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1. Introduction

Einstein’s formulation of Gravity, the General Relativity (GR), makes apparent its salient
feature, the universality. That everything gravitates in the same way. This universality is encoded
into the (strong) equivalence principle which manifests itself in the theory through diffeomorphism
invariance of the theory. One may wonder how presence of a boundary in the spacetime, which may
be a physical boundary or just a putative codimension one surface which cuts spacetime into two
parts, affects the diffeomorphism invariance or the equivalence principle. It has been argued that
in presence of boundaries equivalence principle should be amended [3] by adding in new degrees
of freedom which only reside at the boundary, the BDOF.

In this talk we will explore this question further, by focusing on the cases where the boundary is a
null surface. That is, we consider D dimensional pure Einstein theory described by Einstein-Hilbert
action,

SEH =
1

16πG

∫
dD x

√
det−gµν LEH, LEH = R − 2Λ, (1)

where gµν is the spacetime metric, R is the Ricci curvature andΛ is a possible cosmological constant
and consider a spacetime bounded to one side of a D − 1 dimensional null boundary. The null
boundary can be in the asymptotic region, i.e. the asymptotic null infinity in the asymptotic flat
spacetimes, or a generic null surface in the spacetime. In our analysis here, motivated by physics of
black holes, where horizon is typically a null surface, we consider the latter case. We would like to
formulate gravity on one side of this null surface and excise the spacetime at the null boundary, i.e.
to formulate physics in the “outside region” of the horizon, see Fig. 1. A similar analysis has been
tackled in [4–7], see also [1, 8–22]. We would like to study this problem with putting the focus on
the boundary, rather than the bulk and explore how the boundary observer formulates physics.

v

infalling null rays

r =
0

N

r > 0

r < 0

Figure 1: Depiction of null boundary. We would like to formulate physics in r ≥ 0 region.

To this end, we set about constructing the solution space of the problem at hand. We will
then observe that there is a set of diffeomorphisms which act non-trivially at the boundary. Such
diffeomorphisms move us in the solution space, hence they are Noether symmetry generators and
by virtue of Noether’s theorem, there should be surface charges associated with them. We then
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systematically analyse the surface charges as functions over the solution space using the covariant
phase space formalism, mainly developed by Wald and collaborators, e.g. [23, 24]. What we
find through this analysis is that the solution space admits a natural thermodynamics description,
especially once one tries to describe physics from the boundary viewpoint. This talk is based on
[1, 2].

2. Null Surface Solution Phase Space

We start with a D dimensional (D ≥ 3) generic metric adopting v, r, xi, i = 1, 2, · · · , D − 2
coordinates,

ds2 = −Vdv2 + 2ηdvdr + gi j

(
dxi +U idv

) (
dx j +U jdv

)
, (2)

such that the null boundary N resides at r = 0. We assume metric coefficients admit the near N
expansion, an expansion in powers of r around r = 0:

V = −η
(
Γ − 2

D − 2
DvΩ

Ω
+
Dvη

η

)
r + O(r2)

U i = U i − r
η

Ω
J i + O(r2)

gi j = Ωi j + O(r)

(3)

where all the fields are functions of v, xi,

Ωi j = Ω
2/(D−2)γi j, Ω :=

√
detΩi j, det γi j = 1. (4)

and
Dv := ∂v − LU, (5)

where LU is the Lie derivative along U i. As we see, ∂r is a null vector for generic r and .r is a
null one-form at r = 0. One may view the coefficients of the metric as scalars, vector and a tensor
in the D − 2 dimensional sense. With this notation, the metric with coefficients as expanded above
has three scalars Ω, Γ, η, two vectorsU i,Ji and a determinant-free tensor, γi j .

