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1. Introduction

There are many problems where elliptic, hyperbolic and complex gamma functions enter the
description of physical quantities. Let us mention some of them. It is shown in [7] that the
contribution of 4𝐷 𝑁 = 1 chiral multiplet to superconformal index is given by the elliptic gamma
function, and full superconformal index of 4𝐷 𝑁 = 1 gauge theories is given by the elliptic
hypergeometric integrals [20]. There is a similar story in three dimensions. It is shown in [11] that
the hyperbolic gamma function, known also as the Faddeev modular dilogarithm [8], gives partition
function of the 3𝐷 𝑁 = 2 chiral multiplet, and correspondingly full partition function of 3𝐷 𝑁 = 2
gauge theories is given by hyperbolic hypergeometric integrals. Another vast topic of application of
the hyperbolic gamma functions is the two-dimensional Liouville field theory. The complex gamma
functions are building blocks of matrix elements of operators in SL(2,C) spin chain models [3],
which are given again by the proper integrals.

Thus we would like to note that there are two parallel pictures of relations between different
integrals of products of any of the mentioned gamma functions: physical and mathematical. It
was established in nineties that there are many duality relations between different 4𝐷 𝑁 = 1 gauge
theories called Seiberg dualities, relating strong and week coupling regimes to each other. Super-
conformal index [7] was designed precisely with purpose to test them, since it is the renormgroup
invariant. Thus, we have a correspondence between dualities in four dimensions and integral iden-
tities for elliptic gamma functions. Similarly there are many mirror symmetries between 𝑁 = 2
supersymmetric gauge theories in 3𝐷, and the right quantity to test them is the partition function,
since for 3𝐷 𝑁 = 2 gauge theories it is invariant under the renormgroup flow. So, here we have
a correspondence between mirror symmetries in 3𝐷 and integral identities for hyperbolic gamma
functions. And, finally, there are alternative ways to calculate matrix elements for operators in
SL(2,C) spin chain models, which in turn mathematically are expressed as integral identities for
complex gamma functions. Thus, the integral identities for all mentioned types of gamma functions
encode an important physical information.

Curiously all three pictures are related from the mathematical point of view. First it is
established in [16] that hyperbolic gamma function can be derived from the elliptic gamma function
in the limit when both basic parameters go to 1. Then it was found in [1, 17], that complex gamma
function can be derived from the hyperbolic one in the limit when sum of the quasiperiods goes to
zero. So, we can hope that starting from the identities for the elliptic hypergeometric integrals we
can obtain the corresponding integral identities for the hyperbolic and complex gamma functions.
The key identities for the elliptic hypergeometric integrals were derived in [19–21]. The limits to
the hyperbolic identities from the elliptic ones were addressed in [14, 23, 24]. Here we present
the last step, the derivation of the integral identities for the complex gamma functions from the
hyperbolic ones [17].

The paper is organized as follows. In section 2, we review elliptic hypergeometric functions. In
section 3, we derive integral identities for the hyperbolic gamma functions. We also show, how the
asymptotics of the hyperbolic gamma function allows one to produce vast number of new identities
by taking some parameters to infinity in a certain smart way. Finally in section 4, we present new
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integral identities for the complex gamma functions.

2. Elliptic gamma function

The standard elliptic gamma function Γ(𝑧; 𝑝, 𝑞) can be defined as an infinite product:

Γ(𝑧; 𝑝, 𝑞) =
∞∏

𝑗 ,𝑘=0

1 − 𝑧−1𝑝 𝑗+1𝑞𝑘+1

1 − 𝑧𝑝 𝑗𝑞𝑘
, |𝑝 |, |𝑞 | < 1 , 𝑧 ∈ C∗. (1)

It satisfies equations

Γ(𝑧; 𝑝, 𝑞) = Γ(𝑧; 𝑞, 𝑝) , Γ(𝑞𝑧; 𝑝, 𝑞) = 𝜃 (𝑧; 𝑝)Γ(𝑧; 𝑞, 𝑝 , ) Γ(𝑝𝑧; 𝑝, 𝑞) = 𝜃 (𝑧; 𝑞)Γ(𝑧; 𝑞, 𝑝) (2)

with the short theta function 𝜃 (𝑧; 𝑞) = (𝑧; 𝑞)∞(𝑞𝑧−1; 𝑞)∞ , where (𝑎; 𝑞)∞ =
∏∞

𝑗=0(1 − 𝑎𝑞 𝑗).
It is shown in [19] that when the parameters 𝑡𝑎 satisfy constraints |𝑡𝑎 | < 1 and the balancing

condition
∏6

𝑎=1 𝑡𝑎 = 𝑝𝑞, then the following integral indentity holds:

(𝑝; 𝑝)∞(𝑞; 𝑞)∞
4𝜋𝑖

∫
T

∏6
𝑎=1 Γ(𝑡𝑎𝑧; 𝑝, 𝑞)Γ(𝑡𝑎𝑧−1; 𝑝, 𝑞)
Γ(𝑧2; 𝑝, 𝑞)Γ(𝑧−2; 𝑝, 𝑞)

