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Chiral effective theory in the Higgs sector

1. Introduction

In these proceedings we discuss the effective field theory (EFT) description of the electroweak
(EW) gauge and Higgs sectors and its phenomenological application put forward in Ref. [1, 2]. We
adopt the non-linear realization of the EW symmetry provided by the electroweak effective theory
(EWET) [3], also known as Higgs effective field theory (HEFT) or electroweak chiral Lagrangian
(EW𝜒L) [1, 4–6]. In this approach the Higgs boson is treated as an independent degree of freedom
(dof), separate from the triplet of EW Nambu-Goldstone bosons 𝜔𝑎 (NGB), which transform non-
linearly under the G = 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 global chiral group. The remaining SM matter fields can
be added in a rather straight-forward procedure [1, 3, 4, 7–10]. HEFT extends the most commonly
considered EFT framework for the study of new physics, the Standard Model Effective Theory
(SMEFT). This EFT is based on the SM symmetries but incorporates both the Higgs and the EW
Goldstones all together in a complex doublet Φ. The similarities and differences of both HEFT and
SMEFT approaches have been long discussed in the bibliography [11–16].

Nonetheless, since this conference is devoted to chiral dynamics, we will spend an important
part of these proceedings explaining in some detail the origin of the EW chiral symmetry that
provides the foundations of the HEFT approach. This symmetry, though related, is many times
confused with the EW Standard Model gauge symmetry. We hope this little summary may clarify
the issue for non-practitioners in the topic.

These proceedings will be organized as follows: in Sec. 2, we will present in detail the EW
chiral symmetry and its spontaneous symmetry breaking in the SM. In Sec. 3, based on this chiral
symmetry, we proceed and elaborate the most general chiral invariant effective Lagrangian that
extends the SM and incorporate possible new physics corrections at low energies. In Sec. 4, we
will have a glimpse on some related phenomenology. We will provide a summary and some final
conclusions in Sec. 5.

2. Electroweak chiral symmetry and the Standard Model

2.1 A second 𝑆𝑈 (2) symmetry hidden in the scalar sector

When discussing the chiral symmetry in the EW sector of the SM, one of the first questions that
often pops up is where this extended G = 𝑆𝑈 (2)×𝑆𝑈 (2) chiral symmetry is. This question is biased
by our learning of how the full SM has been built, which is based on an 𝐺gauge = 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌
gauge symmetry. In what follows, we will ignore the colour group 𝑆𝑈 (3) and just focus on the EW
interactions.

Chiral symmetry appear in the limit when the gauge and fermion sectors are decoupled from
the scalar sector (𝑔 = 𝑔′ = 𝜆𝜓 = 0). We will see that, under this limit, the Higgs doublet sector
shows an extended global symmetry G = 𝑆𝑈 (2) × 𝑆𝑈 (2) beyond the EW one.

The scalar sector Lagrangian is given by

Lsca
SM = 𝜕𝜇Φ

†𝜕𝜇Φ + 𝜇2Φ†Φ − 𝜆(Φ†Φ)2 . (1)
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Chiral effective theory in the Higgs sector

This Lagrangian is invariant under global 𝑆𝑈 (2)𝐿 transformations:

Φ
𝑆𝑈 (2)𝐿−→ 𝑔𝐿 Φ ,

Lsca
SM

𝑆𝑈 (2)𝐿−→ Lsca
SM , (2)

with the Higgs doublet,

Φ =

(
𝜙+

𝜙0

)
=

1
√

2

(
𝜑2 + 𝑖𝜑1

𝜑0 − 𝑖𝜑3

)
. (3)

A peculiarity of the 𝑆𝑈 (2) groups is their real representations, so one finds that the conjugate,

Φ𝑐 = 𝑖𝜎2Φ
∗ =

(
𝜙0 ∗

−𝜙−

)
=

1
√

2

(
𝜑0 + 𝑖𝜑3

−𝜑2 + 𝑖𝜑1

)
, (4)

also transforms as a doublet under the same 𝑆𝑈 (2)𝐿 transformation, Φ𝑐 → 𝑔𝐿Φ
𝑐.

However, there is another 𝑆𝑈 (2) invariant group hidden in this Lagrangian. This can be
observed through a little rearrangement of the real scalar components in the Lagrangian:

Lsca
SM = 𝜕𝜇Φ

†𝜕𝜇Φ + 𝜇2Φ†Φ − 𝜆(Φ†Φ)2

=
1
2

3∑︁
𝑘=0

(𝜕𝜇𝜑𝑘)2 + 𝜇2

2

3∑︁
𝑘=0

(𝜕𝜇𝜑𝑘)2 − 𝜆

4

( 3∑︁
𝑘=0

(𝜕𝜇𝜑𝑘)2

)2

= 𝜕𝜇𝜒
†𝜕𝜇𝜒 + 𝜇2𝜒†𝜒 − 𝜆(𝜒†𝜒)2 , (5)

with

𝜒 =

(
−𝜙+
𝜙0 ∗

)
=

1
√

2

(
−𝜑2 − 𝑖𝜑1

𝜑0 + 𝑖𝜑3

)
. (6)

Correspondingly, one has the conjugate doublet,

𝜒𝑐 = 𝑖𝜎2𝜒
∗ =

(
𝜙0

𝜙−

)
=

1
√

2

(
𝜑0 − 𝑖𝜑3

𝜑2 − 𝑖𝜑1

)
. (7)

Note that the newly defined 𝜒 is not a linear combination of 𝜙 and Φ𝑐, and does not transform
as a doublet under 𝑆𝑈 (2)𝐿 . However, written in this form, it is easy to realize that there is an
additional 𝑆𝑈 (2) ′ ≡ 𝑆𝑈 (2)𝑅 symmetry in this scalar sector:

𝜒
𝑆𝑈 (2)𝑅−→ 𝑔𝑅 𝜒 ,

Lsca
SM

𝑆𝑈 (2)𝑅−→ Lsca
SM . (8)

Thus, one can see that the SM Higgs sector has a global chiral symmetry group G = 𝑆𝑈 (2)𝐿 ×
𝑆𝑈 (2)𝑅, wider than what could be naively expected.

