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1. Introduction

According to Sakharov [2], one prerequisite to dynamically create the observed asymmetry
between matter and antimatter during the baryogenesis is a simultaneous violation of the discrete
space-time symmetries 𝐶 and 𝐶𝑃. Given the dearth of experimental evidence for sources of 𝐶𝑃-
violation beyond the weak interactions of the Standard Model (SM), it is worthwhile to investigate
potential new sources, such as 𝑇-odd and 𝑃-even (TOPE) interactions. Suitable candidates to
analyze these kinds of operators are certain decays of the 𝜂 (′) mesons [3], which are eigenstates of
𝐶. These allow us to investigate TOPE forces in the absence of the weak interaction, such that the
observation of a 𝐶-violating 𝜂 (′) decay would automatically indicate physics beyond the Standard
Model (BSM). An ideal stage for this endeavour is provided by studying the charge asymmetries
in the Dalitz-plot distributions of 𝜂 → 𝜋+𝜋−𝜋0 and 𝜂′ → 𝜂𝜋+𝜋−. These two decays serve as
orthogonal probes sensitive to different classes of TOPE operators driven by isospin transitions
Δ𝐼 = 0, 2 and Δ𝐼 = 1, respectively. For a rigorous construction of the BSM amplitudes consistent
with the fundamental principles of analyticity (a mathematical description of causality) and unitarity
(a consequence of probability conservation) we rely on techniques from dispersion theory, using
the so-called Khuri–Treiman representations [4], allowing for a model-independent resummation
of re-scattering effects to all orders.

2. Dispersive representation of 𝜼 → 𝝅+𝝅−𝝅0

As 𝐺-parity demands, the SM contribution to 𝜂 → 𝜋+𝜋−𝜋0 is driven by a transition of total
isospin Δ𝐼 = 1, whereas the 𝐶-violating mechanisms underlie isoscalar Δ𝐼 = 0 or isotensor Δ𝐼 = 2
operators, such that the generalized 𝜂 → 𝜋+𝜋−𝜋0 amplitude has to be of the form [5]

M(𝑠, 𝑡, 𝑢) = M𝐶̸

0 (𝑠, 𝑡, 𝑢) + 𝜉M𝐶
1 (𝑠, 𝑡, 𝑢) +M𝐶̸

2 (𝑠, 𝑡, 𝑢) , 𝜉 =

(
𝑀2
𝐾+ − 𝑀2

𝐾0

)
QCD

3
√

3𝐹2
𝜋

, (1)

which is split into a contribution for each total isospin denoted by the respective index. In accordance
with Refs. [6, 7], we factorized out the isospin-breaking normalization of the SM amplitude 𝜉 =

−0.140(9) . As isospin is an accidental (approximate) symmetry of the strong interactions and as
we do not know anything about the isospin structure of the BSM operators, there is no reason
to assume isospin to be a useful symmetry for them, too, and hence imply any kind of hierarchy
between isoscalar and isotensor 𝐶-violation on the underlying, fundamental level.

2.1 Reconstruction theorem

Neglecting the discontinuities of 𝐷- and higher partial waves, one may express each amplitude
of total isospin, on the right-hand side of Eq. (1), in terms of functions depending on only one
kinematical variable, the relative angular momentum, and isospin of the 𝜋𝜋 intermediate state [5]:

M𝐶
1 (𝑠, 𝑡, 𝑢) = F0(𝑠) + (𝑠 − 𝑢) F1(𝑡) + (𝑠 − 𝑡) F1(𝑢) + F2(𝑡) + F2(𝑢) −

2
3
F2(𝑠) ,

M𝐶̸

0 (𝑠, 𝑡, 𝑢) = (𝑡 − 𝑢) G1(𝑠) + (𝑢 − 𝑠) G1(𝑡) + (𝑠 − 𝑡) G1(𝑢) ,

M𝐶̸

2 (𝑠, 𝑡, 𝑢) = 2(𝑢 − 𝑡) H1(𝑠) + (𝑢 − 𝑠) H1(𝑡) + (𝑠 − 𝑡) H1(𝑢) − H2(𝑡) + H2(𝑢) .

(2)
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Due to Bose symmetry, the isospin 𝐼 of the two-pion state fixes the partial wave ℓ unambiguously
by means of A0,2 ≡ Aℓ=0

𝐼=0,2 and A1 ≡ Aℓ=1
𝐼=1 , with A ∈ {F ,G,H}. Note that the single-variable

functions (SVAs) F , G, and H are completely decoupled and can be evaluated independently.