𝑑𝑧

𝑧
=

∏
1≤𝑎<𝑏≤6

Γ(𝑡𝑎𝑡𝑏; 𝑝, 𝑞). (3)

where T is the unit circle of positive orientation.
Consider the𝑉-function, an elliptic analogue of the Euler–Gauss hypergeometric function [20],

𝑉 (𝑡1, . . . , 𝑡8; 𝑝, 𝑞) = (𝑝; 𝑝)∞(𝑞; 𝑞)∞
4𝜋𝑖

∫
T

∏8
𝑎=1 Γ(𝑡𝑎𝑧; 𝑝, 𝑞)Γ(𝑡𝑎𝑧−1; 𝑝, 𝑞)
Γ(𝑧2; 𝑝, 𝑞)Γ(𝑧−2; 𝑝, 𝑞)

𝑑𝑧

𝑧
, (4)

where the parameters satisfy constraints |𝑡𝑎 | < 1 and the balancing condition holds
8∏

𝑎=1
𝑡𝑎 = 𝑝2𝑞2.

This function has the𝑊 (𝐸7) Weyl group symmetry transformations, whose key generating relations
have been established in [21]:

𝑉 (𝑡1, . . . , 𝑡8; 𝑝, 𝑞) =
∏

1≤ 𝑗<𝑘≤4
Γ(𝑡 𝑗 𝑡𝑘 ; 𝑝, 𝑞)

∏
5≤ 𝑗<𝑘≤8

Γ(𝑡 𝑗 𝑡𝑘 ; 𝑝, 𝑞)𝑉 (𝑠1, . . . , 𝑠8; 𝑝, 𝑞) , (5)

𝑠 𝑗 = 𝜌−1𝑡 𝑗 , 𝑗 = 1, 2, 3, 4 and 𝑠 𝑗 = 𝜌𝑡 𝑗 , 𝑗 = 5, 6, 7, 8 , 𝜌 =

√︂
𝑡1𝑡2𝑡3𝑡4
𝑝𝑞

, (6)

and
𝑉 (𝑡1, . . . , 𝑡8; 𝑝, 𝑞) =

∏
1≤ 𝑗<𝑘≤8

Γ(𝑡 𝑗 𝑡𝑘 ; 𝑝, 𝑞)𝑉 (√𝑝𝑞/𝑡1, . . . ,
√
𝑝𝑞/𝑡8; 𝑝, 𝑞) . (7)

As shown in [22], the 𝑉-function satisfies also the following finite difference equation called the
elliptic hypergeometric equation

L(𝑡) (𝑈 (𝑞𝑡6, 𝑞−1𝑡7) −𝑈 (𝑡)) + (𝑡6 ↔ 𝑡7) +𝑈 (𝑡) = 0, (8)

where
𝑈 (𝑡) = 𝑉 (𝑡1, . . . , 𝑡8; 𝑝, 𝑞)

Γ(𝑡6𝑡8; 𝑝, 𝑞)Γ(𝑡6𝑡−1
8 ; 𝑝, 𝑞)Γ(𝑡7𝑡8; 𝑝, 𝑞)Γ(𝑡7𝑡−1

8 ; 𝑝, 𝑞)
, (9)
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the first 𝑈-function contains parameters 𝑞𝑡6, 𝑞−1𝑡7 instead of 𝑡6, 𝑡7, and

L(𝑡) =
𝜃

(
𝑡6
𝑞𝑡8

; 𝑝
)
𝜃 (𝑡6𝑡8; 𝑝) 𝜃

(
𝑡8
𝑡6

; 𝑝
)

𝜃

(
𝑡6
𝑡7

; 𝑝
)
𝜃

(
𝑡7
𝑞𝑡6

; 𝑝
)
𝜃

(
𝑡7𝑡6
𝑞

; 𝑝
) 5∏

𝑘=1

𝜃

(
𝑡7𝑡𝑘
𝑞

; 𝑝
)

𝜃 (𝑡8𝑡𝑘 ; 𝑝) . (10)

There is a beautiful four-dimensional duality interpretation [7] of the univariate elliptic beta integral
evaluation formula (3). The left-hand side expression in (3) describes the superconformal index
of the 4𝐷 supersymmetric quantum chromodynamics with 𝑆𝑈 (2) gauge group and 𝑆𝑈 (6) flavor
group. In the deep infrared region the theory is strongly coupled, all colored particles confine, and
on the right-hand side of (3) one has the superconformal index of the Wess-Zumino type model for
mesonic fields lying in the 15-dimensional totally antisymmetric tensor representation of 𝑆𝑈 (6).
The symmetry relations (5) and (7) have similar duality interpretations as well.

