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1. Introduction

To understand the hadron spectrum is a main task in understanding the strong inter-
action. The quark potential models which partially incorporate the effective interaction
from QCD have achieved a general success in predicting many meson states with different
quantum numbers [1, 2]. However, above the open flavor threshold, there are severe devi-
ations of the predictions from the experiments. In recent years, a lot of XYZ states were
discovered in the experiments which may not have the conventional 𝑞𝑞 state explanation.
To understand the origins of these states is an important problem to be addressed.

The naïve classification of the hadronic states is to use their quark components like
𝑞𝑞 for meson states, 𝑞𝑞𝑞 for Baryon states, and tetraquarks, etc. In the scattering of these
states, there could be bound states, virtual states or resonances as the intermediate states.
In fact, lots of states in the experiments are discovered as resonances. In general, when a
state appears as the intermediate state of the scattering of two hadronic states, it may not be
pure fundamental one like 𝑞𝑞 state, but may also contain higher Fock space components
such as two-hadron continuum components. Besides, some states are proposed to be pure
composite ones which have only the continuum components. How to describe these states
in terms of these components is a theoretical interesting problem.

To understand these states is hard in the real world situation, however, by analysing
a solvable model one can grasp some main properties of the intermediate states and gain
further insights to the states in the real world. We will look at a solvable model — the
Friedrichs-Lee model. The original idea of the Friedrichs model is that, when a discrete
state is coupled to an opened continuum channel, the discrete state will dissolve into the
continuum and becomes a resonant state [3]. Then the discrete state solutions for the full
Hamiltonian can be exactly solved. There are also other models implementing similar
idea in various areas in physics, such as in atomic physics [4] and in quantum optics [5].
The Lee model is an implementation in the QFT to study the renormalization [6]. The
Friedrichs-Lee model is also linked to quantum field theory (QFT) model in [7] and thermal
systems [8]. From the exact solution of this model, we will try to make some observations
of the properties of the intermediate bound states, virtual states and resonances, which are
helpful in understanding the hadron spectrum. This model can also be applied to the real
world hadron spectrum analysis and produce some interesting results.

2. Bound state, virtual state and resonances in Friedrichs model

In this section, we review some basic facts of the Friedrichs model [3] and some
of its generalizations developed in [9–11]. The simplest version of the Friedrichs model
consist in a discrete state |0⟩, a continuum |𝜔⟩ , and the interaction between them. The full

2



P
o
S
(
C
D
2
0
2
1
)
0
0
4

Theoretical aspects on bound states, virtual states and resonances . . . Zhiguang Xiao

Hamiltonian 𝐻 is separated into a free part 𝐻0 and an interaction part 𝑉 as

𝐻 =𝐻0 +𝑉, 𝐻0 = 𝜔0 |0⟩⟨0| +
∫ ∞

𝜔𝑡ℎ

𝜔|𝜔⟩⟨𝜔|𝑑𝜔, (1)

𝑉 =𝜆

∫ ∞

𝜔𝑡ℎ

[ 𝑓 (𝜔) |𝜔⟩⟨0| + 𝑓 ∗(𝜔) |0⟩⟨𝜔|]d𝜔, (2)

with ⟨0|0⟩ = 1, ⟨𝜔|𝜔′⟩ = 𝛿(𝜔 − 𝜔′), ⟨0|𝜔⟩ = ⟨𝜔|0⟩ = 0, (3)

where the 𝜔0 denotes the energy for the free discrete state, and 𝜔 ∈ [𝜔𝑡ℎ,∞) the energy
range for the free continuum state, 𝜔𝑡ℎ being the threshold for the continuum states. 𝑓 (𝜔)
function is the coupling vertex between the discrete state and the continuum state, and 𝜆
denotes the coupling strength. The eigenvalue problem for the full Hamiltonian can be
exactly solved and the solutions include a continuum spectrum and a discrete spectrum.
The final generalized eigenstates of the continuum spectrum with eigenvalue 𝐸 > 𝜔𝑡ℎ can
be expressed as

|Ψ±(𝐸)⟩ =|𝐸⟩ + 𝜆
𝑓 (𝐸)
𝜂±(𝐸)

[
|0⟩ + 𝜆

∫ ∞

𝜔𝑡ℎ

d𝜔
𝑓 (𝜔)

𝐸 − 𝜔 ± 𝑖𝜖 |𝜔⟩
]
, (4)

where 𝜂±(𝑥) =𝑥 − 𝜔0 − 𝜆2
∫ ∞

𝜔𝑡ℎ

𝑓 (𝜔) 𝑓 ∗(𝜔)
𝑥 − 𝜔 ± 𝑖𝜖 d𝜔 , ⟨Ψ±(𝐸) |Ψ±(𝐸′)⟩ = 𝛿(𝐸 − 𝐸′) . (5)

The subscript ± denotes the in-states (+) and outstates (−), respectively. The 𝑆-matrix can
then be obtained as