However, one finds that the potential has non-trivial minima with ⟨ |Φ|2 ⟩ = 𝑣2/2 ≠, with
𝑣 = 𝜇/

√
𝜆. Hence, this chiral symmetry G becomes spontaneously broken by the choice of the

vacuum, traditionally taken to be ⟨Φ ⟩𝑇 =

(
0, 𝑣/

√
2
)

(and, correspondingly, ⟨ 𝜒 ⟩𝑇 =

(
0, 𝑣/

√
2
)
).

This vacuum remains nevertheless invariant under the diagonal subgroup H = 𝑆𝑈 (2)𝐿+𝑅 ∈ G,
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Chiral effective theory in the Higgs sector

with 𝑔𝐿 = 𝑔𝑅. This subgroup is usually denoted a custodial or isospin symmetry. This spontaneous
symmetry breaking (SSB) gives place to an 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅/𝑆𝑈 (2)𝐿+𝑅 coset pattern for the
corresponding SSB chiral Nambu-Goldstone bosons (NGB). This structure has been exploited
along the years for the construction of EW effective theories [1] following the principles of the
CCWZ formalism [17, 18].

2.2 A complex doublet Φ as a real 4–plet ®𝜑

This extended symmetry can be also understood, maybe in a clearer way if one expresses
the scalar sector Lagrangian in terms of its real components, gather in the real 4–vector: ®𝜑𝑇 =

(𝜑1, 𝜑2, 𝜑3, 𝜑0, ):

Lsca
SM = 𝜕𝜇Φ

†𝜕𝜇Φ + 𝜇2Φ†Φ − 𝜆(Φ†Φ)2 =
1
2
(𝜕𝜇 ®𝜑)2 + 𝜇2

2
®𝜑2 − 𝜆

4

(
®𝜑2

)2
. (9)

This Lagrangian is invariant under rotations 𝑔 ∈ 𝑆𝑂 (4),

®𝜑
𝑆𝑂 (4)
−→ 𝑔 ®𝜑 ,

Lsca
SM

𝑆𝑂 (4)
−→ Lsca

SM . (10)

However, one finds non-trivial minima in the potential with ®𝜑 ≠ ®0. Traditionally one takes
⟨ ®𝜑 ⟩𝑇 = (0, 0, 0, 𝑣) (although any other choice with ⟨ ®𝜑2 ⟩ = 𝑣2 is just as good), which is no
longer invariant under the whole G = 𝑆𝑂 (4) group but still remains unchanged under H = 𝑆𝑂 (3)
transformations of its first three components. This leads to an 𝑆𝑂 (4)/𝑆𝑂 (3) coset pattern for
the NGB arising from the chiral SSB. This symmetry pattern has been employed in the past to
described, e.g., pion interactions at low energies through the CCWZ formalism [17–19], as one has
the local isomorphisms 𝑆𝑂 (4) ∼ 𝑆𝑈 (2) × 𝑆𝑈 (2) and 𝑆𝑂 (3) ∼ 𝑆𝑈 (2).

2.3 A complex doublet Φ as a bi-fundamental representation Σ

We now discuss one final alternative approach that illustrates how the Higgs sector has a larger
symmetry than the 𝑆𝑈 (2) ×𝑈 (1)𝑌 invariance of the SM. First, let us construct the bi-fundamental
2 × 2 representation Σ from the Φ doublet:

Σ = (Φ𝑐, Φ) =

(
𝜒𝑐

𝜒

)
=

1
√

2
(𝜑0 + 𝑖𝜑𝑎𝜎

𝑎) . (11)

By means of this matrix one can easily rewrite the Higgs Lagrangian in the form,

Lsca
SM = 𝜕𝜇Φ

†𝜕𝜇Φ + 𝜇2Φ†Φ − 𝜆(Φ†Φ)2

=
1
2

Tr{𝜕𝜇Σ𝜕𝜇Σ†} + 𝜇2

2
Tr{ΣΣ†} − 𝜆

4

(
Tr{ΣΣ†}

)2
, (12)

where we made use of Tr{ΣΣ†} =Tr{Φ𝑐Φ𝑐 + ΦΦ} = Φ𝑐Φ𝑐 + ΦΦ = 2ΦΦ, and analogous trace
relations.
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Chiral effective theory in the Higgs sector

This Lagrangian is invariant under the global groupG = 𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅, this is, under unitary
transformations of Σ acting either from the left (𝑔𝐿 ∈ 𝑆𝑈 (2)𝐿) or from the right (𝑔†

𝑅
∈ 𝑆𝑈 (2)𝑅) in

the way,

Σ
𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅−→ 𝑔𝐿Σ𝑔

†
𝑅
,

Lsca
SM

𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅−→ Lsca
SM . (13)

One may notice that the left transformations 𝑔𝐿 are related to the transformation Φ → 𝑔𝐿Φ whereas
the right transformations 𝑔𝑅 are given by 𝜒 → 𝑔𝑅𝜒.