3. Hyperbolic gamma function

The function Γ(𝑧; 𝑝, 𝑞) has the following limiting behaviour [16]:

lim𝑣→0Γ(𝑒−2𝜋𝑣𝑦; 𝑒−2𝜋𝑣𝜔1 , 𝑒−2𝜋𝑣𝜔2) = 𝑒
−𝜋 (2𝑦−𝜔1−𝜔2 )

12𝑣𝜔1𝜔2 𝛾 (2) (𝑦;𝜔1, 𝜔2), (11)

where 𝛾 (2) (𝑦;𝜔1, 𝜔2) is the hyperbolic gamma function.
The function 𝛾 (2) (𝑦;𝜔1, 𝜔2) has the integral representation

𝛾 (2) (𝑦;𝜔1, 𝜔2) = exp
(
−
∫ ∞

0

(
sinh(2𝑦 − 𝜔1 − 𝜔2)𝑥

2 sinh(𝜔1𝑥) sinh(𝜔2𝑥)
− 2𝑦 − 𝜔1 − 𝜔2

2𝜔1𝜔2𝑥

))
𝑑𝑥

𝑥
, (12)

and obeys the equations:

𝛾 (2) (𝑦 + 𝜔1;𝜔1, 𝜔2)
𝛾 (2) (𝑦;𝜔1, 𝜔2)

= 2 sin
𝜋𝑦

𝜔2
,

𝛾 (2) (𝑦 + 𝜔2;𝜔1, 𝜔2)
𝛾 (2) (𝑦;𝜔1, 𝜔2)

= 2 sin
𝜋𝑦

𝜔1
. (13)

The function 𝛾 (2) (𝑦;𝜔1, 𝜔2) has the following asymptotics :

lim𝑦→∞𝑒
𝑖 𝜋
2 𝐵2,2 (𝑦;𝜔1,𝜔2 )𝛾 (2) (𝑦;𝜔1, 𝜔2) = 1, arg 𝜔1 < arg 𝑦 < arg 𝜔2 + 𝜋, (14)

lim𝑦→∞𝑒
− 𝑖 𝜋

2 𝐵2,2 (𝑦;𝜔1,𝜔2 )𝛾 (2) (𝑦;𝜔1, 𝜔2) = 1, arg 𝜔1 − 𝜋 < arg 𝑦 < arg 𝜔2,

where 𝐵2,2(𝑦;𝜔1, 𝜔2) is the second order Bernoulli polynomial:

𝐵2,2(𝑦;𝜔1, 𝜔2) =
𝑦2

𝜔1𝜔2
− 𝑦

𝜔1
− 𝑦

𝜔2
+ 1

6

(
𝜔1
𝜔2

+ 𝜔2
𝜔1

)
+ 1

2
. (15)

Using (11), one can show [14] that in the limit 𝑝, 𝑞 → 1 relation (3) reduces to the following
hyperbolic beta integral evaluation formula [14, 23]:

1
2

∫ 𝑖∞

−𝑖∞

∏6
𝑘=1 𝛾

(2) (𝜇𝑘 + 𝑧)𝛾 (2) (𝜇𝑘 − 𝑧)
𝛾 (2) (2𝑧)𝛾 (2) (−2𝑧)

𝑑𝑧

𝑖
√
𝜔1𝜔2

=
∏

1≤𝑎<𝑏≤6
𝛾 (2) (𝜇𝑎 + 𝜇𝑏) , (16)

4



P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
3
7

Elliptic, hyperbolic, complex gamma functions and QFT in various dimensions Gor Sarkissian

with the balancing condition
6∑︁

𝑘=1
𝜇𝑘 = 𝜔1 + 𝜔2 = 𝑄 . (17)

Consider the function 𝐼ℎ (𝜇𝑖) defined by the integral

𝐼ℎ (𝜇𝑖) =
∫ 𝑖∞

−𝑖∞

∏8
𝑖=1 𝛾

(2) (𝜇𝑖 ± 𝑧)
𝛾 (2) (±2𝑧)

𝑑𝑧

𝑖
√
𝜔1𝜔2

(18)

with
∑8

𝑖=1 𝜇𝑖 = 2𝑄. Again using (11), one can show that in the limit 𝑝, 𝑞 → 1 the relations (5) and
(7) reduce to the following transformation properties of the function 𝐼ℎ (𝜇𝑖) [24]:

𝐼ℎ (𝜇𝑖) =
∏

1≤𝑖< 𝑗≤4
𝛾 (2) (𝜇𝑖 + 𝜇 𝑗)

∏
5≤𝑖< 𝑗≤8

𝛾 (2) (𝜇𝑖 + 𝜇 𝑗)𝐼ℎ (𝜈𝑖) , (19)

where 𝜈𝑖 = 𝜇𝑖 + 𝜉, 𝑖 = 1, 2, 3, 4, 𝜈𝑖 = 𝜇𝑖 − 𝜉, 𝑖 = 5, 6, 7, 8, and 𝜉 = 1
2 (𝑄 −∑4

