
P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
3
8

Transfer matrix formulation of stationary scattering in 2D
and 3D: A concise review of recent developments

Farhang Lorana,∗ and Ali Mostafazadehb

aDepartment of Physics, Isfahan University of Technology,
Isfahan 84156-83111, Iran

bDepartments of Mathematics and Physics, Koç University,
34450 Sarıyer, Istanbul, Turkey

E-mail: loran@iut.ac.ir, amostafazadeh@ku.edu.tr

We review a recently developed transfer matrix formulation of the stationary scattering in two and
three dimensions where the transfer matrix is a linear operator acting in an infinite-dimensional
function space. We discuss its utility in circumventing the ultraviolet divergences one encounters
in solving the Lippman-Schwinger equation for delta-function potentials in two and three dimen-
sions. We also use it to construct complex scattering potentials displaying perfect omnidirectional
invisibility for frequencies below a freely preassigned cutoff.

RDP online PhD school and workshop "Aspects of Symmetry"(Regio2021),
8-12 November 2021
Online

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:loran@iut.ac.ir
mailto:amostafazadeh@ku.edu.tr
https://pos.sissa.it/


P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
3
8

Transfer matrix formulation of stationary scattering Farhang Loran

1. Introduction

The introduction of the scattering (S) matrix and the discovery of the Lippman-Schwinger
equation are among the most important achievements of the twentieth century theoretical physics.
The former provides the basic ingredient of quantum scattering theory, while the latter serves as
the main device for solving scattering problems. In one dimension, there is an alternative tool for
performing scattering calculations, called the transfer matrix [1–3] which, similarly to the S-matrix,
stores the information about the scattering features of the system. Themain advantage of the transfer
matrix over the S-matrix is its composition property which makes it into an ideal tool for dealing
with multilayer and locally periodic systems [4, 5].

Consider a short-range potential in one dimension, v : R → C, so that |v(x)| tends to zero
faster than |x |−1 as x → ±∞. Then, every solution of the stationary Schrödinger equation,

− ψ ′′(x) + v(x)ψ(x) = k2ψ(x) x ∈ R, (1)

satisfies
ψ(x) → A±eikx + B±e−ikx for x → ±∞, (2)

where k ∈ R+ is a wavenumber, and A± and B± are complex coefficients. The transfer matrix of the
potential v is a 2 × 2 matrix M that relates A± and B± according to[

A+
B+

]
=M

[
A−
B−

]
. (3)

This equation determines M in a unique manner provided that it is independent of A− and B−, [6].
For A− = 1 and B+ = 0 (respectively A− = 0 and B+ = 1), ψ(x) corresponds to a left-incident

(resp. right-incident) wave, and the reflection and transmission amplitudes of the potential are
respectively given by Rl = B− and T l = A+ (resp. Rr = A+ and T l = B−). In view of these relations
and (3), we can express Rl/r andT l/r in terms of the entries Mi j of M according to Rl = −M21/M22,
Rr = M12/M22 and T l/r = 1/M22. Therefore, M contains the complete information about the
scattering properties of the potential.

Ref. [7] offers a dynamical formulation of stationary scattering (DFSS) in one dimension where
the transfer matrix is identified with the S-matrix of an effective non-unitary two-level quantum
system. Let ψ be the general bounded solution of (1), and for each x ∈ R, Ψ±(x) : R → C and
Ψ(x) : R→ C2×1 be the functions defined by(

Ψ±(x))(p) :=
1
2k

e±ikx [kψ(x) ± i ψ ′(x)] , Ψ(x) :=

[
Ψ−(x)
Ψ+(x)

]
. (4)

Then the stationary Schrödinger equation (1) is equivalent to the non-stationary Schrödinger equa-
tion, i∂xΨ(x) = H(x)Ψ(x), where x plays the role of “time,” H(x) := v(x)

2k e−ikxσ3K eikxσ3 is an

effective Hamiltonian, σ3 is the diagonal Pauli matrix, andK :=

[
1 1
−1 −1

]
.