𝑆(𝐸, 𝐸′) = 𝛿(𝐸 − 𝐸′)
(
1 − 2𝜋𝑖

𝜆 𝑓 (𝐸) 𝑓 ∗(𝐸)
𝜂+(𝐸)

)
. (6)

The 𝜂± function can be analytically continued to the complex plane to be one complex
function 𝜂(𝑧) for 𝑧 ∈ C with a cut on 𝐸 > 𝜔𝑡ℎ, with 𝜂(𝑥 ± 𝑖𝜖) = 𝜂±(𝑥) for 𝑥 > 𝜔𝑡ℎ at the
upper or the lower edge of the cut. Continued through the cut, 𝜂(𝑧) can be defined on a two-
sheeted Riemann surface. From Eq. (6), the zero points for the 𝜂(𝑧) = 0 will be the poles
for the 𝑆-matrix. As expected, by directly solving the eigenvalue problem, the generalized
discrete eigenvalues for the full Hamiltonian are just the zero points of 𝜂(𝑧). Usually, for
hermitian Hamiltonian, there are only real eigenvalues for the normalizable eigenvectors
in the Hilbert space. However, the zero points of 𝜂 obviously can have complex solutions,
which correspond to the non-normalizable state vectors and are called the generalized
eigenstates for the Hamiltonian. Depending on the position of the solution on the double-
sheeted Riemann surface, different kinds of the discrete generalized eigenstates can be
found:

1. Bound state.

The solution to 𝜂(𝑧) = 0 on the real axis of the first sheet with 𝑧 < 𝜔𝑡ℎ represents a
bound state. The solution for a bound state at 𝑧𝐵 is expressed as

|𝑧𝐵⟩ = 𝑁𝐵
(
|0⟩ + 𝜆

∫ ∞

𝜔𝑡ℎ

𝑓 (𝜔)
𝑧𝐵 − 𝜔

|𝜔⟩d𝜔
)
. (7)
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This state has a finite norm and can be normalized as ⟨𝑧𝐵 |𝑧𝐵⟩ = 1 when

𝑁𝐵 = (𝜂′(𝑧𝐵))−1/2 =

(
1 + 𝜆2

∫
𝑑𝜔

| 𝑓 (𝜔) |2
(𝑧𝐵 − 𝜔)2

)−1/2
.

Thus, as expected, this is a well-defined eigenstate of the Hamiltonian in the Hilbert
space. Then, it is easy to define the so-called “elementariness” 𝑍 which means the
probability of finding the original bare discrete state in the bound state, and also the
“compositeness” 𝑋 , the probability for finding the original continuum states in the
bound state, the same as what Weinberg did[12]

𝑍 =𝑁2
𝐵 , 𝑋 = 𝜆2𝑁2

𝐵

∫
𝑑𝜔

| 𝑓 (𝜔) |2
(𝑧𝐵 − 𝜔)2 . (8)

2. Virtual state.

If the solution lies on the real axis below the threshold on the second sheet, it
represents a virtual state. The state for the solution can be expressed as

|𝑧±𝑉 ⟩ = 𝑁𝑉
(
|0⟩ + 𝜆

∫ ∞

𝜔𝑡ℎ

𝑓 (𝜔)
[𝑧𝑉 − 𝜔]±

|𝜔⟩d𝜔
)
, (9)

where the [· · · ]± means the analytical continuations of the integration from upper
edge (+) and lower edge (−) of the cut to the second sheet [9]. The analytic
continuation can be done by deforming the integration contour from the upper side
(+) or the lower side (−) of cut on the first sheet to the second sheet, enclosing the
virtual state pole position. See Fig. 1 for an illustration of the contour for |𝑧+

𝑉
⟩.

Since the physical region is on the upper edge of the cut, we take |𝑧+
𝑉
⟩ as a standard

representation for the virtual state which is continued from the upper edge. Unlike
the bound state, virtual state does not have a well-defined norm as the usual states
in the Hilbert space, due to the different integration contours for ⟨𝑧+

𝑉
| and |𝑧+

𝑉
⟩ from

Eq. (9). Thus, it is not a well-defined state in Hilbert space. As a result, the
compositeness and elementariness for the virtual state can not be mathematically
rigorously defined as usual. However, since the integral contours for ⟨𝑧−

𝑉
| and |𝑧+

𝑉
⟩

are the same, we can define a normalization such that ⟨𝑧−
𝑉
|𝑧+
𝑉
⟩ = 1, by choosing

𝑁𝑉 = ⟨𝑧−
𝑉
|𝑧+
𝑉
⟩ = (𝜂′+(𝑧𝑉 ))−1/2 =

(
1 + 𝜆2

∫
𝑑𝜔

| 𝑓 (𝜔) |2
[𝑧𝑉−𝜔]2

+

)−1/2
. However, it is not

guaranteed that 𝑁𝑉 is positive definite, because of the detoured integration path.