𝑖=1 𝜇𝑖), and

𝐼ℎ (𝜇𝑖) =
∏

1≤𝑖< 𝑗≤8
𝛾 (2) (𝜇𝑖 + 𝜇 𝑗)𝐼ℎ

(
𝑄

2
− 𝜇𝑖

)
. (20)

The asymptotics (14) implies that much more identities, containing smaller number of the
hyperbolic gamma functions 𝛾 (2) (𝑥), can be derived, by taking several parameters in relations (16),
(19), (20) to infinity in a certain way. Applying for example the limit

𝜇𝑘 = 𝑓𝑘 + 𝑖𝜉 , 𝑘 = 1, 2, 3 and 𝜇𝑘 = 𝑔𝑘 − 𝑖𝜉 , 𝑘 = 4, 5, 6 , 𝑧 → 𝑧 − 𝑖𝜉, 𝜉 → −∞ (21)

to the hyperbolic beta integral evaluation formula (16), we derive the following star-triangle formula∫ 𝑖∞

−𝑖∞

𝑑𝑥

𝑖
√
𝜔1𝜔2

3∏
𝑖=1

𝛾 (2) (𝑥 + 𝑓𝑖)𝛾 (2) (−𝑥 + 𝑔𝑖) =
3∏

𝑖, 𝑗=1
𝛾 (2) ( 𝑓𝑖 + 𝑔 𝑗) , (22)

with the balancing constraint
∑3

𝑖=1( 𝑓𝑖 + 𝑔𝑖) = 𝑄 . In many applications to quantum field theory one
has 𝜔1 = 𝑏 and 𝜔1 = 𝑏−1. In this case the special notation for the hyperbolic gamma function is
used:

𝛾 (2) (𝑥, 𝑏, 𝑏−1) ≡ 𝑆𝑏 (𝑥) . (23)

In this notation the star-triangle identity (22) takes the form:∫ 𝑖∞

−𝑖∞

𝑑𝑥

𝑖

3∏
𝑖=1

𝑆𝑏 (𝑥 + 𝑓𝑖)𝑆𝑏 (−𝑥 + 𝑔𝑖) =
∏
𝑖, 𝑗=1

𝑆𝑏 ( 𝑓𝑖 + 𝑔 𝑗) . (24)

Fixing 𝑔3 = 𝑄 − 𝑓1 − 𝑓2 − 𝑓3 − 𝑔1 − 𝑔2 in (24), and applying the limit 𝑓3 → 𝑖∞ we obtain:∫ 𝑖∞

−𝑖∞
𝑒𝑖 𝜋 [ (𝑦 ( 𝑓1+ 𝑓2+𝑔1+𝑔2 )+ 𝑓1 𝑓2−𝑔1𝑔2 ]𝑆𝑏 (𝑦 + 𝑓1)𝑆𝑏 (𝑦 + 𝑓2)𝑆𝑏 (−𝑦 + 𝑔1)𝑆𝑏 (−𝑦 + 𝑔2)

𝑑𝑦

𝑖

= 𝑆𝑏 (𝑄 − 𝑓1 − 𝑓2 − 𝑔1 − 𝑔2)𝑆𝑏 ( 𝑓1 + 𝑔1)𝑆𝑏 ( 𝑓1 + 𝑔2)𝑆𝑏 ( 𝑓2 + 𝑔1)𝑆𝑏 ( 𝑓2 + 𝑔2).

5
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Next, performing the degeneration 𝑓2 → −𝑖∞ , 𝑔2 → 𝑖∞ , 𝑓2 + 𝑔2 = 𝛼 , we derive the pentagon
identity [9]:∫ 𝑖∞

−𝑖∞
𝑒𝑖 𝜋𝑦 (2𝛼+𝑔−𝑄)𝑆𝑏 (𝑦)𝑆𝑏 (−𝑦 + 𝑔) 𝑑𝑦

𝑖
= 𝑒𝑖 𝜋 (𝑔 (𝛼−𝑄/2)+𝑔2/2)𝑆𝑏 (𝑄 − 𝛼 − 𝑔)𝑆𝑏 (𝛼)𝑆𝑏 (𝑔). (25)

Relation (25) encodes an example of 3𝐷 duality [6], namely mirror symmetry between 𝑁 = 2
SQED with two chiral multiplets and XYZ model on a squashed sphere. Other integral identities
have 3𝐷 mirror symmetry interpretation as well. We would like also to note that the degeneration
procedure of taking some parameters to infinity in the physical language corresponds to taking
masses of some multipltets to infinity, thus decoupling them.