The main reason for the introduction of the two-component state vector Ψ(x) is that, in view

of (2) and (4), it satisfies Ψ(±∞) =

[
A±
B±

]
. This relation together and (3) allow us to express
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M in terms of the evolution operator U(x, x0) for the Hamiltonian H(x). Specifically, we have
M = U(+∞,−∞) = T exp

[
−i

∫ ∞
−∞

dx H(x)
]
, where T denotes the time-ordering operation with

x playing the role of “time.” Note that the right-hand side of the preceding equation stands for
the Dyson series expansion of U(+∞,−∞). It offers a perturbative series expansion for M which
turns out to produce the exact solution of the scattering problem for single- and multi-delta function
potentials in one dimension. Ref. [5] provides a pedagogical review of this feature of DFSS and
some of its notable applications, e.g., in constructing tunable unidirectional invisible potentials and
single-mode inverse scattering.

Refs. [8, 9] develop a higher-dimensional generalization of the DFSS where the role of the
transfer matrix M is played by a linear operator acting in an infinite-dimensional function space.
This operator, which we also call the “transfer matrix,” has a canonical realization as a 2× 2 matrix
M̂ with operator entries M̂i j . Similarly to its one-dimensional analog, M̂ admits a Dyson series
expansion and possesses a useful composition property.

One of the most remarkable benefits of DFSS in two and three dimensions is that its application
to delta-function potentials in these dimensions [8, 9] circumvents the unwanted singularities of
their standard treatments [10, 11]. Among other applications of this approach to scattering theory
are the discovery of a class of invisible (scattering-free) complex potentials [9, 12–15] in two and
three-dimensions and the construction of their electromagnetic counterparts [16].

2. Basic setup for stationary scattering in D dimensions

Consider the scattering problem defined by the stationary Schrödinger equation in D + 1
dimensions,

[−∂2
x − ∇

2
y + v(x, y)]ψ(x, y) = k2ψ(x, y), (x, y) ∈ RD+1, (5)

where (x, y) := (x, y1, y2, · · · , yD) are Cartesian coordinates, v : RD+1 → C is a scattering potential,
ψ : RD+1 → C is a bounded function, and ∇2

y :=
∑D

j=1 ∂
2
yj
. Suppose that we have chosen our

coordinate system in such a way that the source of the incident wave and the detectors used to
observe the scattered wave lie on the planes x = ±∞. If the source of the incident wave resides at
x = −∞ (resp. , x = +∞) we speak of a left-incident (resp. right-incident) wave.

Let F be the vector space of functions (tempered distributions) f : RD → C, Fy,p denote the
Fourier transformation of a function of y evaluate at p, i.e., Fy,p{ f (y)} :=

∫
dDy e−ip·y f (y), and

f̃ (p) := Fy,p{ f (y)}. Performing the Fourier transform of both sides of (5) with respect to y, we find

− ψ̃ ′′(x, p) + (V̂ (x)ψ̃)(x, p) = $(p)2 ψ̃(x, p), (x, p) ∈ RD+1, (6)

where ψ̃(x, p) := Fy,p{ψ(x, y)},

(V̂ (x) f̃ )(p) := Fy,p{v(x, y) f (y)} =
1
(2π)D

∫
dDq ṽ(x, p − q) f̃ (q), (7)

$(p) :=

{ √
k2 − p2 for |p| < k,

i
√

p2 − k2 for |p| ≥ k,
(8)

and we have made use of the fact that f (y) = F −1
p,y { f̃ (p)} := 1

(2π)D
∫

dDp eip·y f̃ (p).