These functions of v, xi are subject to Einstein field equations, perturbatively imposed around
r = 0. A careful analysis reveals that [1], there are D− 1 first order differential equations governing
them. These equations are Einstein equations projected at the boundary, at r = 0, namely the
Raychaudhuri and Damour equations:

DvΘ +
1
2

(
Γ − Dvη

η

)
Θ + Ni jN i j = 0, (6a)

DvJi +ΩΘ
∂iη

η
+Ω∂i (Γ − 2Θ) + 2Ω∇̄jNi j = 0. (6b)

In the above, Θ is the expansion of the null surface Θ and the news tensor Ni j which parameterizes
gravitons passing through N , and are defined as,

Θ := Dv lnΩ, N i j :=
1
2
Ω

2/(D−2)Dvγi j (7)
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We use Ωi j and Ωi j respectively for raising and lowering indices. Note that N i j as defined above
is a symmetric-traceless tensor. Moreover, ∇̄i denotes the covariant derivative with respect to the
metric Ωi j . One may replace η with the new variable P,

P := ln
η

Θ2 , (8)

in terms of which (6) simplify to

DvΩ = ΩΘ, (9a)

DvP = Γ +
2
Θ

Ni jN i j, (9b)

DvJi +ΩΘ∂iP +Ω∂iΓ + 2Ω∇̄jNi j = 0. (9c)

Therefore, the solution space is completely specified by two scalars Ω,P, a vector Ji and the
symmetric-traceless tensor Ni j , i.e. 2 + (D − 2) + D(D − 3)/2 functions over N . There are other
graviton modes which vanish at r = 0 on N and do not enter our analysis here. One may also
show that [1] higher order expansions of the metric do not introduce any new functions; Einstein’s
equations relate all those coefficients to two scalar, one vector and traceless tensor mode that we
have here. So, these modes, plus the other graviton modes which vanish at r = 0 completely
specify the solution space. Moreover, as discussed in [2], this solution space admits a well-defined
symplectic form and is hence a phase space.

Null boundary symmetry generators. The vector field

ξ = T ∂v + r (DvT −W ) ∂r +
(
Y i − rη∂iT

)
∂i + O(r2) , (10)

where T,W,Y i are generic functions of v, xi, preserves the form of metric (2), keeps r = 0 a null
surface. T is generating local translations in v (v supertranslations), W is generating local scalings
in r (r-superscalings), and Y i generates superrotations. Vector field ξ therefore, consists of generic
diffeomorphisms on N plus the superscalings generated by W . Under the above diffeomorphism
fields on the solution phase space transform as

δξΩ = TΩΘ + L(Y+TU )Ω , (11a)
δξP = TDvP + L(Y+TU )P −W , (11b)
δξJi = TDvJi + L(Y+TU )Ji +Ω

[
∂iW − Γ∂iT − 2Ni j∂

jT
]
, (11c)

δξ Ni j = Dv (T Ni j ) + L(Y+TU ) Ni j , (11d)

where LY denote the Lie derivative along Y i.

Surface charge variation. Charge variation associated with the boundary symmetry generator ξ,
may be computed using covariant phase space formalism [23, 24]. Detailed analysis yields [1]

/δQξ =
1

16πG

∫
Nv

dD−2x
[

(W − ΓT ) δΩ + (Y i +U iT )δJi + TΩΘδP − TΩΩi jδNi j

]
, (12)

where Nv is a constant v section on N . This charge variation is an integral over
∑4

a=1 Ga δQa,
where Qa ∈ {Ω,P,Ji; Ni j } parameterize the solution phase space and Ga are linear combinations
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of the symmetry generators with field dependent coefficients, i.e. δξGa , 0. Among these the first
three parameterize BDOF and Ni j the bulk degrees of freedom. Γ,U i functions which appear in
Ga are subject to field equations (9) and may hence be expressed in term of the charges Qa. The
solution phase space is hence parametrized by the four tower of charges and their variations. We
also note that the charge variation /δQξ , as stressed in the notation /δ, is hence not integrable.