2.2 Elastic unitarity

Within the scope of this work we will exclusively study the dominant elastic rescattering effects,
i.e., we restrict the evaluation of the single-variable functions to 𝜋𝜋 intermediate states only. In
order to obtain an amplitude with manifest unitarity, each SVA has to obey the discontinuity relation

discA𝐼 (𝑠) = 2𝑖 𝜃 (𝑠 − 4𝑀2
𝜋)

[
A𝐼 (𝑠) + Â𝐼 (𝑠)

]
sin 𝛿𝐼 (𝑠) 𝑒−𝑖 𝛿𝐼 (𝑠) . (3)

Here we introduced the so called inhomogeneities Â𝐼 (𝑠) that do not have a discontinuity along the
right-hand cut. Let us now, for the sake of simplicity, define the angular average

⟨𝑧𝑛𝑠 A𝐼⟩ ≡
1
2

∫ 1

−1
d𝑧𝑠 𝑧𝑛𝑠 A𝐼

(
𝑡 (𝑠, 𝑧𝑠)

)
. (4)

This allows to write the inhomogeneities for the Standard-Model amplitude in the shortened form

F̂0(𝑠) =
2
9
[
3⟨F0⟩ + 9(𝑠 − 𝑟) ⟨F1⟩ + 3𝜅 ⟨𝑧𝑠 F1⟩ + 10⟨F2⟩

]
,

F̂1(𝑠) =
1
2𝜅

[
6⟨𝑧𝑠 F0⟩ + 9(𝑠 − 𝑟) ⟨𝑧𝑠 F1⟩ + 3𝜅 ⟨𝑧2𝑠 F1⟩ − 10⟨𝑧𝑠 F2⟩

]
,

F̂2(𝑠) =
1
6
[
6⟨F0⟩ − 9(𝑠 − 𝑟) ⟨F1⟩ − 3𝜅 ⟨𝑧𝑠 F1⟩ + 2⟨F2⟩

]
,

(5)

and the ones for the 𝐶-violating contributions as

Ĝ1(𝑠) = −3
𝜅

[
3(𝑠 − 𝑟) ⟨𝑧𝑠 G1⟩ + 𝜅 ⟨𝑧2𝑠 G1⟩

]
,

Ĥ1(𝑠) =
3
2𝜅

[
3(𝑠 − 𝑟) ⟨𝑧𝑠H1⟩ + 𝜅 ⟨𝑧2𝑠H1⟩ + 2⟨𝑧𝑠H2⟩

]
,

Ĥ2(𝑠) =
1
2
[
9(𝑠 − 𝑟) ⟨H1⟩ + 3𝜅 ⟨𝑧𝑠H1⟩ − 2⟨H2⟩

]
.

(6)

The general solution becomes

A𝐼 (𝑠) = Ω𝐼 (𝑠)
(
𝑃𝑛−1(𝑠) +

𝑠𝑛

𝜋

∫ ∞

4𝑀2
𝜋

d𝑥
𝑥𝑛

sin 𝛿𝐼 (𝑥) Â𝐼 (𝑥)
|Ω𝐼 (𝑥) | (𝑥 − 𝑠)

)
, (7)

where
Ω𝐼 (𝑠) = exp

(
𝑠

𝜋

∫ ∞

4𝑀2
𝜋

d𝑥
𝑥

𝛿𝐼 (𝑥)
(𝑥 − 𝑠)

)
(8)

is the Omnès function [8] and 𝑃𝑛−1(𝑠) a polynomial in 𝑠 of order 𝑛 − 1. The coefficients of the
latter—known as subtraction constants—are the only free parameters of our amplitude. Throughout
this paper, we will assume all subtraction constants within the same decay amplitude representation
to be relatively real, as the potential imaginary parts of the subtraction constants scale with the
available three-body phase space, and therefore are tiny for decays such as 𝜂 → 3𝜋 or 𝜂′ → 𝜂𝜋𝜋.
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Besides these degrees of freedoms, the only input for the dispersive 𝜂 → 3𝜋 amplitude are the
𝜋𝜋 scattering phase shifts 𝛿𝐼 (𝑠). For the elaborate choice of the 𝛿𝐼 (𝑠) and the asymptotics of the
SVAs used in this analysis we refer to Ref. [1]. The resulting minimal subtraction scheme for the
𝐶-conserving Standard-Model amplitude yields

F0(𝑠) = Ω0(𝑠)
(
𝛼 + 𝛽 𝑠 + 𝑠

2

𝜋

∫ ∞

4𝑀2
𝜋

d𝑥
𝑥2

sin 𝛿0(𝑥) F̂0(𝑥)
|Ω0(𝑥) | (𝑥 − 𝑠)

)
,

F1(𝑠) = Ω1(𝑠)
(
𝛾 + 𝑠

𝜋

∫ ∞

4𝑀2
𝜋

d𝑥
𝑥

sin 𝛿1(𝑥) F̂1(𝑥)
|Ω1(𝑥) | (𝑥 − 𝑠)

)
,

F2(𝑠) = Ω2(𝑠)
(
𝑠

𝜋

∫ ∞

4𝑀2
𝜋

d𝑥
𝑥

sin 𝛿2(𝑥) F̂2(𝑥)
|Ω2(𝑥) | (𝑥 − 𝑠)

)
.

