝑎, 𝑇𝑏

]
= 𝑖 𝑓𝑎𝑏𝑐𝑇

𝑐 , (6)

where 𝑓𝑎𝑏𝑐 are the structure constants of the group and the generators 𝑇𝑎 consist of 8 matrices
of dimension 3 × 3 (see, e.g. [10]). The Lagrangian in Equation 3 is invariant under local SU(3)
transformations,

𝜓 𝑓 → Λ𝛼 (𝑥)𝜓 𝑓 (7)

𝐴𝜇 → Λ𝛼 (𝑥)𝐴𝜇Λ
−1
𝛼 (𝑥) +

𝑖

𝑔0

(
𝜕𝜇Λ𝛼 (𝑥)

)
Λ−1

𝛼 (𝑥) , (8)

where Λ𝛼 (𝑥) is spatially dependent and is an element of SU(3). In the limit when all quark flavors
are massless, 𝑚 𝑓 → 0, the quark content of the Lagrangian in Equation 3 can be written in terms
of the left and right helicities of the quark fields 𝜓 𝑓 ,𝐿/𝑅,

�̄� 𝑓 ,𝐿𝑖 /𝐷𝜓 𝑓 ,𝐿 + �̄� 𝑓 ,𝑅𝑖 /𝐷𝜓 𝑓 ,𝑅 + Lgluons . (9)
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In this limit the left and right helicities decouple and the Lagrangian is invariant under separate
rotations of any 𝑁 𝑓 × 𝑁 𝑓 unitary matrix for each helicity. In other words, the Lagrangian processes
𝑈 (𝑁 𝑓 )𝐿 ×𝑈 (𝑁 𝑓 )𝑅 chiral (flavor) symmetry.

3.1 Discretizing space and time

Lattice QCD calculations are performed in Euclidean, or imaginary, time. The QCD action
𝑆𝑀 [�̄�, 𝜓, 𝐴] in Minkowski space, defined as the integral over space-time of the Lagrangian in
Equation 3, is obtained in Euclidean space by performing the Wick rotation 𝑡 → −𝑖𝜏,

𝑆M → 𝑖𝑆M ≡ 𝑆E

= −
∫

𝑑𝑥4
(
1
4

(
𝐹𝑎
𝜇𝜈

)2
+ �̄�

( /𝐷 + 𝑚)
𝜓

)
. (10)

The action in Equation 10 plays a central role in lattice QCD calculations since the expectation
value of any operator 𝑂 is given by

⟨𝑂⟩ =
1
Z

∫
D𝐴D�̄�D𝜓 𝑂 [𝐴] exp

{
−𝑆[�̄�, 𝜓, 𝐴]

}
(11)

=
1
Z

∫
D𝐴 𝑂 [𝐴] det(𝑀 [𝐴]) exp

{
−
∫

𝑑𝑥4 1
4

(
𝐹𝑎
𝜇𝜈

)2
}

(12)

≡ 1
Z

∫
D𝐴 𝑂 [𝐴] det(𝑀 [𝐴]) exp {−𝑆𝐺 [𝐴]} , (13)

where 𝑀 [𝐴] ≡ /𝐷 + 𝑚 =
∑

𝜇 𝛾𝜇𝐷𝜇 + 𝑚 is the “fermion matrix" obtained by integrating over the
fermion fields and

Z =

∫
D𝐴D�̄�D𝜓 exp

{
−𝑆[�̄�, 𝜓, 𝐴]

}
. (14)

Z can be interpreted as a partition function.
In practice the functional integrals in Equation 12 are not analytically possible, and therefore

numerical methods are needed. Lattice QCD calculations make use of space-time that is approx-
imated by a discrete hyper-cubic (4-dimensions) lattice, with lattice spacing 𝑎 typically of size
𝑎 ∼ 0.05−0.1 fm. This corresponds to physical spatial dimensions 𝐿 of the cube of order 𝐿 ∼ 4−6
fm or larger. Periodic boundary conditions (PBCs) are typically employed at the faces of the spatial
cube, while anti-periodic boundary conditions (aPBCs) are used in the temporal directions to ac-
count for the anti-symmetry of the fermions. Because of the finite volume, the allowed momentum
modes are discrete and given by ®𝑝𝑛 = 2𝜋®𝑛/𝐿, where ®𝑛 = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) are a triplet of integers. The
lattice discretization acts as an ultraviolet cutoff to the theory.