3
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An important feature of potential scattering in two and higher dimensions, which has no
counterpart in one dimension, is the presence of evanescent waves. To elucidate their role, in the
following, we confine our attention to the class of potentials v that satisfy

v(x, y) = 0 for x < [a−, a+], (9)

for some a± ∈ R with a− < a+. Then, ṽ(x, p) = 0 for x < [a−, a+], and (6) gives [∂2
x +

$(p)2]ψ̃(x, p) = 0 for x < [a−, a+]. Solving this equation and performing the inverse Fourier
transform with respect to p, we can write ψ in the form

ψ = ψos + ψev, (10)

where ψos, ψev : RD+1 → C are respectively functions representing the oscillating and evanescent
waves outside the region defined by a− < x < a+ in RD+1, i.e.,

ψos(x, y) =
1
(2π)D

∫
Dk

dDp
$(p)

[
A±(p) ei$(p)x + B±(p) e−i$(p)x

]
eip·y for ± x ≥ ±a±, (11)

ψev(x, y) =
1
(2π)D

∫
RD\Dk

dDp
$(p)

C±(p) e∓|$(p) |xeip·y for ± x ≥ ±a±, (12)

where Dk :=
{
p|p2 ≤ k2}, and A±, B±,C± ∈ F such that

A±(p) = B±(p) = 0 for p < Dk, C±(p) = 0 for p ∈ Dk . (13)

In particular, A±, B± ∈ Fk where Fk : {φ ∈ F |φ(p) = 0 for p < Dk}. We also introduce,

B−(p) := B−(p) + C−(p), A+(p) := A+(p) + C+(p), (14)

and employ (10) – (14) to conclude that

$(p)ψ̃(x, p) =

{
A−(p) ei$(p)x +B−(p) e−i$(p)x for x ≤ a−,

A+(p) ei$(p)x + B+(p) e−i$(p)x for x ≥ a+.
(15)

The scattering solutions of the Schrödinger equation (5) are particular bounded solutions of
this equation that have the form ψ(r) = eik0 ·r + ψscat(r), where r := (x, y) is the position vector, k0

is the incident wave vector, ψscat signifies the scattered wave which satisfies

ψscat(r) →
(
ik−1

) 2−D
2

r−
D
2 eikr f(r̂) for r := |r| → ∞ and D = 1, 2, (16)

f(r̂) is the scattering amplitude, and r̂ := r−1r. Let p0 denote the projection of k0 onto the orthogonal
complement of the x-axis in RD+1. Then for a left-incident wave, k0 = ($(p0), p0),

A− = (2π)D$(p0)δp0, B+ = 0, (17)

and as we show in [8, Appendix A],

f(r̂) = −
i

(2π)D2
×

{
A+(p) − (2π)D$(p0)δ(p − p0) for x̂ · r̂ > 0

B−(p) for x̂ · r̂ < 0,
(18)

4
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where δp0(p) := δ(p − p0), p is the projection of the scattered wave vector, k := k r̂, onto the
orthogonal complement of the x-axis, and x̂ stands for the unit vector along the x-axis. In particular,
p = k − (k · x̂)x̂ = k[r̂ − (r̂ · x̂)x̂] and $(p) = k |r̂ · x̂|. Similarly for a right-incident wave,
k0 = (−$(p0), p0), and

A− = 0, B+ = (2π)D$(p0)δp0, (19)

f(r̂) = −
i

(2π)D2
×

{
A+(p) for x̂ · r̂ > 0,

B−(p) − (2π)D$(p0)δ(p − p0) for x̂ · r̂ < 0.
(20)

According to (18) and (20), we can determine the scattering amplitude, i.e., solve the scattering
problem, if we can express B− and A+ in terms of A− and B+. This is precisely what the S-matrix
does, because according to (10) – (12), for x → ±∞, ψ(r) → ψos(r), and (B−, A+) and (A−, B+)
respectively determine the asymptotic “out-going” and “in-going” waves.