Nonetheless, the potential minima lead to a non-trivial vev ⟨Σ ⟩ ≠ 0 given by the condition
Tr{ΣΣ†} = 𝑣2. The usual vacuum choice is given in this representation by ⟨Σ ⟩ = 𝑣√

2
12×2. One can

observe that this vacuum is no longer invariant under the whole chiral group G = 𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅.
Still, it remains invariant under the diagonal custodial subgroupH = 𝑆𝑈 (2)𝐿+𝑅 with 𝑔𝐿 = 𝑔𝑅 ≡ 𝑔𝐶 ,
this is, ⟨Σ ⟩ → 𝑔𝐶 ⟨Σ ⟩𝑔†

𝐶
= ⟨Σ ⟩.

Later on, in the EFT construction, we will use this bi-fundamental representation to describe
the Higgs interactions. In addition, we will employ the CCWZ formalism [17, 18], where the NGB
transform non-linearly under chiral transformations that do not leave the vacuum invariant. For the
sake of this, it is useful to express the SM Higgs doublet, or the related matrix Σ, in a modulus-phase
form,

Σ =
1
√

2
(𝑣 + ℎ)𝑈 (𝜔𝑖) , (14)

where we have taken the usual vev orientation ⟨Σ ⟩ = 𝑣√
2
12×2, ℎ parametrizes the modulus of Φ

and the 2 × 2 unitary matrix 𝑈 (𝜔𝑖) depends non-linearly on three real fields (𝜔1, 𝜔2, 𝜔3), the
Goldstone fields, that parametrize the orientation of Φ with respect to its vaccuum direction. Under
this decomposition, the scalar Lagrangian becomes,

Lsca
SM = =

1
2

Tr{𝜕𝜇Σ𝜕𝜇Σ†} + 𝜇2

2
Tr{ΣΣ†} − 𝜆

4

(
Tr{ΣΣ†}

)2

=
(𝑣 + ℎ)2

4
Tr{𝜕𝜇𝑈𝜕𝜇𝑈†} + 1

2
(𝜕𝜇ℎ)2 −𝑉 (ℎ) , (15)

with𝑉 (ℎ) = − 𝜇2

2 (ℎ+𝑣)2+ 𝜆
4 (ℎ+𝑣)

4. In this non-linear Higgs representation, the previous variations
of Σ and the SM Lagrangian under chiral transformations have now the form:

ℎ
𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅−→ ℎ ,

𝑈
𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅−→ 𝑔𝐿𝑈𝑔

†
𝑅
,

Lsca
SM

𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅−→ Lsca
SM . (16)

One then finally realize that the complex doublet Φ, or 4–plet ®𝜑 accepts a decomposition in
term of a singlet component (ℎ) and a triplet transforming non-linearly (𝜔1, 𝜔2, 𝜔3). It is important
to remark that symmetry alone does not force you to have the singlet and triplet components forming
a 4–plet (or a complex doublet). Thus, if we give up renormalizability and intend to construct a
general EW low-energy effective theory one should not take this a priori assumption for granted
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Chiral effective theory in the Higgs sector

and ℎ and 𝑈 should be taken as independent multiplets of G if one desires to perform really
model-independent searches of new physics.

Additionally, in order to complete the SM one needs to reconnect the scalar sector with the
gauge bosons and SM fermions. The SM has a gauge 𝑆𝑈 (2)𝐿 × 𝑈 (1)𝑌 ∈ G symmetry which
gets spontaneously broken down to the EM subgroup, 𝑈 (1)𝐸𝑀 . Only the gauge fields associeted
with these generators are physical. The remaining ones are nevertheless handle through auxiliary
spurionic fields ℓ𝜇 and 𝑟𝜇 that allow keeping the covariance under G, and are set to the physical EW
gauge fields 𝑊1,2,3

𝜇 and 𝐵𝜇 at the end of the day. The partial gauging of G introduces and explicit
chiral breaking. In these proceedings we are ignoring the QCD 𝑆𝑈 (3)𝐶 gauge group, which does
not play any role in the EW effective theory beyond some radiative corrections.

In addition, one needs to add the SM fermions. For that, one introduces spurionic auxiliary
Yukawa fields that allow keeping the chiral invariance. When these auxiliary Yukawa fields are set
to the SM Yukawa couplings, chiral symmetry is explicit broken, but in the way it is broken in the
SM.

3. Building the EW effective theory

3.1 Particle content, symmetry and counting

In order to construct your EFT, one needs to answer three question:

1. What is your particle content? This is, what are fields of the the soft modes or light degrees
of freedom in the effective Lagrangian LEFT?

2. What is your symmetry? This is, what symmetry invariance do you use to construct the EFT
operators in LEFT? Notice that this is not the same as the previous point. HEFT, SMEFT and
the SM based on the same symmetry.

3. What is the power counting? This is, according to what principle so you classify the infinite
series of effective operators in LEFT? What are the most important operators –leading order
(LO)–? What are the second most important operators –next-to-leading order (NLO)–? Etc.

Correspondingly, in the case of HEFT one has:

1. HEFT has the SM content, understanding this as the EW Goldstone triplet 𝜔𝑎, the singlet
Higgs ℎ, the gauge bosons and the SM fermions.