3.2 The Nielsen-Ninomiya theorem

An implication of the lattice discretization is the presence of extra fermion modes, or ‘fermion
doublers’, at the edges of the Brillouin zones. For a naïve discretization one ends up with a total
of 16 fermion modes, only one of which is physically relevant. One can can add to the lattice
action a so called Wilson term2 that gives these doublers an infinite mass in the continuum limit,
thereby decoupling them from the theory in this limit. However such a term breaks chiral symmetry,

2See, e.g. [11] for a nice introduction to this topic.
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Table 1: Cubic volume decomposition in terms of SO(3) irreps.

Cubic irrep Γ SO(3) irrep decomposition 𝑙 Γ 𝑙

𝐴+1 𝑙 =0,4,6,8,. . . 𝐴−1 𝑙 =9,13,15,. . .
𝐴+2 𝑙 =6, 10,12,. . . 𝐴−2 𝑙 =3,7,9,. . .
𝑇+1 𝑙 =4,6,8,. . . 𝑇−1 𝑙 =1,3,5,7,9,. . .
𝑇+2 𝑙 =2,4,6,8,. . . 𝑇−2 𝑙 =3,5,7,9,. . .
𝐸+ 𝑙 =2,4,6,8,. . . 𝐸− 𝑙 =5,7,9,. . .

and this in turn has implications to the renormalization of the theory. When chiral symmetry is
preserved, only mulitiplicative renormalizations occur, ie. parameters of the theory pick up an
overall multiplicative factor. On the other hand, the breaking of chiral symmetry induces additive
renormalizations which adds an additional complication.

The connection between chiral symmetry, fermion ‘doublers’, and the lattice discretization
is succinctly expressed by the Nielsen-Ninomiya ‘No-Go’ theorem [12], which states that for a
discretized theory in even dimensions (e.g. three spatial + one temporal), if the action is local,
Hermitian, and chiral and translationally invariant, then it must describe an even number of fermions
where there is an equal amount for each chirality. The 16 fermions mentioned above is a consequence
of this theorem. Only by violating the assumptions of the theorem, for example by introducing
the chiral symmetry-violating Wilson term, can one circumvent this theorem and remove these
doublers.

3.3 Symmetries of the finite-volume point groups

Since calculations are performed within a finite cubic volume, it is the irreducible representa-
tions (irreps) of the cubic, or octahedral, group 𝑂 that determine the degeneracies of the eigenstates
in the lattice volume. This has direct implications to extracting angular-momentum dependent
quanties, such as phase shifts 𝛿𝑙 [13]. In the infinite volume limit, angular momenta falls under
SO(3) symmetry, which has an infinite number of irreps, each labelled by 𝑙 and has dimension
2𝑙 + 1. In a cubic volume, the octahedral group has five irreps labelled 𝐴1, 𝐴2, 𝑇1, 𝑇2, and 𝐸 , with
dimensions 1, 1, 3, 3, and 2, respectively. The cube is also invariant under parity operations, so
each irrep can be further divided as even or odd under parity operations (e.g. 𝐴1 → 𝐴±1 ). The
spatial component of all lattice-calculated quantities fall under these irreps. The decomposition of
cubic groups in terms of SO(3) irreps, some of which are given in table 1, is infinite in dimension.
More importantly, the decompostion shows that different angular momenta mix in a cubic volume.
If the center of the group is enlarged to Z2, one has the double cover of th cubic group, 𝑂ℎ [14].
Odd-half spin angular momentum can now be represented by three additional irreps, 𝐺±1 , 𝐺±2 , and
𝐻. As before, the decomposition of these irreps in terms of SU(2) irreps is infinite and mixes SU(2)
irreps.