3. Transfer matrix in higher dimensions

Attempts at constructing and employing higher-dimensional generalizations of the transfer
matrix has a long history [17, 18]. These were largely motivated by practical considerations.
They involved a discretization of all but one of degrees of freedom and produced large numerical
transfer matrices with a build-in composition property which allowed for numerical treatment of
wave propagation and scattering. The developments reported in [8, 9] are of a completely different
nature, for they introduce a fundamental notion of the transfer matrix which is amenable to analytic
calculations.

By analogy to one dimension, we identify the transfer matrix in D + 1 dimensions with the
2 × 2 matrix M̂ with operator entries M̂i j : Fk → Fk that satisfies

M̂

[
A−
B−

]
=

[
A+
B+

]
. (21)

In the following we use the term “fundamental transfer matrix” to refer to M̂. Similarly to the S-
matrix, it relates B− and A+ to A− and B+; substituting (17) and (19) in (21), we find for left-incident
waves:

M̂22B− = −(2π)D$(p0)M̂21δp0, A+ = M̂12B− + (2π)D$(p0)M̂11δp0, (22)

and for right-incident waves:

M̂22B− = (2π)D$(p0)δp0, A+ = M̂12B−. (23)

Eqs. (18), (20), (22), and (23) reduce the solution of the scattering problem for the potential v to
the determination of M̂ and the solution of linear (integral) equations for B−.

The fundamental transfer matrix enjoys a composition property similar to its one-dimensional
analogue. The derivation of this property requires the use of a related object called the “auxiliary

5
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transfer matrix” [9]. This is defined as the 2 × 2 matrix M̂ with operator entries M̂i j : F → F

fulfilling

M̂
[

A−
B−

]
=

[
A+
B+

]
. (24)

Let, for each x ∈ R, Φ±(x) : RD → C and Φ(x) : RD → C2×1 be the functions defined by

(
Φ±(x)

)
(p) :=

1
2

e±i$(p)x
[
$(p)ψ̃(x, p) ± i ψ̃ ′(x, p)

]
, Φ(x) :=

[
Φ−(x)
Φ+(x)

]
, (25)

and introduce the effective Hamiltonian operator,

Ĥ(x) :=
1
2

e−ix$̂σ3V̂ (x)K ei$̂xσ3$̂−1, (26)

where $̂ := $(̂p), and for every pair of functions f , g : RD → C,
(
f (̂p)g

)
(p) := f (p)g(p). Then

the stationary Schrödinger equation (5) is equivalent to

i∂xΦ(x) = Ĥ(x)Φ(x). (27)

Furthermore, because Ĥ(x) = 0̂ for x < [a−, a+], where 0̂ is the zero operator acting in F 2×1, we
can use (15), (25), and (27) to conclude that

lim
x→−∞

Φ(x) = Φ(a−) =

[
A−
B−

]
, lim

x→+∞
Φ(x) = Φ(a+) =

[
A+
B+

]
. (28)

Eqs. (24) and (28) imply

M̂ = Û(a+, a−) = T exp
[
−i

∫ a+

a−

dx Ĥ(x)
]
= T exp

[
−i

∫ ∞

−∞

dx Ĥ(x)
]

(29)

= Î +
∞∑
n=1
(−i)n

∫ ∞

−∞

dxn

∫ xn

−∞

dxn−1 · · ·

∫ x2

−∞

dx1 Ĥ(xn)Ĥ(xn−1) · · · Ĥ(x1),

where Û(x, x0) is the evolution operator defined by the effective Hamiltonian (26).
If v(x, y) vanishes for a range of values of x, V̂ (x) = 0̂ and Ĥ(x) = 0̂. This feature of Ĥ(x)

implies the composition property of the (auxiliary) transfer matrix [9]. As we explain in Ref. [9],
this follows from the semi-group property of the evolution operator. In order to benefit from
the composition property of M̂ in dealing with scattering problems, we explore the relationship
between M̂ and M̂.

