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1. Introduction

The study frontiers of nuclear force has moved from the diverse phenomenological models to
the QCD-based theories and the lattice QCD simulations in the last two decades. Chiral perturbation
theory, as an effective field theory (EFT) of low-energy QCD, has been suggested to formulate the
nuclear force in 1990s by S. Weinberg [1, 2]. Based on this original idea, the chiral forces have been
extensively studied: the nucleon-nucleon (NN) interaction has been formulated up to fifth order
with very high precision; the more complicated three/four-nucleon forces have also been studied up
to higher orders. For reviews of chiral forces see e.g. Refs. [3–5].

Along with the above development of chiral forces, how to correctly renormalize the NN
scattering amplitude due to the singular behavior of chiral pion-exchange potentials at short distances
has been intensively investigated/discussed but still remains controversial. A collection of different
points of view on this issue can be found in Refs. [2, 6–38].

On the other hand, a clear consensus is that the singular chiral potential is an artifact of a naive
extrapolation of the long-range potential to short distances. This is clear from the fact that the
underlying theory does not have deeply bound states which are a characteristic feature of singular
potentials. This fact triggers us to think about how to improve the ultraviolet (UV) behavior of
chiral potential to obtain a renormalizable scattering amplitude. An initial idea, called a modified
Weinberg approach, was proposed in Ref. [39] based on the manifestly Lorentz-invariant effective
Lagrangian. The resulting one-pion-exchange (OPE) potential, which has the same infrared behavior
as its non-relativistic counterpart, possesses a milder UV behavior which leads to a perturbatively
renormalizable amplitude.

Following this idea, a systematic framework of formulating the nucleon-nucleon interaction
by using the time-ordered perturbation theory (TOPT) in covariant chiral effective field theory
(ChEFT) has been proposed in Ref. [40]. Diagrammatic rules of TOPT have been derived for
particles with non-zero spin and interactions involving time derivatives. They can be applied to
systematically derive chiral potentials at any chiral order. In this conference contribution the NN
interaction up to next-to-next-to-leading order (NNLO) is presented, the renormalization issue of
obtained potentials is discussed, and the resulting peripheral phase shifts are shown. More details
can be found in our recent works [40, 41].

2. Theoretical framework

Our scheme follows the standard procedure of formulating chiral forces by using time-ordered
perturbation theory, which was employed in the pioneered works [1, 2, 42] in the non-relativistic
(heavy-baryon) chiral EFT. The detailed comparison of two frameworks is presented in Fig. 1. The
take-homemessage is that our results should be consistent with the non-relativistic case when 1/mN

expansion is performed.
Below we explain our scheme point by point.

• Effective Lagrangian: Our starting point is the manifestly Lorentz invariant effective chiral
Lagrangian, which is needed for calculating the NN potential up to NNLO

Leff = L
(2)
ππ + L

(1)
πN + L

(2)
πN + L

(0)
NN + L

(2)
NN, (1)
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+CT (Ψ̄N σμνΨN) (Ψ̄N σμνΨN)] + . . .

1/mN

13

Figure 1: Comparison of theoretical frameworks of chiral nuclear force

where the superscripts denote the chiral orders. The lowest order purely pionic Lagrangian
reads [43],

L
(2)
ππ =

f 2
π

4
〈uµuµ + χ+〉, (2)

with the pion decay constant fπ = 92.4 MeV, uµ = i(u†∂µu − u∂µu†), χ+ = u† χu + uχu†,
u = exp(iΦ/2 fπ ) and χ = diag(M2

π, M2
π ). The pion-nucleon part of the effective Lagrangian

up to second order reads [44, 45]

L
(1)
πN = Ψ̄N

[
i /D − mN +

gA

2
γµγ5 uµ

]
ΨN,

L
(2)
πN = Ψ̄N

{
c1〈χ+〉 −

c2

4m2
N

〈
uµuν

〉 (
DµDν + h.c.

)
+

c3
2

〈
uµuµ

〉
−

c4
4
γµγν

[
uµ, uν

] }
ΨN ,

(3)

with the axial vector coupling gA, DµΨN = ∂µΨN + [Γµ,ΨN ], and Γµ = 1
2

(
u†∂µu + u∂µu†

)
.