Similarly one can apply various sequences of the limiting procedures to the symmetry relations
(19) and (20) producing many new integral identities. Now we demonstrate one of the most useful
applications of this technique. Define the function [15]

𝐽ℎ (𝑔𝑎, 𝑓𝑎) =
∫ 𝑖∞

−𝑖∞

4∏
𝑎=1

𝛾 (2) (𝑧 + 𝑓𝑎, ;𝜔1, 𝜔2)𝛾 (2) (−𝑧 + 𝑔𝑎, ;𝜔1, 𝜔2)
𝑑𝑧

𝑖
√
𝜔1𝜔2

. (26)

This function appears as the most important part in construction of the fusion matrix in two-
dimensional Liouville field theory [13], as well as in building of eigenfunctions of the two-particle
Ruĳsenaars-Schneider model [15]. So studying of the properties and symmetries of this function is
an important task. Now we will show how the proper degeneration of the symmetry relations (19)
and (20) leads to the symmetries of 𝐽ℎ (𝑔𝑎, 𝑓𝑎) function. Applying the limiting procedure

𝜇𝑘 = 𝑓𝑘 + 𝑖𝜉 , 𝑘 = 1, 2, 3, 4 and 𝜇𝑘 = 𝑔𝑘 − 𝑖𝜉 , 𝑘 = 5, 6, 7, 8 (27)

to (20) and also shifting 𝑧 → 𝑧 − 𝑖𝜉 on both sides and taking the limit 𝜉 → −∞ we obtain [17]∫ i∞

−i∞

4∏
𝑗=1

𝛾 (2) ( 𝑓 𝑗 + 𝑧;𝜔)𝛾 (2) (𝑔 𝑗 − 𝑧;𝜔)𝑑𝑧 =
4∏

𝑗 ,𝑘=1
𝛾 (2) (𝑔 𝑗 + 𝑓𝑘 ;𝜔)

×
∫ i∞

−i∞

4∏
𝑗=1

𝛾 (2) ( 1
2𝑄 − 𝑓 𝑗 + 𝑧;𝜔)𝛾 (2) ( 1

2𝑄 − 𝑔 𝑗 − 𝑧;𝜔)𝑑𝑧. (28)

Applying another limiting procedure

𝜇1 = 𝑓1 + 𝑖𝜉

𝜇2 = 𝑓2 + 𝑖𝜉

𝜇5 = 𝑓3 + 𝑖𝜉

𝜇6 = 𝑓4 + 𝑖𝜉

𝜇3 = 𝑔1 − 𝑖𝜉

𝜇4 = 𝑔2 − 𝑖𝜉

𝜇7 = 𝑔3 − 𝑖𝜉

𝜇8 = 𝑔4 − 𝑖𝜉
(29)

to (19) and also shifting 𝑧 → 𝑧 − 𝑖𝜉 on both sides and taking the limit 𝜉 → −∞ we obtain [24]:

𝐽ℎ (𝑔, 𝑓 ) =
2∏

𝑗 ,𝑘=1
𝛾 (2) (𝑔 𝑗 + 𝑓𝑘 ;𝜔1, 𝜔2)

4∏
𝑗 ,𝑘=3

𝛾 (2) (𝑔 𝑗 + 𝑓𝑘 ;𝜔1, 𝜔2) (30)

× 𝐽ℎ (𝑔1 + 𝜂, 𝑔2 + 𝜂, 𝑔3 − 𝜂, 𝑔4 − 𝜂, 𝑓1 + 𝜂, 𝑓2 + 𝜂, 𝑓3 − 𝜂, 𝑓4 − 𝜂),

where 𝜂 = 1
2 (𝜔1 + 𝜔2 − 𝑔1 − 𝑔2 − 𝑓1 − 𝑓2).
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4. Complex hypergeometric functions as limits from the hyperbolic integrals

Define the complex gamma function [10]:

𝚪(𝑥, 𝑛) =
Γ( 𝑛+i𝑥

2 )
Γ(1 + 𝑛−i𝑥

2 )
, 𝑛 ∈ Z , 𝑥 ∈ C . (31)

Now set
𝑏 =

√︂
𝜔1
𝜔2

= i + 𝛿, 𝛿 → 0+. (32)

Then 𝜔1 + 𝜔2 = 2𝛿√𝜔1𝜔2 +𝑂 (𝛿2) → 0 and√︂
𝜔2
𝜔1

= −i + 𝛿 +𝑂 (𝛿2), 𝜔1
𝜔2

= −1 + 2i𝛿 + 𝛿2,
𝜔2
𝜔1

= −1 − 2i𝛿 +𝑂 (𝛿2). (33)

One can show that in this limit uniformly on the compacta [17]:

𝛾 (2) (i√𝜔1𝜔2(𝑛 + 𝑥𝛿);𝜔1, 𝜔2) → (4𝜋𝛿)i𝑥−1𝑒
𝜋i
2 𝑛2

𝚪(𝑥, 𝑛). (34)

Consider ∫ i∞

−i∞
Δ(𝑧) 𝑑𝑧

i√𝜔1𝜔2
=

∫ i∞

−i∞
Δ(√𝜔1𝜔2𝑥)

𝑑𝑥

i
, 𝑥 =

𝑧
√
𝜔1𝜔2

, (35)

where Δ(𝑧) ∝ a product of 𝛾 (2) (𝑢;𝜔1, 𝜔2).
Rewrite ∫ i∞

−i∞
Δ(√𝜔1𝜔2 𝑥)