Let us introduce,

$i(p) := Im[$(p)] =

{
0 for p ∈ Dk,√

p2 − k2 for p < Dk,
(30)

$̂i := $i (̂p), Ψ(x) := e−$̂iσ3xΦ(x), Ψ± :=

[
A±
B±

]
, (31)

Ĥ(x) := e−$̂iσ3xĤ(x) e$̂iσ3x − i$̂iσ3, (32)

6
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and Π̂k := Π̂kI, where Π̂k := limx→∞ e−$i (̂p)x is the projection operator that maps F onto Fk .
Then, (21) reads

M̂Ψ− = Ψ+, (33)

and we can use (27) to verify that i∂xΨ(x) = Ĥ(x)Ψ(x). Furthermore, (28), (30), and (31) combined
with (13) and (14) give

lim
x→±∞

Ψ(x) = Ψ±, $̂iΨ± = 0. (34)

Let U(x, x0) be the evolution operator for the Hamiltonian (32). Because Ĥ(x) = −i$̂iσ3 for
x0 ≤ x ≤ a− and a+ ≤ x0 ≤ x, we have U(x, x0) = e−(x−x0)$̂iσ3 , and (29) and (34) imply

Ψ(x) = lim
x0→−∞

U(x, x0)Ψ(x0) = lim
x0→−∞

e$̂iσ3x0Ψ(x0) = Π̂kΨ− = Ψ− for x ≤ a−, (35)

Ψ(x) = U(x, a+)Ψ+ = e−$̂iσ3(x−a+)Ψ+ = e−$̂iσ3(x−a+)M̂Ψ−, for x ≥ a+. (36)

According to (13), Π̂kΨ− = Ψ−, Π̂ke−$̂iσ3x = Π̂k , and Π̂kΨ(x) = Ψ+ for x > a+. We can use
these relations together with (36) to establish Ψ+ = Π̂kM̂ Π̂kΨ−. Comparing this equation with
(33), we arrive at

M̂ = Π̂kM̂ Π̂k . (37)

We have given the construction of the fundamental and auxiliary transfer matrices and derived
some of their basic properties for potentials fulfilling (9). It is not difficult to see that these results
extend to the class of potentials for which the solutions of the Schrödinger equation (5) tend to
plane waves for x → ±∞. This is the case for short-range potentials which for r → ±∞ tend to
zero faster than r−(D+1), [19].

4. Perfect broadband invisibility

The fundamental transfer matrix provides a convenient characterization of invisible potentials.
According to (17) – (20) and (21), omnidirectional invisibility for a wavenumber k corresponds to
the situation where M̂ = Î for this particular value of k and arbitrary choices of the incident wave
vector k0 (arbitrary values of p0). Here and in what follows, we view M̂ as an operator acting in
F 2×1

k
, and use Î to denote the identity operator for F 2×1

k
.

Theorem 1: Let α be a positive real number, ê be a unit vector that is perpendicular to the x-axis,
and v : RD+1 → C be a short-range potential such that ṽ(x,K) = 0 for K · ê ≤ 2α. Then v is
omnidirectionally invisible for every wavenumber k that does not exceed α.
Proof: In view of (29) and (37), M̂ = Î holds, if for all n ∈ Z+ and x1, x2, · · · , xn ∈ R,

Π̂kĤ(xn)Ĥ(xn−1) · · · Ĥ(x1)Π̂k = 0̂. (38)

According to (26), the entries of Ĥ(x) are given by Ĥjl(x) =
(−1) j+1

2 ei(−1) j x$̂V̂ (x) ei(−1)l+1x$̂$̂−1.
Since functions of p̂ commute with the projection operator Π̂k , this shows that (38) holds, if for all
f1, f2, · · · , fn−1 ∈ F ,

Π̂kV̂ (xn) fn−1(̂p)V̂ (xn−1) fn−2(̂p)V̂ (xn−2) · · · · · · f1(̂p)V̂ (x1)Π̂k = 0̂. (39)