Among the charges, we consider three ‘zero mode’ charges (or charge variations) associated
with ξ = −r∂r, ξ = ∂i and ξ = ∂v,

Q−r∂r :=
S
4π
=

1
16πG

∫
Nv

dD−2x Ω,

Q∂i := Ji =
1

16πG

∫
Nv

dD−2x Ji,

/δQ∂v := /δH =
1

16πG

∫
Nv

dD−2x
(
−ΓδΩ +U iδJi +ΩΘδP −ΩΩi jδNi j

)
.

(13)

Surface charges and flux. The charge variation (12) is not integrable. It can be split into Noether
(integrable) part QN and the ‘flux’ part F: /δQξ = δQN

ξ + Fξ (δg; g). QN may be computed for the
Einstein-Hilbert action using the standard Noether procedure, yielding

QN
ξ =

1
16πG

∫
Nv

dD−2x
[
W Ω + Y i Ji + T

(
−ΓΩ +U iJi

)]
, (14)

and non-integrable flux part

Fξ (δg; g) =
1

16πG

∫
Nv

dD−2x T
(
ΩδΓ − JiδU i +ΩΘδP−ΩΩi jδNi j

)
. (15)

Here we assumed symmetry generators T,W,Y i to be field-independent, i.e. δT = δW = 0 = δY i.
One may work out the expressions for the zero mode Noether charges, which are obtained as

QN
−r∂r =

S
4π
, QN

∂i
= Ji, QN

∂v
:= E =

1
16πG

∫
Nv

dD−2x (−ΓΩ +U iJi) , (16)

The expression of charges (14) involve an integration over codimension two surface Nv and
hence they are functions of v as well as being a functional of functions parameterizing the solution
space, while are linear functions of symmetry generators. Starting from the definition of Noether
charge and flux as given above, one may readily check that

d
dv

QN
ξ ≈ −F∂v (δξg; g), (17)

where ≈ denotes on-shell equality. Eq.(17), the balance equation, may be viewed as (1) the
boundary field equations (9) written in terms of charges; (2) ‘generalized charge conservation
equation’ which relates time dependence, or non-conservation, of the charge (as viewed by the null
boundary observer) to the flux passing through the boundary; (3) how the passage of flux through
the null boundary is ‘balanced’ by the rearrangements in the charges. This viewpoint yields null
surface memory effects [1].
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3. Null Surface Thermodynamics

We would now like to reinterpret the expressions for the charge variation and Noether
charges as thermodynamical equations. To this end, let us briefly review some facts about usual
thermodynamical systems. Consider a usual thermodynamical system with chemical potentials
µA(A = 1, 2, · · · , N) and temperature T . This system is specified with charges QA, the entropy S
and the energy E; that is, there are N + 2 charges and N + 1 chemical potentials. The distinction
between charges and associated chemical potentials is by convention and is specified with/specifies
the ensemble. The first law takes the form

dE = TdS +
N∑
A=1
µAdQA, (18)

implying that the LHS is an exact one-form over the thermodynamic space. Moreover, chemical
potentials and the charges are related by the Gibbs-Duhem relation

SdT +
N∑
A=1

QAdµA = 0. (19)

Together with the first law (18) this yields E = T S +
∑

A µAQA. This equation relates E to the
other charges and chemical potentials, e.g. E = E(S,QA) (in microcanonical description) or
E = E(T, µA) (in grandcanonical description). Depending on the ensemble chosen, N + 1 number
of chemical potentials and/or charges may be taken to be ‘independent’ variables parameterizing
the thermodynamical configuration space and the rest of N + 1 of them as functions of the former
N + 1 variables. In other words, the thermodynamic configuration space is (N + 1) dimensional
and the change of ensemble is basically a canonical transformation the generator of which is the
difference between various ‘energy’ functions associated with each ensemble.