2. The whole HEFT has a gauge symmetry 𝐺𝑆𝑀 = 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 (and QCD) that becomes
spontenaoulsy broken in the form 𝐺𝑆𝑀 → 𝐻𝑆𝑀 = 𝑈 (1)𝐸𝑀 , giveng place to the masses 𝑊±

and 𝑍 gauge bosons. HEFT, as it happens in the SM scalar sector, has an extended global
chiral symmetry G = 𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅×𝑈 (1)𝐵−𝐿 ⊃ 𝐺𝑆𝑀 , which gets spontaneously broken
down to the global custodial group H = 𝑆𝑈 (2)𝐿+𝑅 ×𝑈 (1)𝐵−𝐿 ⊃ 𝐻𝑆𝑀 . The Baryon-minus-
Lepton-number group is required in the presence of fermions to embed the SM groups 𝐺𝑆𝑀

and 𝐻𝑆𝑀 .

This exact symmetry of the scalar sector is softly broken in the full Standard Model when the
fermion and EW gauge-boson interactions are plugged in. Therefore, we need to explicitly

6
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break the chiral symmetry in exactly the same way it is done in the SM: there is a 𝐿 ⇐⇒ 𝑅

asymmetry for 𝑔 = 𝑔′, as there is a different gauging of the G generators (at a practical level,
this would be solve in the limit 𝑔′ = 0); there is a 𝑡 ↔ 𝑏 splitting in the fermion doublets, as
the top and bottom components have different masses for 𝜆𝑡 ≠ 𝜆𝑏.

3. In the case of the HEFT one use the chiral counting, which sorts out the contribution to the
scattering amplitudes according to a power expansion 𝑇 ∼ ∑

𝑘 𝑐𝑘 𝑝
𝑘 , in the external momenta

(energy) or masses of the light particle, 𝑝 ∼ 𝐸 ∼ 𝑚, with the typical chiral expansion
combination ∼ 𝑝2

16𝜋2𝑣2 . Indeed, the SM counting is a particular case of this chiral counting,

as 𝑔 (′) 2

16𝜋2 ∼ 𝑚2
𝑊,𝑍

16𝜋2𝑣2 , 𝜆2
Fer

16𝜋2 ∼ 𝑚2
Fer

16𝜋2𝑣2 , 𝜆

16𝜋2 ∼ 𝑚2
ℎ

16𝜋2𝑣2 .

We would like to note the similarities and differences between HEFT and SMEFT [11]: both
effective EFT’s are based on the gauge symmetry 𝐺; however, SMEFT includes the Higgs ℎ and
EW Goldstones 𝜔𝑎 as a complex doublet Φ, not as separate degrees of freedom. In addition, HEFT
is organized according to the chiral counting, while SMEFT is organized according to an expansion
in the canonical dimension of the operators.

The effective Lagrangian is organized in growing powers of 𝑝, standing 𝑝 for any soft scale of
the EFT (external momenta, masses 𝑚ℎ, 𝑚𝑊 , etc.) [7]:

LEWET =
∑̂︁
𝑑≥2

L (𝑑)
EWET . (17)

So far the Large Hadron Collider (LHC) has not found any trace of beyond the Standard Model
(BSM) states with masses below 1 TeV. Likewise, no significant deviation has been observed in the
low-energy interactions between Standard Model (SM) particles. Effective field theories are then
the natural approach. In [3, 7, 20] we discuss the possibility of strongly-coupled BSM scenarios
with the approximate custodial symmetry invariance of the SM, exact in the SM scalar sector. We
develop an invariant Lagrangian under G = 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅, which spontaneously breaks down
to the custodial subgroup H = 𝑆𝑈 (2)𝐿+𝑅 and generates the electroweak (EW) would-be Goldstone
bosons 𝜔𝑎, described a unitary 2×2 matrix𝑈 (𝜔). In these (non-linear) EW chiral Lagrangian with
a light Higgs (ECLh), the low-energy amplitude M has an expansion in powers of infrared scales
𝑝 (external momenta and SM masses) of the form (e.g., for 2 → 2 processes) [3, 7, 20–24],

M ∼ 𝑝2

𝑣2︸︷︷︸
LO (tree)

+
(

𝑎𝑟𝑘︸︷︷︸
NLO (tree)

− Γ𝑘

16𝜋2 ln
𝑝

𝜇
+ ...︸                   ︷︷                   ︸

NLO (1-loop)

)
𝑝4

𝑣4 + O(𝑝6) . (18)

The EW effective theory (EWET) Lagrangian operators can be sorted out based on their chiral
dimension:

LEWET = L2 + L4 + ... (19)

where the operators in L𝑑 are of O(𝑝𝑑) [3, 7, 20–23]. Covariant derivatives and masses are
O(𝑝) [19, 25] and each fermion field scales like O(𝑝1/2) in naive dimensional analysis (NDA) [3,
7, 10, 20, 22, 23]. The G–invariant operators in LEWET are built with the Goldstone tensors
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𝑈 (𝜔), functions F𝑘 of the Higgs singlet ℎ, its derivatives 𝜕𝜇1 ...𝜕𝜇𝑛ℎ, the gauge fields and the SM
fermions 𝜓 [1, 10, 35, 36]. From the chiral counting point of view LSM would be O(𝑝2) but its
underlying renormalizable structure makes all Γ𝑘 = 0 and ensures the absences of higher-dimension
divergences [24, 26]. The most important contributions to a given process are given by the operators
of lowest chiral dimension. The leading order (LO) contribution is O(𝑝2) and is given by tree-level
diagrams with onlyL2 vertices. Likewise, the one-loop contribution with onlyL2 vertices is O(𝑝4);
it is suppressed in (18) with respect to the LO by a factor 𝑝2/Λ2

NL, with Λ2
NL ∼ 16𝜋2𝑣2Γ−1

𝑘 ∼> 3 TeV
(with 𝑣 = (

√
2𝐺𝐹)−1/2 ≈ 246 GeV). This suppression factor is related to the non-linearity of the