3. Resonant state.

If there is a solution in complex plane of the second Riemann sheet there must be
another pole at the mirror image with respect to the real axis because of the real
analyticity of 𝜂 function. This pair of poles represent a resonance since it is unstable
due to the finite imaginary part of the energy eigenvalue. The pole position close to
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Figure 1: The example integration contour for the virtual state and resonant state.

the physical region is related to the mass 𝑀 and width Γ as 𝑧 = 𝑀 − 𝑖 Γ2 . The states
for the two poles can be expressed as

|𝑧𝑅⟩ = 𝑁𝑅
(
|0⟩ + 𝜆

∫ ∞

𝜔𝑡ℎ

d𝜔
𝑓 (𝜔)

[𝑧𝑅 − 𝜔]+
|𝜔⟩

)
, |𝑧∗𝑅⟩ = 𝑁∗

𝑅

(
|0⟩ + 𝜆

∫ ∞

𝜔𝑡ℎ

d𝜔
𝑓 ∗(𝜔)

[𝑧∗
𝑅
− 𝜔]−

|𝜔⟩
)
,(10)

where 𝑧𝑅 is on the lower half plane and 𝑧∗
𝑅

is its complex conjugate. Similar to the
virtual states, the resonance states can not be normalized as usual, and thus are not
the normal state vector in the Hilbert space. However we can also choose

𝑁𝑅 = (𝜂′+(𝑧𝑅))−1/2 =

(
1 + 𝜆2

∫ ∞

𝜔𝑡ℎ

𝑑𝜔
| 𝑓 (𝜔) |2

[(𝑧𝑅 − 𝜔)+]2

)−1/2

(11)

to normalize the state as ⟨𝑧∗
𝑅
|𝑧𝑅⟩ = 1. Notice that the normalization 𝑁𝑅 will be

complex in general. By summing up the perturbation series, I. Prigogine and his
collaborators also obtained similar solutions [13].

3. Properties of bound states, virtual states and resonances

The bound states can be generated in two ways. The first is when 𝜔0 < 𝜔𝑡ℎ with a
small enough coupling, the position of the original discrete state is renormalized and the
bound state pole is just shifted a little from 𝜔0 on the real axis of the first sheet. The
second way is that for a large attractive coupling, there could be virtual state pole coming
up from the second sheet to the first sheet and becoming a bound state pole, or there could
be resonance poles that meet at the threshold and become a bound state and a virtual state.
We will see examples later.

If 𝜔0 > 𝜔𝑡ℎ, when the coupling is turned on the discrete state pole will move onto
the complex plane of the second Riemann sheet and become a pair of resonance poles.
Another way for a resonant state to appear is that it can be dynamically generated as an
intrinsic nonperturbative phenomenon. In general, the dynamically generated pole is the
result of the interaction form factor, i.e. it is related to the singularities of the form factor.
Usually, this kind of pole comes from faraway and moves near to the physical region at a
strong coupling.

The virtual states could be generated also in different ways. The first way is that it
appears as the accompanying shadow pole of the bound state generated from the original

5
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Figure 2: (a) An example 𝜂 function on the first sheet and second sheet when 𝜔 < 𝜔𝑡ℎ and the
coupling is small. Here, 𝜔𝑡ℎ = 0, 𝜔0 = −1. There is also a simple pole of the form factor 𝐺 (𝜔)
at 𝜔 = −3. (b) An example pole trajectory for the dynamically generated resonance poles from the
singularity of the form factor. The poles for the form factor are at ±𝑖1.9. The pole for the bare state
is at 1.0.

discrete state when the coupling is small enough and 𝜔0 < 𝜔𝑡ℎ. This can be easily seen
from the analytically continued 𝜂(𝑧) function,

𝜂𝐼 =𝑧 − 𝜔0 − 𝜆2
∫ ∞

0

| 𝑓 (𝜔) |2
𝑧 − 𝜔 d𝜔 (12)

𝜂𝐼 𝐼 (𝜔) =𝜂𝐼 (𝜔) + 2𝜋𝑖𝜆2𝐺 𝐼 𝐼 (𝜔) = 𝜂𝐼 (𝜔) − 2𝜆2𝜋𝑖 𝐺 (𝜔), (13)

where 𝐺 (𝜔) = | 𝑓 (𝜔) |2 and the superscript 𝐼 and 𝐼 𝐼 denotes the first and the second sheet.
Since in general 𝐺 (𝜔) is proportional to the imaginary part of 𝜂 function for 𝜔 > 𝜔𝑡ℎ, in
most physical applications, it would be an anti-analytic function, i.e. 𝐺∗(𝜔) = −𝐺 (𝜔∗),
and 2𝜋𝑖𝐺 (𝜔) would be real below the threshold. When 𝜆 is small, on the first sheet, the
integral term, which is real and negative, only deforms the 𝜂 function a little, thus shift the
bound state pole position from 𝜔0 a little. On the second sheet, since 2𝜆2𝜋𝑖𝐺 (𝜔) is real
in (13), near 𝜔0 the 𝜂 function is also shifted a little, and there should be a zero point to
𝜂𝐼 𝐼 near 𝜔0, which means that the bound state would always accompanied with a virtual
shadow pole. See Fig. 2(a) for an illustration.