The four low-energy constants (LECs) c1, ..., c4 are fixed as c1 = −0.74 GeV−1, c2 = 1.81
GeV−1, c3 = −3.61 GeV−1, and c4 = 2.17 GeV−1, which are obtained from the order-Q2

matching to the πN subthreshold parameters, determined by the Roy-Steiner analysis of
πN scattering [46], using covariant ChEFT [47]. The nucleon-nucleon contact interaction
Lagrangian up to the second order has the form [48–50]

L
(0)
NN =

1
2
[
CS (Ψ̄NΨN )(Ψ̄NΨN ) + CA

(
Ψ̄Nγ5ΨN

) (
Ψ̄Nγ5ΨN

)
+ CV

(
Ψ̄NγµΨN

) (
Ψ̄Nγ

µ
ΨN

)
+ CAV

(
Ψ̄Nγµγ5ΨN

) (
Ψ̄Nγ

µγ5ΨN

)
+ CT

(
Ψ̄NσµνΨN

) (
Ψ̄Nσ

µν
ΨN

) ]
,

L
(2)
NN =

∑
i=1
Ψ̄N Ψ̄NOiΨNΨN,

(4)
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where the operators Oi are listed in Refs. [49, 50]. The introduced unknown LECs can be
fixed through the description of NN scattering observables or phase shifts.

• Diagrammatic rules: In Ref. [40], we derived the rules for time-ordered diagrams corre-
sponding to manifestly Lorentz-invariant Lagrangians, especially for the rules with spin-1/2
fermions. As far as we know, such rules were not available in the literature before. In the
following table, we briefly summarize these diagrammatic rules of TOPT:

‣ External lines  

          Spin 0 boson (in, out) 

          Spin 1/2 fermion (in, out) 

‣ Internal lines  

          Spin 0 (anti-)boson 

          Spin 1/2 fermion 

                        anti-fermion 

‣ Intermediate state  

          A set of lines between two vertices  

1

�u(p), ū(p′�)

1
2 ϵq ϵq ≡ q2 + M2

m
ωp ∑ u(p)ū(p) ωp ≡ p2 + m2

m
ωp ∑ u(p)ū(p) − γ0

1
E − ∑

i
ωpi

− ∑
j

ϵqj
+ iϵ

Besides, interaction vertices are obtained via the standard Feynman rules, while one has
to take special care of the zeroth components of momenta appearing in vertices. Further,
each one-loop diagram with internal momentum k contains a three-dimensional integration∫

d3k
(2π)3 . More details of diagrammatic rules are given in Ref. [40]. We utilize those rules to

obtain expressions of each time-ordered diagram.

• Power counting: We apply the standard Weinberg power counting (PC) to derive the chiral
potential [1, 2]. The chiral order ν of time-ordered diagrams is defined as

ν = 2l +
∑
i

Vi

(
di +

ni
2
− 2

)
, (5)

where l is the number of loops, Vi is the number of vertices of type i, di is the number of
derivatives acting on pion fields and/or spatial components of derivatives acting on nucleon
fields, or pion-mass insertions, and ni denotes the number of nucleon fields involved in vertex
i. The sum in the above equation runs over all vertices contained in given diagram.

• Potential: The effective potential is defined as the sum of the two-nucleon irreducible TOPT
diagrams. Up to NNLO, we have those time-ordered diagrams in Fig. 2, organized by the
Weinberg power counting. Next is to employ the obtained TOPT rules to evaluate their
contributions to the NN potential.

4
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Two-nucleon irreducible time-ordered diagrams 

• Use the obtained TOPT rules to evaluate these diagrams 

• Apply Weinberg power counting to organize 


✓ Expand the nucleon energy appearing in the numerator 

Nucleon-nucleon potential in TOPT 17

Figure 2: Time-ordered diagrams contributing to the NN potential up to NNLO.