ECLh and ΛNL → ∞ when the Higgs can be embedded in a complex doublet Φ [24]. 1

In these proceedings [3, 7, 20] we focus our attention on the tree-level next-to-leading order
(NLO) contributions. They are O(𝑝4) and are provided by tree-level diagrams with one L4 vertex
with low-energy coupling 𝑎𝑘 (LEC) and an arbitrary number of L2 vertices. They get contributions
from tree-level heavy resonance exchanges. At low energies, these O(𝑝4) terms in (18) are typically
suppressed with respect to the LO amplitude, O(𝑝2), by a factor 𝑎𝑘 𝑝2/𝑣2 ∼ 𝑝2/𝑀2

𝑅
[3, 7, 20, 46, 47].

3.2 LO Lagrangian, O(𝑝2)

The leading order (LO) term is of O(𝑝2). In addition to all the Standard Model (SM) operators,
L (2)

EWET contains some new physics interactions [1, 5, 6],

L (2)
EWET =

∑︁
𝜉

[
𝑖 𝜉𝛾𝜇𝑑𝜇𝜉 − 𝑣

(
𝜉𝐿 Y 𝜉𝑅 + h.c.

) ]
(20)

− 1
2𝑔2 ⟨𝑊̂𝜇𝜈𝑊̂

𝜇𝜈⟩2 −
1

2𝑔′2 ⟨𝐵̂𝜇𝜈 𝐵̂
𝜇𝜈⟩2 −

1
2𝑔2

𝑠

⟨𝐺̂𝜇𝜈𝐺̂
𝜇𝜈⟩3

+1
2
𝜕𝜇ℎ𝜕

𝜇ℎ − 1
2
𝑚2

ℎℎ
2 −𝑉 (ℎ/𝑣) + 𝑣2

4
F𝑢 (ℎ/𝑣) ⟨𝑢𝜇𝑢𝜇⟩2 ,

where the EW Goldstones 𝜔𝑎 are non-linearly realized through the usual exponential parametriza-

tion 𝑢(𝜔) = exp(𝑖®𝜎 ®𝜔/(2𝑣)), with the Pauli matrices 𝜎𝑎 and the EW scale 𝑣 =

(√
2𝐺𝐹

)−1/2
=

246 GeV. The Higgs field ℎ is a singlet and can enter through undetermined functions F (ℎ/𝑣) that
may appear in front of the chiral operators. In particular, the Goldstone kinetic term introduces the
factor

F𝑢 (ℎ/𝑣) = 1 + 2𝜅𝑊ℎ

𝑣
+ 𝑐2𝑉ℎ

2

𝑣2 + O(ℎ3) . (21)

The couplings 𝜅𝑊 and 𝑐2𝑉 parametrize the ℎ𝑊𝑊 and ℎℎ𝑊𝑊 interactions. These low-energy
constants (LEC) are normalized such that 𝜅𝑊 = 𝑐2𝑉 = 1 in the SM. An alternative notation 𝑎 = 𝜅𝑊

and 𝑏 = 𝑐2𝑉 is used in some works.
It is important to note that the SM Lagrangian is a particular case of L (2)

EWET: regardless of
the considered coordinates for the Higgs and the EW Goldstones (complex doublet or modulus-
phase), the theory is renormalizable, this is, non additional operator is ever needed to cancel out the
ultraviolet divergences.

1Ref. [26] provides a geometrical interpretation in terms of the curvature of metric of the internal weak space of the
Higgs. In the flat-space limit one has Λ → ∞, with Λ the validity cut-off of the EFT. Further studies have shown that the
presence of curvature in the scalar manifold is not, however, the key difference between HEFT and SMEFT-type theories.
See, e.g., Refs. [11, 15, 16, 26].
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3.3 NLO Lagrangian, O(𝑝4)

At next-to-leading order (NLO), O(𝑝4), the effective Lagrangian has the structure [3, 7],

L (4)
EWET =

12∑︁
𝑖=1

F𝑖 (ℎ/𝑣) O𝑖 +
3∑︁
𝑖=1

F̃𝑖 (ℎ/𝑣) Õ𝑖

+
8∑︁
𝑖=1

F 𝜓2

𝑖
(ℎ/𝑣) O𝜓2

𝑖
+

3∑︁
𝑖=1

F̃ 𝜓2

𝑖
(ℎ/𝑣) Õ𝜓2

𝑖

+
10∑︁
𝑖=1

F 𝜓4

𝑖
(ℎ/𝑣) O𝜓4

𝑖
+

2∑︁
𝑖=1

F̃ 𝜓4

𝑖
(ℎ/𝑣) Õ𝜓4

𝑖
. (22)

The precise form of these NLO operators can be found in Refs. [2, 3, 5, 7]. Any non-zero value of the
O(𝑝4) LECs would signal the presence of new physics (NP). Some examples of NLO computations
within the EWET can be found in Refs. [4, 27, 28].

3.4 1 loop corrections: O(𝑝4) renormalization

The HEFT Lagrangian is sorted out according to the chiral dimension of its operators, based on
the scaling 𝐷𝜇, 𝑚Bos, 𝑚Fer, 𝑦Fer, 𝑔

(′) ∼ O(𝑝) [3, 4, 7], such that the observables have an expansion
M ∼ ∑

𝑛 M𝑛 (𝑝2)𝑛, where 𝑝 stands for the appropriate combination of soft scales of the EFT
(𝑘𝜇

𝑖
, 𝑚 𝑗). For instance,

M2→2 =
𝑎M 𝑝2

𝑣2︸︷︷︸
LO (tree)

+
FM 𝑝4

𝑣4︸ ︷︷ ︸
NLO (tree)

+
(
𝑝4ΓM

16𝜋2𝑣4 ln
𝜇

𝑝
+ ...