4. EFT and renormalization group

There are numerous candidate BSM theories and a description of these theories is beyond
the scope of these proceedings. Such theories, however, are dynamically relevant at energy scales

7
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Figure 3: Schematic representation of the renormalization group program for obtaining the induced CP-
violating BSM operators at the hadronic energy scale.

typically of order Λ𝐵𝑆𝑀 ≳ 1 TeV or more. We, of course, are interested in physics occurring at
a much lower scale. We can obtain an effective field theory relevant at lower energy scales by
employing the renormalization group. Under renormalization, one ‘integrates out the heavy’ BSM
particles to obtain an effective field theory at a lower energy scale. One repeats this integration
scheme, integrating out heavy fields that are essentially non-dynamical at the energy scale one is
interested in. At the GeV scale, as depicted in Figure 3, one obtains the QCD lagrangrian and higher
dimension CP-violating effective operators induced by the presence of BSM. Note however, that the
form of these effective operators is universal and constrained by symmetries, despite originating
from potentially disparate BSM theories. Only their low-energy constants (LECs) dictate their
BSM origins. Because of the generality of the CP-violating operators, lattice calculations of
these operators can be performed with their unknown LECs as free parameters, to be later fixed
by candidate BSM theories. Conversely, a phase-space investigation of these parameters can be
done to rule out different BSM theories. A more thorough description of this topic can be found
in [15, 16].

4.1 Mixing of operators due to discretization

A lattice-discretised version of these higher-dimension operators, however, can cause mixing of
their coefficients with lower-dimension operators [17], leading to unwanted divergences that require
sophisticated renormalizations and which make the separation and extraction of BSM observables
from standard QCD observables difficult. For example, the quark-CEDM operator, because of the
lattice spacing 𝑎, will mix with the pseudo-scale density and the 𝜃-term (if present)

𝑖�̄�𝑡𝑎𝜎𝜇𝜈𝛾5𝐹𝜇𝜈𝜓︸               ︷︷               ︸
qCEDM

←→ 1
𝑎2 �̄�𝑖𝛾5𝑡

𝑎𝜓︸        ︷︷        ︸
pseudo-scalar density

←→ 1
𝑎
𝐹𝜇𝜈 �̃�𝜇𝜈︸     ︷︷     ︸
𝜃−term

. (15)

Note the inverse power dependence on the lattice spacing 𝑎, which implies that such mixing
diverges in the continuum 𝑎 → 0 limit. Such mixing is inevitable, and must be accounted for

8
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and correctly subtracted. We use the gradient flow formalism to address the issues related to these
power divergences due to mixing.

4.2 Gradient flow

The gradient flow (GF) [18, 19] can be used to circumvent such mixing, as well as to address
other issues related to renormalization. The gradient flow [18] of Yang-Mills gauge fields is defined
as follows

𝜕𝑡𝐵𝜇 = 𝐷𝜈,𝑡𝐺𝜈𝜇 , (16)

where the flow time 𝑡 has a time-squared dimension,

𝐺𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇 + [𝐵𝜇, 𝐵𝜈] , 𝐷𝜇,𝑡 = 𝜕𝜇 + [𝐵𝜇, · ] , (17)

and the initial condition on the flow-time-dependent field 𝐵𝜇 (𝑥, 𝑡) at 𝑡 = 0 is given by the funda-
mental gauge field 𝐹𝜇𝜈 .

Field theory can be formally defined in this extra flowed dimension. One finds that power
divergences originating from the lattice spacing mixing that occur at flow time 𝑡 = 0 (the original
theory) have much milder behavior at finite flow time, scaling as 1/𝑡. This means that the negative
effects of the original power divergences can be mitigated by integrating to larger flow times 𝑡.
Finally, by performing the continuum limit at finite flow time, the theory at finite flow time recovers
chiral symmetry and therefore only induces multiplicative renormalizations.

5. Results for 𝜃-term and qCEDM

A description of the technical details of an actual lattice calculation involving the operators in
Equation 1 and Equation 2 is beyond the scope of these proceedings, and therefore we only comment
on their general features. We again refer the reader to the overview given in [6], and references
within, for a discussion of the technicalities and calculations done thus far related to these operators.