• Scattering equation: In the integral equation of NN scattering amplitude, T = V +VGT , by
applying the TOPT rules the two-nucleon Green function can be written as

G =
m2

N

ω2
k

1
E − 2ωk + iε

, (6)

where the two-internal nucleon lines give the pre-factor in terms of the energy denominator.
Thus, our integral scattering equation can be written as

T
(
p′, p

)
= V

(
p′, p

)
+

∫
d3k

(2π)3 V
(
p′, k

) m2
N

ω2
k

1
E − 2ωk + iε

T (k, p), (7)

which is just the Kadyshevsky equation of NN scattering, proposed by Kadyshevsky in
1968 [51]. In comparison with the canonical Lippmann-Schwinger equation (LSE), one
finds that the Kadyshevsky equation has a relatively milder ultraviolet behavior, since the
Green function of Kadyshevsky equation tends to be ∼ 1/k3 with the internal momentum
k → ∞, while the counterpart of LSE is to be ∼ 1/k2. The benefit of this mild UV behavior
will be presented in the LO study.

3. Leading order study

At leading order, following the TOPT rules, the non-derivative four-fermion contact term is
written as,

V (0)
C = CS

(
ū4u2

) (
ū3u1

)
+ CA

(
ū4γ5u2

) (
ū3γ5u1

)
+ CV

(
ū4γµu2

) (
ū3γ

µu1
)
+ CAV

(
ū4γµγ5u2

) (
ū3γ

µγ5u1
)

+ CT
(
ū4σµνu2

) (
ū3σµνu1

)
,

(8)

5
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which also contains higher order contributions according to theWeinberg PC. Therefore, we perform
the expansion for the nucleon energies via √ωp + mN =

√
2mN + O(ν2) and keep the lowest order

terms resulting in our final LO contact term,

Ṽ (0)
C = (CS + CV ) − (CAV − 2CT ) σ1 · σ2, (9)

which is consistent with the non-relativistic result [1] and has two independent parameters to be
fixed.

Using the TOPT rules, the OPE potential reads as

V (0)
1π = −

g2
A

4 f 2
π

τ1 · τ2
1

2εq

[ (
ū3γ

µγ5qµu1
) (

ū4γ
νγ5qνu2

)
ωp + ωp′ + εq − E − iε

+

(
ū3γ

µγ5qµu1
) (

ū4γ
νγ5qνu2

)
ωp + ωp′ + εq − E − iε

]
,

(10)

which, similarly to the contact term, contains the higher order contributions according to Weinberg
PC. Then we expand the nucleon energies in the numerator, while keeping them untouched in
denominator, which is consistent with the Kadyshevsky equation. Finally we obtain the following
expression of the OPE potential:

Ṽ (0)
1π = −

g2
A

4 f 2
π

τ1 · τ2
1
εq

(
ū3γ

µγ5qµu1
) (

ū4γ
νγ5qνu2

)
ωp + ωp′ + εq − E − iε

. (11)

It is worth to notice that our OPE potential has a mild UV behavior, for fixed p′ and large p leading
to Ṽ (0)

1π ∼ 1/p, while the OPE potential in non-relativistic ChEFT for the same kinematics behaves
like ∼ 1.

In combination with the Kadyshevsky equation, which also has milder UV behavior, we found
a distinctive feature of our LO study, that the iterations of the OPE potential within the integral
equation lead to ultraviolet finite diagrams. This can be easily checked via the UV behavior of the
once-iterated OPE potential for the fixed p, p′ and the large internal momentum k:

∫
d3k

(2π)3 Ṽ (0)
1π G(E) Ṽ (0)

1π
k→∞
−−−−→




This work:
∫

d3k
(2π)3

1
k

1
k3

1
k
≡

∫
d3k

(2π)3
1
k5 ,

Non-rel.:
∫

d3k
(2π)3 1

1
k2 1 ≡

∫
d3k

(2π)3
1
k2 .

(12)

Therefore, our once-iterated OPE potential is UV convergent and all the sub-diagrams of iterated
OPE potential are also finite. As a consequence, the ultraviolet cutoff can be safely removed at
LO, avoiding the finite-cutoff artefacts inherent to the conventional non-relativistic framework.
Furthermore, our OPE potential also results in the unique solutions of the NN scattering amplitudes
for all partial waves.