The virtual states could also be generated from the form factor. This is also illustrated
in Fig. 2(a) where there is a simple pole of the form factor at 𝜔 = −3. We can see that there
is a pole for the 𝜂𝐼 𝐼 at the position of the form factor 𝐺 (𝜔) from Eq. (13). This further
produce a zero point for 𝜂𝐼 𝐼 and hence generates the dynamical virtual state. There could
also be dynamically generated resonances from the poles of form factor (Fig2(b)). For
the exponential form factor, similar dynamical poles could be generated from infinity. See
[9, 10] for detailed discussions.

Thus we see that, in general, there could be states dynamically generated from the
singular points of the form factor. Since this kind of dispersion relation also appears in
other widely used models, the above discussion also applies to these models.
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All the discrete states, whether dynamically generated or originated from the bare ones
are represented as in Eq. (7), (9), (10). Since in these equations the continuum components
are multiplied by 𝜆, one may wonder whether in the 𝜆 → 0 limit, all the discrete state
solutions tend to the bare ones. For the states generated from the bare states, it is true. But
for the dynamical ones, this is not the case. The point is that the pole positions for the
dynamically generated poles also depends on 𝜆 and as 𝜆 → 0 they tends to the singular
points of the 𝐺 (𝜔). This causes the integral to be divergent and the singularity cancels the
coefficient 𝜆. Thus at 𝜆 → 0 limit, the continuum part would not vanish, and the states
does not tend to the bare discrete states because of the singularities in the integral.

Consequently, there is a caveat for a common practice of using the form factor put by
hand when unitarizing the Chiral perturbation or other perturbative results. Usually, people
start from a perturbation calculation from a Lagrangian model and use an exponential or
monopole form factor put by hand to impose a high energy suppression of the perturbative
result. Then after the unitarization they found a dynamically generated state and claim
that there is a state dynamically generated by their Lagrangian model. From the above
discussion, we see that the form factor alone can dynamically generate states. There could
be a possibility that the dynamical state they found is generated not from their Lagrangian
model by itself but from the form factor which is put by hand and has no dynamical origin
from the Lagrangian. Thus the claim that the Lagrangian model generates the dynamical
state would be suspicious.

It is important to emphasize that in the expressions for virtual states and resonant
states, the integral contour should be deformed since the pole positions are located on the
second sheet. This is the reason why the state can not be normalized as usual, since the
multiplication for two distributions may not be well-defined. For the resonance, in fact,
the usually defined norm ⟨𝑧𝑅 |𝑧𝑅⟩ can be evaluated by a manipulation of the integration
and turns out to be exactly zero. A simple argument is that for ⟨𝑧𝑅 |𝐻 |𝑧𝑅⟩, 𝐻 can act
both on the left and on the right to give 𝑧∗

𝑅
⟨𝑧𝑅 |𝑧𝑅⟩ and 𝑧𝑅⟨𝑧𝑅 |𝑧𝑅⟩. When 𝑧𝑅 has nonzero

imaginary part, ⟨𝑧𝑅 |𝑧𝑅⟩ has to be zero [14]. When the norm of a vector is nonzero, no
matter how small it is, it can always be normalized. But as long as it has zero norm, it can
not be normalized and is not a well-defined state in the Hilbert space. This is what happens
here for 𝜔0 > 𝜔𝑡ℎ. When there is no interaction, the discrete state has nonzero norm
and can be normalized, and whenever the interaction is turned on its norm vanishes and
can not be normalized as usual. The normalization coefficient defined above in Eq. (11)
has no probability explanation, since it can be complex. Thus, no compositeness and
elementariness with the probability explanation can be defined as usual. In this sense,
strictly speaking, Weinberg’s original discussion on the compositeness and elementariness
for the narrow resonances in [12] is not valid. However, some definitions proposed in the
literature such as in [15] might be able to approximately describe the compositeness and
elementariness for resonance. In fact, in our opinion, compositeness and elementariness
are not physical observables and have no experimental tests, therefore to propose different
definitions does not make much physical sense.

7
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4. Dynamically generated states for different partial waves

In above discussions, the continuum states are labeled only by the energy quantum
number, which seems to be unrelated to the states in the three dimensional space.