3.1 Null Boundary Thermodynamical Phase Space

From (12) one can recognize that functions parameterizing the solution space come in two
categories: the bulk modes Ni j (and its conjugate ‘chemical potential’ determinant-free part of
Ωi j, γi j) and the boundary modes. The latter may also be separated into those whose variation
appears Ω,P and Ji, and those which appear only in the coefficients, in chemical potentials Γ,U i.
There are hence D = 1 + 1 + (D − 2) charges and D − 1 = 1 + (D − 2) chemical potentials. As
already remarked, one may view (9) as equations for Γ,U i giving them in terms charges.

A careful look into the charge expressions, can lead us to the following picture for the generic
case.

I. Null boundary solution space relevant to the null boundary thermodynamics consists of three
parts:

I.1) (D − 1) dimensional ‘thermodynamic sector’ parametrized by (Γ,U i) and conjugate
charges (Ω,Ji);

I.2) P, which only appears in the flux (15) and not in the Noether charge (14);

6
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I.3) the bulk mode parameterized by determinant free part of Ωi j and its ‘conjugate charge’
Ni j which appear in the flux (15).

II. Ni j parameterizes effects of the bulk and how they take the boundary system out-of-thermal-
equilibrium (OTE) whereas P parameterizes OTE within the boundary dynamics. Put
differently, OTE may come from inner boundary dynamics and/or from the gravity-waves
passing through the null boundary, parameterized by Ni j .

III. Expansion parameter Θ is a measure of OTE, from both bulk and boundary viewpoints.
When Θ = 0 the system is completely specified by the D − 1 dimensional thermodynamic
phase space.

IV. The rest of the in-falling graviton modes parameterized through O(r) terms in gi j , do not
enter in the boundary/thermo dynamics, as of course expected from usual causality and that
the boundary is a null surface.

We now rewrite the above equations as a local first law and a local Gibbs-Duhem equation and
then discuss a notion of local zeroth law. We use the notationX to notify the density of the quantity
X,

X :=
∫
Nv

dD−2x X. (20)

3.2 Local First Law at Null Boundary

Defining P := P/(16πG) andN i j := (16πG)−1Ni j , (13) implies,

/δH = TN δS +U iδJ i +ΩΘδP −ΩΩi jδN i j, TN := − Γ
4π

(21)

The above is true at each v, xi over the null surface and represents the local null boundary first law.
The LHS, unlike the usual first law (18), is not a complete variation, a manifestation of the fact that
we are dealing with an open thermodynamic system due to the existence of the expansion and the
flux. The above reduces to a usual first law for closed systems when Ni j = 0 or in the non-expanding
Θ = 0 case.
Γ = −2κ + Dv ln(ηΩ

2
D−2 ) where κ is the non-affinity parameter (surface gravity) associated

the vector field generating the null surface N [1]. −Γ/2 is the local acceleration of an observer for
whom r = 0 is locally the Rindler horizon. So, TN =

κ
2π −

1
4πDv ln(ηΩ

2
D−2 ). For non-expanding

Θ = 0 case where one may put η = 1 or when we have a Killing horizon, TN equals the usual
Unruh/Hawking temperature, cf. section 3.4 for more discussions.

3.3 Local Extended Gibbs-Duhem Equation at Null Boundary

Given the expressions for the zero mode charges (16) and for the densities in the same notation
as in (20) we have

E = TNS +U iJ i (22)

The above is an analogue of the Gibbs-Duhem equation if E is viewed as energy, S as entropy
and J i as other conserved charges and Γ,U i as the respective chemical potentials. This manifests

7
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the picture we outlined in section 3.1. One should, however, note that (22) is a local equation
at the null boundary, unlike its usual thermodynamic counterpart. This equation also holds for
non-stationary/non-adiabatic cases when the system is out-of-thermal-equilibrium (OTE). So, we
call (22) ‘local extended Gibbs-Duhem’ (LEGD) equation at the null boundary.