For the 𝜃-term we take advantage of the fact that, though we do not know the actual value of
𝜃, we know from experiments that it is very small, |𝜃 | ≪ 1, and therefore we can perform a Taylor
expansion of this term in the action. This means that any expectation value of some operator 𝑂 in
Equation 12 can then be expanded as

⟨𝑂⟩𝜃 = ⟨𝑂⟩ + 𝑖𝜃⟨𝑂𝑄⟩ + O
(
𝜃2
)
, (18)

where 𝑄 is the topological term,

𝑄 =
𝑎4

64𝜋2 𝜖𝜇𝑣𝜌𝜎
∑︁
𝑥

𝐹𝑎
𝜇𝑣

(
𝑥, 𝑡 𝑓

)
𝐹𝑎
𝜌𝜎

(
𝑥, 𝑡 𝑓

)
. (19)

By analyzing select two- and three-point functions for 𝑂 we can extract the nEDM at various values
of unphysical pion masses and using chiral EFT we can interpolate to the physical pion point.
Figure 4 shows our recent results for the EDM as induced by the 𝜃-term, and compares our results
to those found in the literature. Combined with the experimental bounds on the nEDM we find that
the value of 𝜃 is constrained to |𝜃 | < 1.98 × 10−10 with a 90% confidence level [20].
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Figure 4: Recent results 𝑑𝑛 obtained by the SymLat collaboration [20] compared to other lattice QCD
results [21–23]. The light blue bands correspond to a chiral extrapolation.

The calculation of the nEDM as induced by the qCEDM operator is much more complicated
because of its mixing with the pseudoscalar density. Indeed, before any prediction for the nEDM can
be made, the coupling to the pseudoscalar density must be ascertained so that it can be appropriately
subtracted. Fortunately this coupling 𝑐𝐶𝑃 can be determined perturbatively in a short flowtime
expansion [24],

O𝐶 (𝑡) =
𝑐𝐶𝑃 (𝑡)

𝑡
𝑃(0) + . . . ., (20)

where 𝑃(0) is the pseudo-scalar density at zero flowtime and 𝑂𝐶 is the qCEDM operator. Defining
the ratio

𝑅𝑃 (𝑡) = 𝑡
⟨O𝐶 (𝑡)𝑃(0)⟩
⟨𝑃(0)𝑃(0)⟩ , (21)

and using the short flow-time expansion of the qCEDM given in Equation 20, we have

𝑅𝑃 (𝑡) = 𝑐𝐶𝑃 + 𝑎
𝑡0

𝑡
+ 𝑏 𝑡

𝑡0
, (22)

where 𝑡0 is some fiducial flowtime scale. We have performed various calculations of 𝑅𝑃 (𝑡) at
different values of the flow time 𝑡 to determine the parameters 𝑎, 𝑏, and the 𝑐𝐶𝑃, and matched
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Figure 5: Non-perturbative dependence of the expansion coefficient 𝑐𝜒 = 𝑡
𝑍𝜒

𝑐𝐶𝑃 as a function of the bare
coupling 𝑔2

0, obtained from calculations using different lattice ensembles 𝐴𝑖 and 𝑀𝑖 defined in [25] . The
curve represents a Padé approximant of the data with the constraint imposed by a perturbative calculation
(straight line) done in [24].

our results onto perturbation theory to determine the dependence of 𝑐𝐶𝑃 on the coupling 𝑔0 of the
theory [25]. Our results are shown in Figure 5, where we express our results as a function of the
coupling 𝑔0 and the coupling as 𝑐𝜒 = 𝑡

𝑍𝜒
𝑐𝐶𝑃. With this determination of the coupling in hand, the

mixing with the pseudoscalar density can now be appropriately subtracted and the nEDM induced
by the qCEDM operator deduced. Such calculations of the nEDM are forthcoming.

6. Conclusion

Any direct measurement of a nuclean EDM in the near future could arise from the 𝜃-term of
QCD or signal the presence of BSM physics that violates CP. Such signals would inevitably be
small and thus masked by large hadronic processes. Therefore a careful accounting of the hadronic
component must be made and this can only be done through lattice QCD.

In this proceeding we gave a short introduction to LQCD and its symmetries. We discussed
how symmetry constrains various physical quantities and how CP-violation leads to the existence of
a permanent EDM. We then showed how LQCD is used to determine the nEDM induced by various
flavor-diagonal CP-violating terms. We concentrated on the 𝜃-term of QCD and the quark-chromo
EDM operator. In the latter case we demonstrated how the gradient flow was used to tame the
power divergences in the inverse lattice spacing due to operator mixing. We showed some recent
results from LQCD of the induced nEDM due to the 𝜃-term of QCD and the determination of the
pseudoscalar coupling with the qCEDM operator.
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