After performing the partial wave decomposition of the LO potential VLO = Ṽ (0)
C
+ Ṽ (0)

1π and the
Kadyshevsky equation Eq. (7), we obtain the phase shifts of NN scattering (Fig. 3). Two parameters
of contact term are fixed by reproducing the scattering lengths of 1S0 and 3S1 channels, respectively.
Our LO calculation provides a reasonable description of the Nijmengen phase shifts. While, the

6
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Figure 3: Nucleon-nucleon phase shifts and mixing angles at LO. Red lines denote our results, and solid
dots are the Nijmegen partial wave analysis [52].

large discrepancies of the 1S0 and 3P0 channels indicate that part of the sub-leading corrections
must be treated non-perturbatively and require studies beyond leading order.

Furthermore, we also studied the hyperon-nucleon interaction, e.g., for ΛN system, by extend-
ing our scheme to the SU(3) sector [53]. We found similar global description of phase shifts for
ΛN scattering at LO.

4. Beyond leading order studies

In principle, we have two strategies to include the higher-order contributions in our framework.
One is to keep the non-perturbative treatment of our (non-singular) LO potential and treat the high-
order contributions perturbatively. This allows us to systematically remove all divergences from the
NN scattering amplitude. Second strategy is to treat the full effective potential (LO + higher orders)
non-perturbatively. The milder UV behavior of the potential and the scattering equation will permit
a relatively large range of admissible cutoffs in solving the Kadyshevsky equation, which will be
helpful for the few-/many-body problems.

As a first step, we focus on the second strategy and formulate the chiral nuclear potential up to
NNLO, which reads as

VNNLO = V (0)
C
+ V (2)

C
+ V (0)

1π + V (2)
2π + V (3)

2π . (13)

Here the LO contact term V (0)
C

is given in Eq. (8). According to the Weinberg PC, the nucleon
energy can be expanded up to O(p2), √ωp + mN =

√
2mN +

p2

4
√

2m3/2
N

. For simplicity, we just keep
the full form of Dirac spinors to take into account the higher order contributions. The contact terms
with two derivatives V (2)

C
, in principle, can be obtained via the second order Lagrangian L (2)

NN .
Keeping only the lowest order term in the expansion of the nucleon energy, we obtain the same

7
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form as in the non-relativistic case

V (2)
C
= C1q

2 + C2k
2 +

(
C3q

2 + C4k
2
)

(σ1 · σ2) + iC5
1
2

(σ1 + σ2) · (q × k)

+ C6 (q · σ1) (q · σ2) + C7 (k · σ1) (k · σ2) ,
(14)

with q = p′ − p and k = (p + p′)/2 and 7 unknown LECs to be fixed. Including 5 parameters
in V (0)

C
, it seems that there are 12 LECs in contact terms up to NNLO. But all of them are not

totally independent, which can be clearly seen in the partial wave basis [54]. Actually, we have 9
independent LECs, which is the same number of contact terms as in the non-relativistic case.

As for the pion exchange contributions, we have the OPE potential, V (0)
1π , given in Eq. (10).

Since plugging the OPE potential into the Kadyshevsky equation one encounters the pole in the
denominator of the half-off-shell V (0)

1π (p′, k), it is convenient to eliminate the energy-dependence of
the OPE potential by performing an expansion in powers of E −ωp −ωp′. Up to NNLO, we obtain
an equivalent energy-independent potential

V/E = V (0)
1π, /E + V (2)

2π, /E + ..., (15)

with the energy-independent OPE potential

V (0)
1π, /E = −

g2
Aτ1 · τ2

4 f 2
π

1
ε2
q

(
ū3γµγ5qµu1

) (
ū4γνγ5qνu2

)
, (16)

where we follow the same treatment of the LO contact term by keeping the full form of the Dirac
spinors. The second term V (2)

2π, /E , which is obtained by cancelling the energy denominator of the
Green function in the Kadyshevsky equation, is written as