Since the integrable parts of the charge are (by definition) independent of the bulk flux Ni j

and also of P, the LEGD equation (22), also do not involve P and Ni j . Nonetheless, the chemical
potentials in (22), Γ and U i, implicitly depend on Ni j and P through Raychaudhuri and Damour
equations.

We remark that the local first law (21) and LEGD equation are a manifestation of diffeomor-
phism invariance of the theory. While the explicit expressions for the charges do depend on the
theory, we expect (22) to be universally true for any diff-invariant theory of gravity in any dimension.
This equation is on par with the first law of thermodynamics but extends it in two important ways:
it is a local equation in v, xi and holds also for OTE.

3.4 Local Zeroth Law

Zeroth law is a statement of thermal equilibrium; zeroth law stipulates that two (sub)systems
with the same temperature and chemical potentials are in thermal equilibrium. As flow of charges
is proportional to the gradient of associated chemical potentials, the absence of such fluxes can be
taken as a statement of the zeroth law. In our case, we are dealing with a system parameterized
by chemical potentials Γ,U i and γi j which are functions of charges Ω,P,Ji, Ni j . This system is
not in general in equilibrium but there could be special subsectors which are. The zeroth law is to
specify such subsectors.

Eq.(17) implies that flow of charges vanish on subsystems over which F∂v (δξg, g) vanishes.
On the other hand, one can show that [25] this flux has the same expression as the on-shell variation
of the action and while the charge variation (12) is invariant under the addition of a total derivative
term to the Lagrangian, the Noether charge and hence the flux are not. In particular, upon addition
of a boundary Lagrangian LB = ∂µBµ, the on-shell variation of the action and hence the flux F are
shifted by δBr . Let us denote Br = G. This opens up the possibility of (partially) removing the
flux by an appropriate boundary term. The question is hence what are the subsectors in the solution
phase space for which flux can be removed by an appropriate boundary term. To formulate this
idea, we start with the variation of on-shell action. A direct computation leads to

δSEH |on-shell =
1

16πG

∫
N

v.dD−2x
(
ΩΘδP +ΩδΓ − JiδU i −ΩN i jδΩi j

)
=

∫
v. F∂v (δg; g), (23)

where F∂v may be readily read from (15). Next, let us add a boundary term to the Lagrangian upon
which δSEH |on-shell → δSEH |on-shell +

∫
N δG. As the statement of the zeroth law we require there exists

a G = G(Ω,P,JA, NAB) such that,

δG = −S(δTN − 4GΘδP) −J iδU i +ΩN i jδΩ
i j (24)

admits non-zero solutions. Integrability condition for the zeroth law (24) is δ(δG) = 0, which
yields an equation like

∑
a,b CabδQa ∧ δQb = 0, where Qa are generic charges and Cab is skew-

symmetric. This equation is satisfied only for Cab = 0. One can immediately see Ni j = 0 = δNi j

is a necessary (but not sufficient) condition for (24) to have non-trivial solutions.

8
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Note that when (24) is fulfilled the chargeH , which appears in the LHS of the local first law
(21), becomes integrable and we obtain

H = G + TNS +U iJ i (25)

Let us now turn again to the implications of the zeroth law (24). Besides Ni j = 0, in terms of
H =H (S,J i,P) local zeroth law implies,

TN =
δH
δS , U i =

δH
δJ i

, DvS = SΘ =
1

4G
δH
δP (26)

We next want to solve the above equations.