)
︸                   ︷︷                   ︸

NLO (1−loop)

+ O(𝑝6)︸ ︷︷ ︸
NNLO+...

, (23)

where 𝑎M (O(𝑝2)) and FM (O(𝑝4)) are the corresponding combination of renormalized couplings,
with ΓM providing their running [24, 26, 31–33]. Actually, in a rather baroque way, the SM is
also organized in a chiral expansion, with 𝑝2

16𝜋2𝑣2 =
𝑔 (′) 2

16𝜋2 ,
𝜆2

Fer
16𝜋2 ,

𝜆

16𝜋2 . 2 Since the latter 𝑝’s are
not external momenta but coupling constants, the SM amplitudes (arranged like Eq. (23)) do not
diverge like a power of the energy. Obviously, both in SM and BSM scenarios, particular kinematic
regimes may require further refinements of the EFT, as there may be further hierarchies between
EFT scales.

Path integral functional methods allow one to extract the ultraviolet (UV) renormalization of
the effective Lagrangian. Considering fluctuation 𝜂𝑖 of the HEFT fields around their equation of
motion (EoM) solutions, and expanding LO(𝑝2) in powers of 𝜂𝑖 , the O(𝜂2) terms yield the one-loop
contributions [24, 26]. The boson loop contributions to the effective action are given by∫

ddx L (NL) , 1ℓ
𝑁𝐿𝑂

=
𝑖

2
tr log

(
−
𝛿2LO(𝑝2)
𝛿𝜂𝑖 𝛿𝜂 𝑗

)
= − 𝜇𝑑−4

16𝜋2(𝑑 − 4)

∫
ddx

∑︁
𝑘

Γ𝑘O𝑘 +finite , (24)

The explicit form of the remaining gauge boson and fermion loop UV divergences can be found
in [31–33] and further discussions on gauge-fixing are provided in Ref. [34]. These scalar one-
loop contributions in (24) are O(𝑝4) [24, 26] and the BSM corrections are suppressed by ΔK2 =

2At LO 𝑔2 = 4𝑚2
𝑊
/𝑣2, 𝑔′ 2 = 4(𝑚2

𝑍
− 𝑚2

𝑊
)/𝑣2, 𝜆 = 𝑚2

𝐻
/(2𝑣2) and 𝑦2

Fer = 𝑚2
𝐹𝑒𝑟

/(2𝑣2).
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(
(F ′

𝑢 )2/F𝑢 − 4
)

and Ω =
(
2F ′′

𝑢 /F𝑢 − (F ′
𝑢/F𝑢)2) [24], vanishing in the SM limit. It is interesting to

remark the geometrical analysis in [26], where the manifold of scalar fields (ℎ, ®𝜔) has an associated
metric 𝑔𝑖 𝑗 =diag{F𝑢 (ℎ)𝑔𝑎𝑏 (𝜔), 1} in the HEFT. 3 Interestingly, the corresponding curvature 4 R is
proportional to ΔK2 and Ω. Thus, the scale suppressing the one-loop corrections with respect to
the LO is Λ−2 = R/(4𝜋)2. Barring non-derivative operators, the theory becomes non-interacting
in the flat limit (the SM) –both at the tree and loop level–. This points out that the true expansion
scale of the EFT in general is not the one that explicitly appears suppressing the EFT operators and
individual diagrams (e.g., 4𝜋𝑣 in the HEFT), which depends on the particular choice of coordinates
for the scalar fields; the low-energy amplitudes derived from LO(𝑝2) rather seem to be organized
via an expansion in a more intrinsic and coordinate-independent scale, R:

Geometric-EWET
��
L=LO(𝑝2 )

: M = R𝑝2 + R2𝑝4

(4𝜋)2 + O(𝑝6) . (25)

When testing for new physics, loop corrections must be taken into account to explain ex-
periments with the necessary precision. One of the typical studies within the EFT framework is
vector bosons scattering. At high energies often only boson loop corrections are kept because of its
dependence with powers of the energy while fermion corrections are neglected.

Some final words referring fermion loop corrections: the expression for the fermion contribu-
tions are proportional to the mass of the fermion inside the loop and couplings of the Lagrangian
instead of proportional to derivatives [29, 30]. Some of this couplings still allow an O(10%)
deviation from the SM [4]. Nevertheless, the top Yukawa is so large that for moderate energies this
type of contributions may numerically compete with truly derivarivative interactions. This is the
reason why it is relevant to test the importance of these fermion contributions when considering the
whole range of possible values within the HEFT framework [29].

3.5 HEFT vs SMEFT

In the case with a large mass gap with the lightest NP state 𝑅, as experiments seem to be
indicating, the EFT approach appears as the most convenient one for future data analysis and
interpretation. The aim of this subsection is to discuss two questions that are often posed in relation
with the so-called non-linear HEFT:

• “Since, experimentally, we seem to be so close to the SM, is it not enough to consider the
SMEFT framework to parametrize NP effects at low energies?

• “Are not BSM loops essentially negligible?”