𝑑𝑥

i
=

∑︁
𝑁 ∈Z

∫ i(𝑁+1/2)

i(𝑁−1/2)
Δ(√𝜔1𝜔2 𝑥)

𝑑𝑥

i
(36)

=
∑︁
𝑁 ∈Z

∫ 𝑁+1/2

𝑁−1/2
Δ(i√𝜔1𝜔2 𝑥)𝑑𝑥 =

∑︁
𝑁 ∈Z

∫ 1/2

−1/2
Δ(i√𝜔1𝜔2(𝑁 + 𝑥))𝑑𝑥. (37)

Parameterise 𝑥 = 𝑦𝛿, 𝛿 > 0, and take the limit 𝛿 → 0+∑︁
𝑁 ∈Z

∫ 1/2

−1/2
Δ(i√𝜔1𝜔2(𝑁 + 𝑥))𝑑𝑥 = lim𝛿→0

∑︁
𝑁 ∈Z

∫ 1/2𝛿

−1/2𝛿
𝛿Δ(i√𝜔1𝜔2(𝑁 + 𝑦𝛿))𝑑𝑦. (38)

The sum over 𝑁 is infinite, for 𝛿 → 0+ the integration contour becomes (−∞,∞). Uniformness of
the limit yields for the right-hand side of (38)∑︁

𝑁 ∈Z

∫ ∞

−∞

[
lim𝛿→0𝛿Δ(i

√
𝜔1𝜔2(𝑁 + 𝑦𝛿))

]
𝑑𝑦. (39)

Apply this procedure to the general univariate hyperbolic beta integral (16). Take the integration
variable 𝑧 and parameters 𝜇𝑘 in (16) in the form:

𝑧 = i
√
𝜔1𝜔2(𝑁 + 𝛿𝑦), 𝑦 ∈ C, 𝑁 ∈ Z + 𝜈, 𝜈 = 0,

1
2
, (40)

𝜇𝑘 = i
√
𝜔1𝜔2(𝑁𝑘 + 𝛿𝑎𝑘), 𝛼𝑘 ∈ C, 𝑁𝑘 ∈ Z + 𝜈, 𝜈 = 0,

1
2
, (41)
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The limit 𝛿 → 0+ of expression (17) leads to the balancing condition:
6∑︁

𝑘=1
𝑎𝑘 = −2i,

6∑︁
𝑘=1

𝑁𝑘 = 0. (42)

The parameter 𝜈 = 0, 1/2 emerges because only the sums 𝑁𝑘 ± 𝑁 should be integers. Now,
using (34) and (39), we obtain in the limit 𝛿 → 0+ the complex beta integral evaluation formula
[4, 17]:

1
8𝜋

∑︁
𝑁 ∈Z+𝜈

∫ ∞

−∞
(𝑦2 + 𝑁2)

6∏
𝑘=1

𝚪(𝑎𝑘 ± 𝑦, 𝑁𝑘 ± 𝑁)𝑑𝑦 =
∏

1≤ 𝑗<𝑘≤6
𝚪(𝑎 𝑗 + 𝑎𝑘 , 𝑁 𝑗 + 𝑁𝑘), (43)

with the balancing condition (42) and 𝚪(𝑥1 ± 𝑥2, 𝑛1 ± 𝑛2) := 𝚪(𝑥1 + 𝑥2, 𝑛1 + 𝑛2)𝚪(𝑥1 − 𝑥2, 𝑛1 − 𝑛2) .
Degeneration of the 𝑊 (𝐸7)-group transformation laws (19) and (20) brings us [17]:

∑︁
𝑁 ∈Z+𝜈

∫ ∞

−∞
(𝑦2 + 𝑁2)

8∏
𝑘=1

𝚪(𝑎𝑘 ± 𝑦, 𝑁𝑘 ± 𝑁)𝑑𝑦 (44)

= (−1)𝐿
∏

1≤ 𝑗<𝑘≤4
𝚪(𝑎 𝑗 + 𝑎𝑘 , 𝑁 𝑗 + 𝑁𝑘)

∏
5≤ 𝑗<𝑘≤8

𝚪(𝑎 𝑗 + 𝑎𝑘 , 𝑁 𝑗 + 𝑁𝑘)
∑︁

𝑁 ∈Z+𝜇

∫ ∞

−∞
(𝑦2 + 𝑁2)

×
4∏

𝑘=1
𝚪(𝑎𝑘 ± 𝑦 − 1

2𝑋 − i, 𝑁𝑘 ± 𝑁 − 1
2𝐿)