Generic Θ , 0 case. For Ni j = 0 (9) reduce to

TN = −4GDvP, Dv

[
J i + 4G∇̄i (SP)

]
= 0. (27)

The above imply that zeroth law (26) is satisfied for any H = H (S,P,J i), when S,P and J i

have the following basic Poisson brackets [1, 2]

{S(x, v),P(y, v)} = 1
4G
δD−2(x − y), {S(x, v),S(y, v)} = {P(x, v),P(y, v)} = 0,

{S(x, v),J i (y, v)} = S(y, v)
∂

∂xi
δD−2(x − y),

{P(x, v),J i (y, v)} =
(
P(y, v)

∂

∂xi
+P(x, v)

∂

∂yi

)
δD−2(x − y),

{J i (x, v),J j (y, v)} = 1
16πG

(
J i (y, v)

∂

∂x j
−J j (x, v)

∂

∂yi

)
δD−2(x − y)

(28)

and
∂vX = {H ,X}. (29)

That is,H is the Hamiltonian over this phase space and (26) do not impose any restrictions onH
which is a scalar over N .

Θ = 0 case. In this case trace of the extrinsic curvature of the null surfaceN vanishes. In this case
η drops out from the charge variation (12) and we lose the charge P, and the associated symmetry
generator becomes a pure gauge. We hence remain with T,Y i generators which form Diff(N )
symmetry algebra. EoM (6) reduces to DvJ i = S∂iTN and DvS = 0, which may be viewed as
equations for spatial derivatives of the chemical potentials.

Local zeroth law (26) is satisfied by any scalar Hamiltonian H = H (S,J i), together with
basic Poisson brackets (28) but with P dropped [1] and again with ∂vX = {H ,X}.

To summarize this part, Local zeroth law (26) is just defining the Poisson bracket structure
over our charge space and existence of Hamiltonian dynamics, but does not specify a Hamiltonian.
Choice of Hamiltonian fixes a boundary Lagrangian and the boundary dynamical equations which
in turn specifies local dynamics of charges on the null boundary N . Our zeroth law is a weaker
condition than stationarity as ∂v of the chemical potentials need not vanish. The usual zeroth law of

9
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black hole mechanics (for Killing horizons) thatU i and Γ are constants over the horizon (our null
boundaryN ) is a very special case which obeys our local zeroth law. For the stationary asymptotic
flat black hole solutions to the vacuum Einstein gravity, i.e. the Myers-Perry solutions, we get
E =

(
D−3
D−2

)
H , and we have the usual Smarr formula.

4. Outlook

We discussed that boundary degrees of freedom residing on a null surface in D dimensional
Einstein gravity are governed by local laws of thermodynamics which are local equations over
the D − 1 dimensional null surface N . We are in general dealing with an open thermodynamical
system and from the boundary viewpoint a graviton which goes through the boundary gets dissolved
into the boundary and the BDOF readjust themselves according to (9) or equivalently (17); these
readjustments are nothing but our first law of thermodynamics and the Gibbs-Duhem equations.
We should emphasize that our analysis does not fix the boundary dynamics, boundary Hamiltonian
may still be chosen.

The zeroth law necessitates vanishing of the flux of bulk gravitons through N and establishes
basic Poisson brackets on the thermodynamic phase space. That is, the zeroth law establishes we
have a well define phase space.

We did not discussed the second law of thermodynamics, but establish a full thermodynamic
description it is crucial to have a notion of the second law. It is hence of great interest to explore a
notion of local second law.

As we discussed our thermodynamic description is a manifestation of diffeomorphism in-
variance of the theory, the equivalence principle, and not the details of the gravity theory. It is
a straightforward exercise to verify that all our discussions and results are valid for any gener-
ally invariant theory of gravity. Moreover, being a result of diffeomorphism invariance, one may
check that our analysis and results also extends when we include generic matter field. However,
it is expected that an extension of the second law would require the matter to respect null energy
condition.

Finally, our main motivation to consider null boundaries came from black hole physics. Our
analysis here is a modern and more rigorous reincarnation of the membrane paradigm [26–28].
It would be desirable to connect the two more systematically, first steps towards this were taken
in [29]. Moreover, our analysis provides a theoretical setup to formulate more precisely the soft
hair proposal [30] and explore identification of black hole microstates. For the latter, one would
presumably need to quantize boundary phase space and the boundary theory.
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