The answer in both cases is no: the SMEFT is appropriate and loops are sub-subdominant only in
particular cases (although this includes a broad set of NP scenarios, such as supersymmetry), as
we will discuss. The two possible representations of the EFT based on the SM symmetries for any
BSM extension are:

3The indices 𝑖, 𝑗 run through the four scalars while 𝑎, 𝑏 are restricted to the ®𝜔 coordinates. The 𝑆𝑂 (4) non-linear
sigma model metric 𝑔𝑎𝑏 ( ®𝜔) is provided, e.g., in [26]. Different coordinate choices give different metrics: e.g., in the
SMEFT, 𝑔𝑖 𝑗 =diag

{
(1 + 𝐻/𝑣)2𝑔𝑎𝑏 ( ®𝜔), 1 + 𝑃(𝐻)

}
.

4All the discussion in these proceedings refers to the associated Riemann R𝑖 𝑗𝑘ℓ , Ricci R𝑖 𝑗 and scalar curvature R
tensors [26], which will loosely denote as “curvature” R.
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• SMEFT: the EFT is build in terms of the complex doublet with the general form Φ =(
𝜙+

𝜙0

)
= (1 + 𝐻/𝑣)𝑈 (𝜔𝑎)⟨ 0|Φ|0 ⟩ (with the vacuum expectation value 𝑣 = 0.246 TeV and

the unitary matrix 𝑈 containing the electroweak (EW) Goldstones 𝜔𝑎), leading to an EFT
Lagrangian organized according to the canonical dimension 𝐷 of the operators [4, 37]

L (SMEFT) = L𝑆𝑀 (𝐷≤4) +
∑︁
𝐷>4

L𝐷 = |𝐷𝜇Φ|2 + 𝑐𝐻

Λ2

(
𝜕𝜇 (Φ†Φ)

)2
+ ...

=
(𝑣 + 𝐻)2

4
⟨𝐷𝜇𝑈

†𝐷𝜇𝑈 ⟩ + 1
2
(1 + 𝑃(𝐻)) (𝜕𝜇ℎ)2 + ... (26)

• HEFT: the EFT is built in terms of 1 singlet ℎ and 3 EW Goldstones 𝜔𝑎 encoded in the NL
representation provided by the unitary matrix𝑈 (𝜔𝑎), leading to an EFT organized according
the chiral dimension 𝑑 of the operators (L𝑆𝑀 ⊂ LO(𝑝2) ) [1, 4, 38]

L (HEFT) = LO(𝑝2) + LO(𝑝≥4) , (27)

LO(𝑝2) =
𝑣2

4
F𝑢 (ℎ)⟨𝐷𝜇𝑈

†𝐷𝜇𝑈 ⟩ + 1
2
(𝜕𝜇ℎ)2 + ... , LO(𝑝4) =

∑︁
𝑘

F𝑘 (ℎ)O𝑘 ,

with F𝑢 (ℎ) = 1 + 2𝑎ℎ/𝑣 + 𝑏ℎ2/𝑣2 + O(ℎ3) having an analytical expansion around ℎ = 0. 5

An extensive analyses on the SMEFT↔HEFT relation can be found in [11]. Here, we provide
a simplified discussion. It is possible to rewrite the SMEFT (26) in the HEFT form (27):

[SMEFT → HEFT] :
𝑑ℎ

𝑑𝐻
=

√︁
1 + 𝑃(𝐻) =⇒ ℎ =

∫ 𝐻

0

√︁
1 + 𝑃(𝐻) 𝑑𝐻 .(28)

Likewise, provided there exists an 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 fixed point ℎ∗ with F𝑢 (ℎ∗) = 0 [26], it is
always possible to revert the complete HEFT Lagrangian (27) into the SMEFT form in terms of Φ
in (26):

[HEFT → SMEFT] : Φ†Φ = (𝑣 + 𝐻)2/2 =
𝑣2

2
F𝑢 (ℎ) . (29)

The issue is not whether we write our all-order EFT Lagrangian in the form (26) or (27), the
problem is to make sense of the EFT perturbative expansion in that realization [37]. Thus, if one
assumes the SMEFT (26) and rewrites it in the L (NL) form, the deviations from the SM in the ℎ𝑊𝑊

and ℎℎ𝑊𝑊 vertices, respectively Δ(𝑎2) = 𝑎2 − 1 and Δ𝑏 = 𝑏 − 1, have the precise form [11, 39] 6

[SMEFT → HEFT] : Δ(𝑎2) = −2𝑐𝐻𝑣2/Λ2 + ..., Δ𝑏 = −4𝑐𝐻𝑣2/Λ2 + ... =⇒ 2Δ(𝑎2) = Δ𝑏 + ...(30)

where the dots stand for the O
(
(𝑣/Λ)𝑛≥4) contributions from SMEFT operators with 𝐷 ≥ 8. The

next couple of examples shows the potential issues of the SMEFT representation:

5The 𝑎 and 𝑏 terms provide the ℎ𝑊𝑊 and ℎℎ𝑊𝑊 interactions, respectively, with normalization 𝑎𝑆𝑀 = 𝑏𝑆𝑀 = 1.
6There is another dimension-6 operator in the SMEFT, 𝑐𝑇 [4, 37], that modifies the Goldstone kinetic term once

L (SMEFT) is rewritten in the L (HEFT) form. However, it does not contributes to F𝑢 (ℎ) in LO(𝑝2) , but to the 𝑎0O0
Longhitano operator [1], NLO due to its large experimental suppression in the 𝑇 oblique parameter [4, 38, 44].
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1. Dilaton Higgs models [40]: formulated in the NL representation (27), they obey the constraint
Δ(𝑎2) = Δ𝑏. Thus, there are large corrections in (30) from operators of dimension 𝐷 > 6 if
one writes L (NL) in the L form (26), leading to a breakdown of the SMEFT expansion [37].