8∏
𝑘=5

𝚪(𝑎𝑘 ± 𝑦 + 1
2𝑋 + i, 𝑁𝑘 ± 𝑁 + 1

2𝐿)𝑑𝑦,

with 𝑋 :=
∑4

𝑗=1 𝑎 𝑗 , 𝐿 :=
∑4

𝑗=1 𝑁 𝑗 , and

∑︁
𝑁 ∈Z+𝜈

∫ ∞

−∞

(
𝑦2 + 𝑁2) 8∏

𝑘=1
𝚪(𝑎𝑘 ± 𝑦, 𝑁𝑘 ± 𝑁)d𝑦 =

∏
1≤ 𝑗<𝑘≤8

𝚪(𝑎 𝑗 + 𝑎𝑘 , 𝑁 𝑗 + 𝑁𝑘)

×
∑︁

𝑁 ∈Z+𝜈

∫ ∞

−∞

(
𝑦2 + 𝑁2) 8∏

𝑘=1
𝚪(−i − 𝑎𝑘 ± 𝑦,−𝑁𝑘 ± 𝑁)d𝑦, (45)

with the balancing conditions
8∑︁

𝑘=1
𝑎𝑘 = −4i, 𝑎𝑘 ∈ C,

8∑︁
𝑘=1

𝑁𝑘 = 0, 𝑁𝑘 ∈ Z + 𝜈, 𝜈 = 0,
1
2
. (46)

In the relation (44) we have two discrete parameters 𝜈, 𝜇 = 0, 1
2 . If the integer 𝐿 is even, then

one has 𝜇 = 𝜈. If 𝐿 is an odd integer, then 𝜇 ≠ 𝜈. The relations of type (44) and (45) are important
in SL(2,C) spin chain models [3]. And finally calculating 𝑏 → 𝑖 limit of (28) we obtain [17]:

∑︁
𝑁 ∈Z

∫ ∞

−∞

4∏
𝑘=1

𝚪(𝑠𝑘 + 𝑦, 𝑁𝑘 + 𝑁)𝚪(𝑡𝑘 − 𝑦, 𝑀𝑘 − 𝑁)𝑑𝑦 = (−1)
∑4

𝑘=1 𝑁𝑘

4∏
𝑗 ,𝑘=1

𝚪(𝑠 𝑗 + 𝑡𝑘 , 𝑁 𝑗 + 𝑀𝑘)

×
∑︁
𝑁 ∈Z

∫ ∞

−∞

4∏
𝑘=1

𝚪(−i − 𝑡𝑘 + 𝑦, 𝑁 − 𝑀𝑘)𝚪(−i − 𝑠𝑘 − 𝑦,−𝑁 − 𝑁𝑘)𝑑𝑦. (47)
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with the balancing conditions
∑4

𝑗=1(𝑁 𝑗 + 𝑀 𝑗) = 0, and
∑4

𝑗=1(𝑠 𝑗 + 𝑡 𝑗) = −4i.
On both side of the relation (47) there appears a sum of integrals defining 6 𝑗-symbols of

SL(2,C) group [2, 5, 12], i.e. it describes a symmetry relation for these 6 𝑗-symbols. Obviously one
can similarly degenerate also the symmetry relation (30) and obtain another transformation property
of SL(2,C) group 6 𝑗-symbols [5]. One can also degenerate the finite difference equation (8), first
to the hyperbolic hypergeometric functions level and afterwards to the complex hypergeometric
functions thus deriving mixed difference-recurrence relations for them [5, 18].

Acknowledgments

This work was partially supported by the Russian Science Foundation (project no.19-11-00131).

References

[1] V. V. Bazhanov, V. V. Mangazeev and S. M. Sergeev, Exact solution of the Faddeev–Volkov
model, Phys. Lett. A 372 (2008) 1547–1550 [arXiv:0706.3077].

[2] S. E. Derkachov and V. P. Spiridonov, The 6 𝑗-symbols for the SL(2,C) group, Teor. Mat.
Fiz. 198:1 (2019) 32–53 (Theor. Math. Phys. 198:1 (2019) 29–47) [arXiv:1711.07073
[math-ph]].

[3] S. E. Derkachov, A.N. Manashov and P. A. Valinevich, SL(2,C) Gustafson integrals, SIGMA
14 (2018) 030 [arXiv:1711.07822].

[4] S. E. Derkachov and A. N. Manashov, On complex Gamma function integrals, SIGMA 16
(2020) 003 [arXiv:1908.01530 [math-ph]]

[5] S. E. Derkachov, G. A. Sarkissian and V. P. Spiridonov, The elliptic hypergeomet-
ric function and 6j-symbols for SL(2,C) group, to be published in Theor. Math. Phys.
[arXiv:2111.06873 [math-ph]].

[6] T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun.
Math. Phys. 325 367–419 (2014) [arXiv:1108.4389 [hep-th]].

[7] F. A. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators
and q-Hypergeometric Identities to N=1 Dual Theories, Nucl. Phys. B 818 137-178 (2009)
[arXiv:0801.4947 [hep-th]].

[8] L. D. Faddeev, Discrete Heisenberg–Weyl group and modular group, Lett. Math. Phys. 34
(1995) 249–254 [arXiv:hep-th/9504111].