7
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To establish this equation, we introduce the function spaces Sς := { f ∈ F | f (p) = 0 for p‖ ≤ ς},
where ς ∈ R and p‖ := p · ê. Then for all f0 ∈ F , Π̂k f0 ∈ S−k . Next, let γ ∈ R, g ∈ Sγ, and
p⊥ := p − p‖ ê, so that we can use (p‖, p⊥) to denote p. According to (7),(

V̂ (x)g
)
(p) =

1
(2π)D

∫ ∞

γ
dq‖

∫
dD−1q⊥ṽ(x, p‖ − q‖, p⊥ − q⊥)g(q‖, q⊥)

=
1
(2π)D

∫ p‖−γ

−∞

dK
∫

dD−1q⊥ṽ(x,K, p⊥ − q⊥)g(p‖ − K, q⊥). (40)

By virtue of the hypothesis of the theorem, ṽ ∈ S2α. Therefore V̂ (x) g ∈ S2α+γ. This shows that
V̂ (x) maps Sγ to S2α+γ. One easily verifies that

V̂ (xn) fn−1(̂p)V̂ (xn−1) fn−2(̂p)V̂ (xn−2) · · · · · · f1(̂p)V̂ (x1)Πk f0(p) ∈ S2nα−k (41)

For k < α, 2nα − k > k, S2nα−k ⊂ Sk , and (41) implies (39). �

The proof of Theorem 1 implies the following stronger result.

Theorem 2: Let ξ ∈ [0, 2π), α, β ∈ R+, k ∈ (0, α], ê be a unit vector that is perpendicular to
the x-axis, and v : RD+1 → C be a short-range potential such that for all x ∈ R, ṽ(x,K) = 0 for
K · ê ≤ β. Then, M̂ = Î for β ≥ 2α, and

M̂ = Î +
d2α/β−1e∑

n=1
(−i)n

∫ x

x0

dxn

∫ xn

x0

dxn−1 · · ·

∫ x2

x0

dx1 Π̂kĤ(xn)Ĥ(xn−1) · · · Ĥ(x1)Π̂k, (42)

for 0 < β < 2α, where dxe stands for the smallest integer that is not smaller than x, and we assume
that the operators appearing on both sides of (42) act in F 2×1

k
.

As shown in Ref. [9], this theorem implies the following remarkable result on the discovery of
potentials for which the first Born approximation in exact.

Corollary: Let α, ê, and v be as in Theorem 2. Then the first Born approximation gives the exact
expression for the scattering amplitude of v for wavenumbers k ≤ α.

5. Implicit regularization of delta-function potential in 2D

The Lippmann-Schwinger equation for the delta-function potential,

v(r) = z δ2(r − r0), r := (x, y), (43)

with z ∈ C and r0 ∈ R
2, has the form

ψ(r) = eik0 ·r + zψ(r0)G(r − r0), (44)

where G(r − r0) is the Green’s function for the Helmholtz operator in two dimensions, i.e.,(
∇2 + k2) G(r − r0) = δ

2(r − r0), that yields asymptotically out-going solutions of the Schrödinger
equation (5). It is well-known that

G(r) = lim
ε→+0

∫
d2p
(2π)2

eip·r

(k + iε)2 − p2 = −
i
4

H(1)0 (kr), (45)

8
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where H(1)0 stands for the zero-order Hankel function of the first kind. For r → ∞, G(r − r0) →

−
√

i/8πkr e−ikr0 ·r̂eikr . In view of this relation and Eqs. (16) and (44), the scattering amplitude of
the potential (43) takes the form

f(r̂) = −
zψ(r0)

2
√

2π
e−ikr0 ·r̂. (46)

We can determine zψ(r0) by setting r = r0 in (44). This gives zψ(r0) = eik0 ·r0/[z−1 − G(0)].
The problemwith this calculation is that G(0) is logarithmically divergent. Therefore, setting r = r0

in (44) is forbidden. One can however attempt to regularize G(r) and employ a coupling constant
renormalization to remove its singularity [10].