In fact, after partial-wave decomposition of the three dimensional states, the simi-
lar nonrelativistic model for the three dimensional states is reduced to a Friedrichs-like
model [11]. Since we consider only fixed total angular momentum quantum numbers 𝐽𝑀
and fixed 𝑆, by defining |0⟩ = |0; 𝐽𝑀⟩, |𝜔, 𝐿⟩ =

√
𝜇𝑝 |𝑝; 𝐽𝑀; 𝐿𝑆⟩ and the interaction

vertex function 𝑓 (𝜔), the total Hamiltonian for one single discrete state coupled with a
continuum with a fixed 𝐽𝑀 can be cast into

𝐻 =𝑀0 |0⟩⟨0| +
∑︁
𝐿

∫
d𝜔𝜔|𝜔, 𝐿⟩⟨𝜔, 𝐿 | +

∑︁
𝐿

∫
𝑑𝜔 𝑓𝐿 (𝜔) |0⟩⟨𝜔, 𝐿 | + ℎ.𝑐. (14)

This is just similar to the original Friedrichs model but with more continua, and the similar
exact solution can be obtained.

We can make more generalizations by adding more discrete states and more continuum
states, and the interactions between continuum states can also be introduced. The most
general Hamiltonian with 𝐷 discrete states, |𝑖⟩ (𝑖 = 1, . . . , 𝐷), and 𝐶 continuum states,
|𝜔 𝑗 , 𝑗⟩ ( 𝑗 = 1, . . . , 𝐶), can be expressed as

𝐻 =

𝐷∑︁
𝑖=1

𝑀𝑖 |0; 𝑖⟩⟨0; 𝑖 | +
𝐶∑︁
𝑖=1

∫ ∞

𝑀𝑖,𝑡ℎ

𝑑𝜔𝑖𝜔𝑖 |𝜔𝑖; 𝑖⟩⟨𝜔𝑖; 𝑖 | (15)

+
∑︁
𝑖2,𝑖1

∫
𝑀𝑖1 ,𝑡ℎ

d𝜔′
∫
𝑀𝑖2 ,𝑡ℎ

d𝜔 𝑔𝑖2,𝑖1 (𝜔′, 𝜔) |𝜔′; 𝑖2⟩⟨𝜔; 𝑖1 | + ℎ.𝑐. (16)

+
𝐷∑︁
𝑖=1

𝐶∑︁
𝑗=1

∫
𝑀 𝑗 ,𝑡ℎ

𝑑𝜔 𝑓𝑖, 𝑗 (𝜔) |0; 𝑖⟩⟨𝜔; 𝑗 | + ℎ.𝑐. (17)

where 𝑓𝑖, 𝑗 (𝜔) is the form factor describing the interaction between the 𝑖th discrete state
and the 𝑗 th continuum state, and 𝑔𝑖 𝑗 describes the interaction between the 𝑖th continuum
and the 𝑗 th continuum. For general interactions 𝑔𝑖 𝑗 , the model is not solvable, but if
𝑔𝑖 𝑗 (𝜔′, 𝜔) = 𝑣𝑖 𝑗 𝑓𝑖 (𝜔′) 𝑓 𝑗 (𝜔) and 𝑓𝑖 𝑗 = 𝑢𝑖 𝑗 𝑓 𝑗 (𝜔), where 𝑢𝑖 𝑗 and 𝑣𝑖 𝑗 are constant, the model
can also be exactly solved. See Ref. [11] for details. Similar separable potential models
are also widely used, for example in [16–19]. When there is one more continuum coupled
in the system, there will be a new threshold and the Riemann sheets will be doubled. All
the poles are also copied to the corresponding new sheets and be renormalized separately,
and thus form shadow poles on different sheets with the same origins.

With this formalism we can use a model with only the continuum-continuum interaction
but no discrete bare state to look at the behaviors of the dynamically generated states near

8
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(a) (b)

(c) (d)

Figure 3: (a)(b) illustrate the pole trajectory for the 𝑆-wave states. One bound state move up to
the threshold and across the threshold to the second sheet becoming a virtual state as the coupling
decreases. (c)(d) illustrate the pole trajectory for the 𝑃-wave state. One bound state and one virtual
state merges at the threshold and become a pair of resonance poles

threshold in different partial waves. The Hamiltonian with attractive interaction is

𝐻 =

∫
𝑎

d𝜔𝜔|𝜔⟩⟨𝜔 | − 𝜆2
∫
𝑎

d𝜔
∫
𝑎

d𝜔′ 𝑓 (𝜔) 𝑓 ∗(𝜔′) |𝜔⟩⟨𝜔′| (18)

𝑓 (𝜔) =(𝜔 − 𝑎) (𝑙+1/2)/2 exp{−(𝜔 − 𝑎)/(2Λ)} (19)