V (2)
2π, /E =

1
2
*
,

g2
A

4 f 2
π

+
-

2

(3 − τ1 · τ2)
∫

d3k
(2π)3

m2
N

k2 + m2
N

εp′−k + εp−k

ε3
p′−k

ε3
p−k

×
[
σ1 · (p′ − k)σ1 · (k − p)

] [
σ2 · (p′ − k)σ2 · (k − p)

]
,

(17)

where we have kept the LO terms in the expansion of the Dirac spinors. Notice that the V (2)
2π, /E can

be thought as the part of the TPE potential at NLO.
For the two-pion-exchange contributions V (2,3)

2π the time-ordered diagrams are shown in Fig. 2
up to NNLO. We formulate the expressions of those one-loop diagrams according to our TOPT
rules and keep the LO terms in the expansion of the Dirac spinors. We found that the football
diagrams at NNLO do not contribute. In order to renormalize the one-loop diagrams, we employ
the subtractive renormalization by subtracting the divergent and power counting breaking terms.
The details are reported in our most-recent work [41].

Since the complicated for of the TPE potential in our scheme, it is desirable to verify its
correctness. The higher partial waves (e.g. D, F ... waves) do not have the contributions from the
contact terms at NNLO, therefore they provide an ideal place to perform the consistency check by
comparing with the non-relativistic TPE potential when the nucleon mass mN is taken to infinity.
In Fig. 4 we present such comparison for the phase shifts of D and F waves by using our irreducible
TPE potential

V2π,irr = V (2)
2π, /E + V (2)

2π + V (3)
2π , (18)

8
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for the physical nucleon mass mPhys
N and for a large nucleon mass mN = 1000 mPhys

N . One can see
that our results are consistent with the ones of the non-relativistic TPE potential. Thus, our TPE
potential at NNLO passes the consistency check, which partially guarantees its correctness.
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3F4

Figure 4: The phase shifts of 1D2, 3D3 and 3F4 partial waves from the TPE potential up to NNLO. The
black solid (red dotted) lines denote our results with the physical nucleon mass (the infinite nucleon mass,
such as mN = 1000 mPhys

N ). The blue dashed lines present the results of non-relativistic TPE potential.

Before we perform the non-perturbative treatment for the full NNLO potential VNNLO, it
would be also interesting to illustrate the pion exchange contributions to the higher partial waves
perturbatively. At one-loop order in the Born series expansion, the T-matrix of NN scattering is

T (p′, p) = V (0)
1π, /E (p′, p) + V2π,irr (p′, p) + V2π,it (p′, p), (19)

where V2π,it denotes the once-iterated OPE

V2π,it (p′, p) = V (0)
1π, /E G V (0)

1π, /E =

∫
d3k

(2π)3

m2
N

ω2
k

V (0)
OPE, /E (p′, k) V (0)

OPE, /E (k, p)

E − 2ωk + iε
. (20)

In Fig. 5, we present the phase shifts and mixing angles of D, F, G waves. Besides the LO, NLO
and NNLO results in our scheme, the non-relativistic counterpart at NNLO is also given using the
same values of c1,2,3,4. One can draw the following conclusion (more detailed discussion can be
found in Ref. [41]):

• Dwaves: The leading correction of TPE potential gives the correct direction of improvement
for all D-wave phase shifts based on the LO results. However its contribution is relatively
small. Including the sub-leading TPE potential, we found sizable improvement for 3D3 and
ε2. But the good agreement with the data observed at LO and NLO is worsened for 1D2

and 3D2 at energies Elab > 100 MeV. In comparison with the non-relativistic NNLO results,
which are exploding beyond Elab > 50 MeV for all D waves, the improvement delivered by
our approach is visible, particularly for the 3D3 partial wave.

• F waves: For the 1F3, 3F3, and 3F4 partial waves, our results at NNLO are in a good
agreement with the empirical phase shifts up to Elab = 150 MeV. Beyond that energy, the
NNLO correction becomes too strong leading to deviation from the empirical phases, in
comparison with the NLO results. Similar behavior is also observed for the non-relativistic
NNLO results. While in the 3F2 channel the correct tendency achieved at NLO is altered by
including the sub-leading TPE potential.