Let GΛ(r) be the regularized Green’s function obtained by restricting the domain of the
integral in (45) to a sphere of radius Λ, so that G(r) = limΛ→∞GΛ(r). Then, it is easy to show
that GΛ(0) = − 1

4π ln
(
Λ2

k2 − 1
)
− i

4 . Substituting GΛ(r) for G(r) in (44) and repeating the above
calculation of zψ(r0), we find

zψ(r0) =
eik0 ·r0

z−1 − GΛ(0)
=

eik0 ·r0

z̃(k)−1 + i
4
, (47)

where z̃(k) is the renormalized coupling constant given by z̃(k) :=
[
z−1 + 1

4π ln
(
Λ2

k2 − 1
)]−1

. De-

manding the latter not to depend onΛ, we can express it in the form, z̃(k) =
[
z̃(kref)

−1 − 1
2π ln

(
k
kref

)]−1
,

where kref is a reference wavenumber. Substituting (47) in (46), we obtain

f(r̂) = −
√

2
π

e−ir0 ·(kr̂−k0)

4 z̃(k)−1 + i
. (48)

Next, we examine the application of our transfer-matrix formulation of stationary scattering
to the delta-function potential (43) for right-incident waves. The same analysis applies to the
left-incident waves.

Let (a, b) be the coordinates of r0, so that v(x, y) = z δ(x − a)δ(y − b). To determine the
fundamental transfer matrix for this potential, we substitute (43) in (7) and use the resulting
equation in (26) to show that Ĥ(x) = z

2δ(x − a)e−ia$̂σ3V̂b K eia$̂σ3$̂−1, where
(
V̂bg

)
(p) :=

e−ibpF −1
q,b
{g(q)}. Because K2 = 0, Ĥ(x1)Ĥ(x2) = 0. This makes the Dyson series expan-

sion of the auxiliary transfer matrix (29) terminate, and we can use (37) to show that M̂ =

e−ia$̂σ3
(
Π̂k −

iz
2 K Π̂kV̂b Π̂k$̂

−1
)

eia$̂σ3 . Next, we read off the entries M̂12 and M̂22 of M̂ from
this equation and use them to express (23) as

B− = −
iz
2
Π̂kV̂b Π̂k$̂

−1B− + 2π$(p0)e−ia$(p0)δp0, (49)

A+ = e−2ia$̂B− − 2π$(p0)e−2ia$(p0)δp0, (50)

where B− := e−ia$̂B−. It is not difficult to see that
(
Π̂kVb Π̂k$̂

−1B−
)
(p) = c e−ibp χk(p), where

c := F −1
q,b
{$(q)−1B−(q)}, χk(p) := 1 for |p| < k, and χk(p) := 0 for |p| ≥ k. Inserting this

relation in (49), and using the right-hand side of the resulting equation to compute c, we find a linear
equation whose solution is c = (1 + iz/4)−1ei(−a$(p0)+bp0) = (1 + iz/4)−1eik0 ·r0 . Here we have also
made use of the identity

∫ k

−k
dq/

√
k2 − q2 = π. In view of the formula we obtained for c, Eqs. (49)
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and (50), and the fact that B− = eia$̂B−, we have A+(p) = A0χk(p)e−i(a$(p)+bp) and B−(p) =
A0χk(p)e−i(−a$(p)+bp) + 2π$(p0)δ(p − p0), where A0 := −2ieik0 ·r0/(4z−1 + i). Substituting these
equations in (20), we arrive at f(r̂) = −

√
2/π e−i(k−k0)·r0/(4 z−1 + i). Because k = k r̂, this equation

is in perfect agreement with (48) provided that we interpret z as the physical coupling constant
(which in the standard treatment of the problem is identified with z̃(k)). Notice the application of
the transfer matrix to the delta-function potential (43) we never encounter singularities and there
is no need for the renormalization of the coupling constant z; the transfer-matrix formulation of
stationary scattering has a build-in regularization feature in 2D. The same holds in 3D [9].
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