Since the behaviors of the form factor near the threshold for different partial waves are
universal, we expect that the behaviors of the states near the threshold could be qualitatively
correct. The typical 𝑆-wave and 𝑃-wave pole trajectories near the threshold are shown in
Fig.3. From this figure we can see that for 𝑆-wave, the bound state near the threshold could
appear by itself, and as the coupling decreases, it moves up across the threshold to the
second sheet and become a virtual state. In the 𝑃-wave, we see that the bound state and
the virtual state appear together and as the coupling decreases, they meet at the threshold
to become a pair of resonance poles. This behavior near the threshold is also typical
for the higher partial waves. This difference for 𝑆-wave and higher partial waves were
also discussed in [20] using the effective range expansion and also in [21] using the Jost
function. Recall that with the weak coupling, when 𝜔0 < 𝜔𝑡ℎ, the bare state generates a
bound state and a virtual state, which is similar to the cases for the higher partial waves. But
the bound state in the 𝑆-wave seems different, it could have no accompanied near threshold
virtual state. This is a demonstration of the so called pole-counting rule proposed by
Morgan [22, 23] and used in the determination of the exotic states [24]. However, the
virtual-bound pair generated from the bare state locates close to each other only at weak
couplings. When the coupling is strong, this rule may not be a solid criterion.
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5. Relativistic generalization: Friedrichs-Lee model

In the non-relativistic Friedrichs model, we see that the integral in 𝜂(𝜔) is in terms
of energy. But we know that for relativistic theory, the corresponding dispersion relations
are expressed in terms of the Lorentz invariant 𝑠 ∼ 𝐸2. This is because in the non-
relativistic theory, the negative frequency part or the antiparticles are not taken into account.
There are several ways to incorporate the relativistic effects into the Friedrichs model in a
systematical way [25, 26] and we will follow the method in [26] which is direct and simple
by introducing a bilocal operator to simulate the two-particle state. The creation operator
for the bare discrete state is 𝑎†p 𝑗𝑚 with [𝑎p 𝑗𝑚, 𝑎

†
p′ 𝑗 ′𝑚′] = 𝛿(3) (p − p′)𝛿 𝑗 𝑗 ′𝛿𝑚𝑚′ . The bilocal

field approach makes a little more simplification than Lee-model by describing the two-
particle continuum using one set of creation and annihilation operator 𝐵(𝐸, p), 𝐵†(𝐸, p)
with the commutator [𝐵(𝐸, p), 𝐵†(𝐸′, p′)] = 𝛿(3) (p − p′)𝛽(𝐸)−1𝛿(𝐸 − 𝐸′). Then, the
Hamiltonian can be expressed as

𝑃0 =

∫
d3p𝜔(p)𝑎†(p)𝑎(p) +

∫
d3p𝑘2d𝑘𝐸 (p, k)𝐵†(p, 𝑘)𝐵(p, 𝑘)

+
∫

d3p𝑘2d𝑘𝛼(𝑘) (𝑎(p) + 𝑎†(−p)) (𝐵†(p, 𝑘) + 𝐵(−p, 𝑘)), (20)

where we omitted the angular momentum quantum number for simplicity. The energy of the
free single-particle state is𝜔(p) = (p2+𝜔2

0)
1/2 and the total energy of the free two-particle

state is 𝐸 (p, k) = (p2+𝑊 (k)2)1/2 with the c.m. energy defined by𝑊 (k) = 𝜀1(k) +𝜀2(−k).
The coupling vertex, 𝛼(𝑘), represents the interaction between the single-particle state and
the two-particle state [27]. Then to solve the eigenvalue problem is to find the new ladder
operators 𝑏†(𝐸, p) solution for the equation

[𝑃𝜇, 𝑏†(𝐸, p)] = 𝑝𝜇𝑏†(𝐸, p), (21)

in terms of 𝐵†(𝐸, p),𝐵(𝐸,−p),𝑎†(p), and 𝑎(−p). This can be exactly solved as the
nonrelativistic one. The 𝜂 function can now be expressed using the relativistic invariant 𝑠

𝜂±(𝑠) = 𝑠 − 𝜔2
0 −

∫
𝑠𝑡ℎ

𝑑𝑠′
𝜌(𝑠′)

𝑠 − 𝑠′ ± 𝑖0 , (22)

where in center of mass system 𝜌(𝑊) = 2𝜔0𝛽(𝑊)𝛼(𝑘)2 = 2𝜔0
𝑘𝜀1𝜀2
𝑊

𝛼(𝑘)2, 𝜌(𝑠) ≡
2𝜔(p)𝛽(𝐸′)𝛼(𝑘 (𝐸′, p))2. The pole position for the discrete state can be obtained by
solving 𝜂(𝑠) = 0, where 𝜂(𝑠) is the analytically continued 𝜂± on the complex 𝑠-plane.
Similarly, the bound state, virtual state, resonance solutions can be obtained at the zero
points of 𝜂(𝑠). For completeness, we list only the creation operators for the bound states

𝑏†(𝐸0, p) =𝑁
[
(𝜔(p) + 𝐸0)√︁

2𝜔(p)
𝑎†(p) − (𝜔(p) − 𝐸0)√︁

2𝜔(p)
𝑎(−p)

−
√︁

2𝜔(p)
∫
𝑀𝑡ℎ

𝑑𝐸′𝛽(𝐸′)
[𝛼(𝑘 (𝐸′, p))
𝐸′ − 𝐸0

𝐵†(𝐸′, p) − 𝛼(𝑘 (𝐸′, p))
𝐸′ + 𝐸0

𝐵(𝐸′,−p)
] ]
.