[9] L. Faddeev, R. Kashaev and A. Volkov, Strongly Coupled Quantum Discrete Liouville
Theory. I: Algebraic Approach and Duality, Commun. Math. Phys. 219 199–219 (2001)
[arXiv:hep-th/0006156].

[10] I. M. Gel’fand, M. I. Graev and N. Ya. Vilenkin, Generalized functions, Vol. 5, Integral
geometry and representation theory, Academic Press 1966.

9

https://doi.org/10.1016/j.physleta.2007.10.053
https://doi.org/10.4213/tmf9512
https://doi.org/10.4213/tmf9512
https://doi.org/10.1134/S0040577919010033
https://doi.org/10.3842/SIGMA.2018.030
https://doi.org/10.3842/SIGMA.2020.003
http://mi.mathnet.ru/tmf10201
https://doi.org/10.1007/s00220-013-1863-2
https://doi.org/10.1007/s00220-013-1863-2
https://doi.org/10.1016/j.nuclphysb.2009.01.028
https://doi.org/10.1007/BF01872779
https://doi.org/10.1007/s002200100412


P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
3
7

Elliptic, hyperbolic, complex gamma functions and QFT in various dimensions Gor Sarkissian

[11] N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP
05 (2011) 14 [arXiv:1102.4716 [hep-th]].

[12] R. S. Ismagilov, Racah operators for principal series of representations of the group SL(2,C),
Mat. Sbornik 198:3 (2007) 77-90 (Sb. Math. 198:3 (2007) 369–381).

[13] B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coefficients for a continu-
ous series of representations of 𝑈𝑞 (𝑠𝑙 (2,R)), Commun. Math. Phys. 224 (2001) 613–655
[arXiv:math/0007097 [math.QA]].

[14] E. M. Rains, Limits of elliptic hypergeometric integrals, Ramanujan J. 18 (2009) 257–306
[arXiv:math.CA/0607093].

[15] S. N. M. Ruĳsenaars, Systems of Calogero–Moser type, in proceedings of the 1994 Banff sum-
mer school “Particles and fields”, eds. G. Semenoff, L. Vinet. CRM Series in Mathematical
Physics, Berlin– Heidelberg–New York: Springer-Verlag, 1999, pp. 251–352.

[16] S. N. M. Ruĳsenaars, First order analytic difference equations and integrable quantum
systems, J. Math. Phys. 38 (1997) 1069.

[17] G. A. Sarkissian and V. P. Spiridonov, The endless beta integrals, SIGMA 16 (2020) 074
[arXiv:2005.01059 [math-ph]].

[18] G. A. Sarkissian and V. P. Spiridonov, Complex hypergeometric functions and integrable many
body problems, [arXiv:2105.15031].

[19] V. P. Spiridonov, On the elliptic beta function, Russian Math. Surveys 56 (2001) 185–186.

[20] V. P. Spiridonov, Essays on the theory of elliptic hypergeometric functions, Russian Math.
Surveys 63 (2008) 405–472 [arXiv:0805.3135].

[21] V. P. Spiridonov, Theta hypergeometric integrals, St. Petersburg Math. J. 15 (2004) 929–967
[arXiv:math.CA/0303205].

[22] V. P. Spiridonov, Elliptic hypergeometric functions and Calogero-Sutherland type models,
Teor. Mat. Fiz. 150:2 (2007) 311–324 (Theor. Math. Phys. 150:2 (2007) 266–277).

[23] J. V. Stokman, Hyperbolic beta integrals, Adv. Math. 190 (2004) 119–160
[arXiv:math.QA/0303178].

[24] F. J. van de Bult, E. M. Rains and J. V. Stokman, Properties of generalized univariate hyper-
geometric functions, Comm. Math. Phys. 275 (2007) 37–95 [arXiv:math.CA/0607250].

10

https://doi.org/10.1007/JHEP05(2011)014
https://doi.org/10.4213/sm1532
http://dx.doi.org/10.1070/SM2007v198n03ABEH003840
https://doi.org/10.1007/PL00005590
https://doi.org/10.1007/s11139-007-9055-3
https://doi.org/10.1063/1.531809
https://doi.org/10.3842/SIGMA.2020.074
https://arxiv.org/abs/2105.15031
https://doi.org/10.1070/rm2001v056n01ABEH000374
https://doi.org/10.1070/RM2008v063n03ABEH004533
https://doi.org/10.1070/RM2008v063n03ABEH004533
https://doi.org/10.1090/S1061-0022-04-00839-8
https://doi.org/10.4213/tmf5981
https://doi.org/10.1007/s11232-007-0020-5
https://doi.org/10.1016/j.aim.2003.12.003
https://doi.org/10.1007/s00220-007-0289-0

	Introduction
	Elliptic gamma function
	Hyperbolic gamma function
	Complex hypergeometric functions as limits from the hyperbolic integrals