9
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Figure 5: D, F, G-wave phase shifts and the mixing angles ε2,3,4 for laboratory energies below 300MeV. The
green dot-dashed curve denotes the LO result, the blue dashed and red solid lines are the NLO and NNLO
results, respectively. The non-relativistic results at NNLO are shown as the cyan dotted lines. Solid dots are
the Nijmegen partial wave analysis [52].

• G waves: Our NNLO results provide a rather good description of the Nijmegen 1G4, 3G3,
3G4 phase shifts and the mixing angle ε4, and are slightly better in comparison with the
NNLO results of the non-relativistic ChEFT. However, the situation with the 3G5 partial
wave is different. The non-relativistic result at NNLO presents a good agreement with data,
but it is accidental. The relativistic corrections of sub-leading TPE potential ∝ ci/mN are of
the same size as the difference between our NNLO and NR-NNLO lines in Fig. 5, as shown
in Ref. [55]. Our formalism has already included these relativistic corrections ∝

∑
n=1

ci/mn
N .

Thus, we expect the convergence of the covariant chiral EFT approach for 3G5 to be superior
as compared to the non-relativistic framework.

Furthermore, in Ref. [41], we also present the results for the H and I waves and our NNLO result
is globally similar to the one of the non-relativistic approach.

Next task is to iterate the full NNLO potential via the Kadyshevsky equation and determine
the 9 unknown LECs appeared in the contact terms by fitting the Nijmegen phase shifts of S and P
waves. We are now working on this analysis, and the results will be reported soon [54].

5. Conclusion and perspectives

In this talk we presented a systematic framework to formulate the nucleon-nucleon interaction
up to next-to-next-to-leading order based on the TOPT using the manifestly Lorentz-invariant
effective chiral Lagrangian. We derived the diagrammatic rules of TOPT, particularly for the
momentum-dependent vertices and the propagators of spin-1/2 fermions. Employing those rules,
one can systematically formulate the NN potential at different orders in the chiral expansion. At
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leading order, we found that NN scattering amplitude is renormalizable and the scattering equations
have unique solutions for all partial waves. To include the beyond leading order contributions, we can
treat them perturbatively to maintain a renormalizable scattering amplitude. On the other hand, the
higher-order contributions can be iterated together with the leading order interaction by substituting
into the Kadyshevsky equation. Here, we focused on the first case and presented the chiral potential
up to next-to-next-to-leading order by including the full one-loop two-pion-exchange contributions.
We have checked that our TPE potential is consistent with its non-relativistic counterpart in the
large-nucleon-mass limit. Using the Born series truncated at one-loop order, we calculated the
phase shifts and mixing angles of the partial waves with the angular momentum l ≥ 2 and found an
improved description of the phase shifts for some D waves, especially for 3D3.

Currently we are working on the description of the low partial waves of the NN scattering
amplitude and the deuteron properties by performing the non-perturbative treatment for the full
NNLO potential. The results will be released soon [54]. A side-work along this line is to investigate
the energy-independent potential at NNLO by using the same treatment of the energy-independent
one-pion exchange potential. This representation of the chiral potential could be more convenient
for many-body calculations. We can also treat the NLO/NNLO corrections perturbatively. Based
on our non-singular LO potential, perturbative treatments allows us to obtain a renormalizable
scattering amplitude and all divergences can be systematically removed. In the long run, it would
be interesting to apply the symmetry preserving regularization in our framework.

Furthermore, we would like to emphasize that the values of c1,2,3,4, appeared in the second
order Lagrangian L (2)

πN are crucial for the sub-leading TPE potential. Currently we use the values
of c1,2,3,4 given by the Roy-Steiner analysis of πN scattering data [46, 47]. To be consistent with
our framework, we plan to determine these values by using TOPT in covariant ChEFT. Thus far, we
have extended the TOPT framework to the meson-baryon scattering and investigated the πN and
and K̄ N systems at LO [56, 57]. The NLO study is work in progress.
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