(23)

10
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All the forgoing discussions in the nonrelativistic model apply also in the relativistic model.

6. Application: Nonrelativistic Friedrichs-QPC scheme

The Friedrichs model can not only clarify some conceptual problem, but also can have
applications in real hadronic physics where there is interaction between discrete states and
continuum states. We will restrict our study on the properties of mesons.

To apply this model, one has to determine the interaction between the discrete meson
state and the two-meson continuum state from the real dynamics instead of putting it by
hand. We first consider the non-relativistic cases. Here, we use the QPC model [28] to
model this kind of interaction. In this model, the meson coupling 𝐴→ 𝐵𝐶 can be defined
as the transition matrix element

⟨𝐵𝐶 |𝑇 |𝐴⟩ = 𝛿3( ®𝑃 𝑓 − ®𝑃𝑖)M𝐴𝐵𝐶 (24)

where the transition operator 𝑇 in the QPC model describes the quark-antiquark pair
generation from the vacuum and |𝐴⟩, |𝐵⟩, |𝐶⟩ are the Mock states for the mesons [28]. By
the standard derivation one can obtain the amplitude M𝐴𝐵𝐶 defined by Eq. (24) and the
partial-wave amplitude M𝑆𝐿 (𝑃(𝜔)) as in Ref. [28]. Then the vertex 𝑓𝑆𝐿 which describes
the interaction between |𝐴⟩ and |𝐵𝐶⟩ in the Friedrichs model can be obtained. The bare
masses and radial wave functions of the meson states in the QPC model can be given by
the GI model [2]. Then this Friedrichs-QPC scheme can be viewed as including the hadron
loop correction to the Godfrey-Isgur’s results.

Now we have set up the basic scheme and it can be used to study some physical
hadronic spectra where there are interactions between discrete states and continuum states.
In ref. [29], we discussed the charmonium like spectra in the 23𝑃0,1,2 and 21𝑃1 sectors.
By coupling the quarkonium states in these four channels with the corresponding continua
states using the QPC model with the wave function from GI, we can calculate the interaction
vertex. Only the OZI allowed channels are included up to 𝐷∗�̄�∗. Then by solving the
𝜂(𝜔) = 0 from the Friedrichs model we can find out the discrete states in these four channels.
The results are listed in table (1). It is important to emphasize that the interaction vertex is
totally given by the dynamics from the QPC model with only one free parameter 𝛾.

From the result, we see that the famous 𝑋 (3872) appears as the dynamically generated
bound state by the interaction between the 23𝑃1 charmonium and the 𝐷�̄�∗, 𝐷∗�̄�∗ continua.
The 𝐷�̄�∗ component is found to be the dominant one. The original 𝜒𝑐1 moves to the second
sheet and become a resonance which may be related to the 𝑋 (3940). Similar results were
also found in [31, 32]. The 𝜒𝑐0 state is strange. Its interaction to the 𝐷�̄� is smaller than
the one to the 𝐷∗�̄�∗. It is this strong 𝐷∗�̄�∗ coupling which drags the 𝜒𝑐0 state down to
around 3860 MeV.
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Table 1: Comparison of the experimental masses and the total widths (in MeV) [30] with our
results.

𝑛2𝑠+1𝐿𝐽 𝑀𝑒𝑥𝑝𝑡 Γ𝑒𝑥𝑝𝑡 𝑀𝐵𝑊 Γ𝐵𝑊 pole GI
23𝑃2 3927.2 ± 2.6 24 ± 6 3920 10 3920-4i 3979
23𝑃1 3942 ± 9 37+27

−17 3934-40i 3953
3871.69 ± 0.17 < 1.2 3871 0 3871-0i

23𝑃0 3862+66
−45 201+242

−149 3878 11 3878-5i 3917
21𝑃1 3895 37 3902-27i 3956

7. Application: two-pole structures in hadron spectra

In previous discussions, we notice that by coupling the discrete state with the contin-
uum, there could be new state dynamically generated and together with the original one
they could form the two-pole structure. The dynamically generated pole is also called the
“companion pole” [33]. Such a phenomenon has been seen in the literature in different
situations [19, 31, 32, 34–41]. This phenomenon may be a general one and appears not
only in the heavy quark system but also in the low lying states with light quarks.