2. 𝑆𝑂 (𝑁)/𝑆𝑂 (𝑁−1) composite Higgs models (CHM) [41]: Interestingly enough, the strongly
interacting CHM can always be rewritten in the SMEFT form [26]. 7 However, its SMEFT
𝑣/ 𝑓 expansion is poorly convergent for 𝑣 ∼ 𝑓 at any energy 𝐸 (or not at all), 8 while its
L (HEFT) gives an EFT with loops suppressed by powers of 𝐸2/(16𝜋2𝑣2) [4], at least 9 valid
for 𝐸 ≪ 4𝜋𝑣.

4. A glimpse on phenomenology

In this section we have a quick look at an (incomplete) selection of BSM studies within
the chiral effective framework. Some works consider a pure HEFT analysis. In others, we will
find further assumptions, as the existence of a strongly interacting UV completion, short-distance
constraints and sum-rules. Depending on its quantum numbers, the observables are contributed by
resonances with different characteristics (lighter, heavier, narrow, broad or even absence of resonant
contributions) which may enter in competition with NLO loops of a similar size, as in happens in
Quantum Chromodynamics. This is specially relevant in quantities where the O(𝑝2) is absent and
start at NLO [4]:

• One-loop resonance computation of the oblique 𝑆 and 𝑇 parameters [44]: the two-
Weinberg sum-rule scenario in [44] yielded an O(𝑝4) tree-level contribution suppressed at
the 95% CL by a scale Λ ∼> 5 TeV (given by the vector and axial-vector resonance mass
contributions −(𝑀2

𝑉
+ 𝑀2

𝐴
)/(4𝑀2

𝑉
𝑀2

𝐴
) to the HEFT coupling 𝑎1 [4]) and the O(𝑝4) loops

suppressed by Λ ∼> 30 TeV (related to the chiral log coefficient (𝑎2 − 1)/(192𝜋2𝑣2) [42, 44]).

• 𝛾𝛾 → 𝑍𝑍 [42]: Based on the Run-1 fit [43], the O(𝑝4) tree-level contribution is suppressed
at the 95% CL by a scale Λ ∼> 1.4 TeV (provided by the combination 2𝑎𝑐𝛾/𝑣2 [42]) and the
O(𝑝4) loops suppressed by Λ ∼> 2.6 TeV (given by (𝑎2 − 1)/(4𝜋2𝑣2) [42]).

In summary: BSM extensions may, in general, contain more than one hard scale. Which one is the
lightest one in the low-energy EFT depends on the particular case. The HEFT organized through
a chiral expansion provides a systematic approach to tackle these issues, valid up to 𝐸 = 4𝜋𝑣 (or
higher energies 10) and is expected to lead to promising NP collider signals in future years [45].

7In particular, these 𝑆𝑂 (𝑁)/𝑆𝑂 (𝑁 − 1) CHM obey the relation in Eq. (30).
8Note that the 95%CL determination 𝑎 > 0.8 [43] implies a rather loose lower bound for the 𝑆𝑂 (𝑁)/𝑆𝑂 (𝑁 − 1)

spontaneous symmetry breaking scale [41] 𝑓 = 𝑣/
√

1 − 𝑎2 > 0.4 TeV for the CHM scale.
9Explicit computations show that even if individual loop diagrams are suppressed in this way, the full one-loop

amplitude shows a much stronger suppression (1 − 𝑎2)𝐸2/(16𝜋2𝑣2) = 𝐸2/(16𝜋2 𝑓 2) for the HEFT derived from the
𝑆𝑂 (5)/𝑆𝑂 (4) CHM [42].

10Due to subtle cancelations in close-to-SM scenarios the HEFT might be valid up to energies way higher than 4𝜋𝑣
as it happens, e.g., in the SM or the 𝑆𝑂 (5)/𝑆𝑂 (4) CHM [41]. In the latter, individual 1-loop diagrams in the HEFT
representation have a suppression O(𝑝2/(16𝜋2𝑣2) but a strong cancellation shows up after summing them up, recovering
the 𝐸2/(16𝜋2 𝑓 2) loop suppression one obtains in the underlying 𝑆𝑂 (5) non-linear sigma model diagram by diagram [42].
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5. Conclusions

In these proceedings we discuss the effective field theory (EFT) description of the electroweak
(EW) gauge and Higgs sectors and its phenomenological applications. We adopt the non-linear EW
effective theory realization of the EW symmetry [1, 3, 7, 20], also known as Higgs effective field the-
ory (HEFT) or electroweak chiral Lagrangian (EWChL) [1, 4–6]. The basic ingredient of the EFT are
the SM symmetries, in particular the EW symmetry-breaking pattern 𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅/𝑆𝑈 (2)𝐿+𝑅,
where the chiral group gets spontaneously broken down to the custodial subgroup.11

Following the CCWZ formalism [17, 18] one constructs the corresponding effective La-
grangian, with its effective operators sorted out according to the chiral O(𝑝𝑑) counting.

The EWET couplings can be predicted in terms of resonance parameters; different resonance
quantum numbers lead to different patterns for the LECs [3, 7, 20, 46]. Further assumptions about
the UV structure of the underlying theory can be used to refine the predictions [3, 7, 20, 44]. In
thhese proceedings we have provided a couple of examples to show that composite resonances with
masses of a few TeV (𝑀𝑅 ∼ 4𝜋𝑣 ≈ 3 TeV) are compatible with present direct and indirect searches,
and can easily comply with the low-energy electroweak precision tests.
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