The lightest 0+ scalars 𝑓0(500), 𝐾∗
0 (700), 𝑎0(980), and 𝑓0(980) are suggested to be

non-𝑞𝑞 states. More recently, some hadron states with heavy quarks, such as 𝐷∗
0(2300),

𝐷∗
𝑠0(2317), are also puzzling states which could hardly be accommodated in the predicted

𝑞𝑞 states in the quark potential model. With relativistic Friedrichs model we can study
whether these states can be dynamically generated by the above mechanism. These dynam-
ically generated states may combine with the bare seed states and form two-pole structures.
To describe both the light scalars and the ones with heavy quarks, the relativistic QPC
model by Fuda [42] is used here. Some predictions on the corresponding states with 𝑏
quarks can also be made. Our results from Ref. [42, 43] is shown in Tab.2. Similar
two-pole structures are also found in the Unitarized H𝜒PT approach [44–46], however,
with different origins.

8. Conclusion

The Friedrichs model as a solvable model can give an explicit expression of the
bound states, virtual states, and resonances, and helps us in understanding different states
in the hadron physics. From this discussion, we understood why the virtual states and
resonances can not be normalized and can not have a good definition of the compositeness
and elementariness. In order to understand the origin of the dynamically generated states,
we also show some examples where some states can be dynamically generated from the
singularities of the form factors. Different behaviors for the near-threshold dynamically
generated states in different partial waves are also discussed. Combined with QPC model,

12
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Table 2: Correspondence of the discrete states and the continuum states as the parameter 𝛾 =

4.3GeV. The values in the fourth column are the input mass of bare states. Unit is GeV.

“discrete" “continuum" GI mass Input poles experiment states PDG values [47]
𝑢�̄�+𝑑�̄�√

2
(13𝑃0 ) (𝜋𝜋 )𝐼=0 1.09 1.3 √

𝑠𝑟1 = 1.34 − 0.29𝑖 𝑓0 (1370) 1.35±0.15 − 0.2±0.05𝑖
√
𝑠𝑟2 = 0.39 − 0.26𝑖 𝑓0 (500) 0.475±0.075 − 0.275±0.075𝑖

𝑢𝑠 (13𝑃0 ) (𝜋𝐾 )
𝐼= 1

2
1.23 1.42

√
𝑠𝑟1 = 1.41 − 0.17𝑖 𝐾∗

0 (1430) 1.425±0.05 − 0.135±0.04𝑖
√
𝑠𝑟2 = 0.66 − 0.34𝑖 𝐾∗

0 (700) 0.68±0.05 − 0.30±0.04𝑖

𝑠𝑠 (13𝑃0 ) 𝐾�̄� 1.35 1.68
√
𝑠𝑟1 = 1.71 − 0.16𝑖 𝑓0 (1710) 1.704±0.012 − 0.062±0.009𝑖√
𝑠𝑏 = 0.98,

√
𝑠𝑣 = 0.19 𝑓0 (980) 0.99±0.02 − 0.028±0.023𝑖

𝑢�̄�−𝑑�̄�√
2

(13𝑃0 ) 𝜋𝜂 1.09 1.3
√
𝑠𝑟1 = 1.26 − 0.14𝑖 𝑎0 (1450) 1.474±0.019 − 0.133±0.007𝑖

√
𝑠𝑟2 = 0.70 − 0.42𝑖 𝑎0 (980) 0.98±0.02 − 0.038±0.012𝑖

𝑐�̄�(13𝑃0 ) 𝐷𝜋 2.4 2.4
√
𝑠𝑟1 = 2.58 − 0.24𝑖 𝐷∗

0 (2300) 2.30±0.019 − 0.137±0.02𝑖√
𝑠𝑟2 = 2.08 − 0.10𝑖

𝑐𝑠 (13𝑃0 ) 𝐷𝐾 2.48 2.48
√
𝑠𝑟1 = 2.80 − 0.23𝑖√
𝑠𝑏 = 2.24,

√
𝑠𝑣 = 1.8 𝐷∗

𝑠0 (2317) 2.317±0.0005 − 0.0038±0.0038𝑖

𝑏�̄�(13𝑃0 ) �̄�𝜋 5.76 5.76
√
𝑠𝑟1 = 6.01 − 0.21𝑖√
𝑠𝑟2 = 5.56 − 0.07𝑖

𝑏𝑠 (13𝑃0 ) �̄�𝐾 5.83 5.83
√
𝑠𝑟1 = 6.23 − 0.17𝑖√
𝑠𝑏 = 5.66,

√
𝑠𝑣 = 5.3

𝑐�̄� (23𝑃1 ) 𝐷�̄�∗ 3.95 3.95
√
𝑠𝑟1 = 4.01 − 0.049𝑖 𝑋 (3940)√

𝑠𝑏 = 3.785 𝑋 (3872) 3.87169±0.00017

this model can be used in the discussion of the properties of the hadronic states. In
particular, we have shown that 𝑋 (3872) could be the dynamically generated state by the
interaction of the bare 23𝑃1 𝑐𝑐 state and the continua. The 𝑋 (3872) and the state generated
from the bare 𝑐𝑐 state form a two-pole structure. This two-pole structure may be a general
phenomenon in hadron physics. We also show some other examples to demonstrate this
kind of two-pole structure.
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