(9)

and analogously the 𝐶-violating contributions become

G1(𝑠) = Ω1(𝑠)
(
𝜀 + 𝑠

𝜋

∫ ∞

4𝑀2
𝜋

d𝑥
𝑥

sin 𝛿1(𝑥) Ĝ1(𝑥)
|Ω1(𝑥) | (𝑥 − 𝑠)

)
,

H1(𝑠) = Ω1(𝑠)
(
𝜗 + 𝑠

𝜋

∫ ∞

4𝑀2
𝜋

d𝑥
𝑥

sin 𝛿1(𝑥) Ĥ1(𝑥)
|Ω1(𝑥) | (𝑥 − 𝑠)

)
,

H2(𝑠) = Ω2(𝑠)
(
𝑠

𝜋

∫ ∞

4𝑀2
𝜋

d𝑥
𝑥

sin 𝛿2(𝑥)Ĥ2(𝑥)
|Ω2(𝑥) | (𝑥 − 𝑠)

)
.

(10)

Further, we would like to remark that the normalization of each amplitude of total isospin in Eq. (1)
has a phase that is fixed unambiguously by 𝑇-violation and hermiticity. Hence, the subtraction
constants 𝜀 and 𝜗, which absorb these normalizations, are complex quantities with a fixed phase,
resulting in a total of five degrees of freedom for M.

2.3 Taylor invariants

As pointed out in Ref. [1], the subtraction constants of our dispersive representation are
no meaningful observables. Therefore we follow the idea of Refs. [6, 7], where certain linear
combinations of the subtraction constants for the SM contribution were introduced, which are
identified as so-called Taylor invariants. To access those, the single-variable amplitudes A𝐼 ∈
{F𝐼 ,G𝐼 ,H𝐼 } are expanded around 𝑠 = 0, i.e.,

A𝐼 (𝑠) = 𝐴A
𝐼
+ 𝐵A

𝐼
𝑠 + 𝐶A

𝐼
𝑠2 + 𝐷A

𝐼
𝑠3 + . . . . (11)

From elementary considerations such as crossing symmetry and the correct behavior under time
reversal, the effective BSM operators for Δ𝐼 = 0 and Δ𝐼 = 2 transitions at lowest contributing order
are expected to be of the form

M𝐶̸

0 (𝑠, 𝑡, 𝑢) = 𝑖 𝑔0 (𝑠 − 𝑡) (𝑢 − 𝑠) (𝑡 − 𝑢) + O(𝑝8) ,

M𝐶̸

2 (𝑠, 𝑡, 𝑢) = 𝑖 𝑔2 (𝑡 − 𝑢) + O(𝑝4) ,
(12)

where the couplings have the dimensions [𝑔0] = GeV−6 and [𝑔2] = GeV−2, respectively. Repro-
ducing this structure with the Taylor series from above we obtain

𝑔0 = 𝑖
(
𝐶

G
1 + 3𝑟 𝐷G

1
)
, 𝑔2 = 𝑖

(
3𝐴H

1 + 3𝑟 𝐵H
1 + 𝐵H

2 + 2𝑟 𝐶H
2
)
. (13)

4
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Note that the requirement 𝑔0, 𝑔2 ∈ R fixes the phase of the subtraction constants 𝜀 and 𝜗. However,
due to the sufficiently small phase space, 𝜀 and 𝜗 can be considered as purely imaginary constants.
It has to be remarked that this simple polynomial expansion is by far less accurate than the full
dispersive representation, but allows one to match the couplings in a convenient way.

2.4 Extraction of observables

We first fix our SM amplitude by a regression to the currently most precise Dalitz plot from
the KLOE-2 collaboration [9]. The goodness of our fit with three real degrees of freedom yields
𝜒2

red ≈ 1.054. Our minimal subtraction scheme fulfils various constraints imposed on the SM
amplitude [1] by Taylor invariants [7], polynomial Dalitz-plot parameters [9], the slope parameter
of 𝜂 → 3𝜋0, and the branching ratio BR(𝜂 → 3𝜋0)/BR(𝜂 → 𝜋0𝜋+𝜋−) [10]. We take this as
justification for applying the minimal subtraction scheme to the BSM contributions.

The regression of our full amplitude, with seven real degrees of freedom in total, amounts to a
marginal improvement of 𝜒2

red ≈ 1.048. To investigate the Dalitz-plot asymmetries we employ the
decomposition ��M𝑐

��2 ≈
��𝜉M𝐶

1
��2 + 2Re

[
𝜉M𝐶

1 (M /𝐶
0 )∗

]
+ 2Re

[
𝜉M𝐶

1 (M /𝐶
2 )∗

]
, (14)

where we neglected all terms quadratic in 𝐶-violating amplitudes. The disentangled contributions
to the Dalitz-plot distribution for our central fit results are depicted in Fig. 1. Obviously, the 𝐶-
conserving SM part determined by M𝐶

1 is dominating, while the two terms linear in the𝐶-violating
amplitudes M /𝐶

0 and M /𝐶
2 are suppressed by three orders of magnitude. Furthermore we find the

interference effects of M𝐶
1 with M /𝐶

0 and M /𝐶
2 , which determine the size of the mirror symmetry

breaking of the Dalitz-plot distribution under 𝑡 ↔ 𝑢, to be of similar size. Accordingly, M /𝐶
0

and M /𝐶
2 are of the same order of magnitude. We quantify the occurring asymmetries, i.e., the

left-right 𝐴𝐿𝑅, the quadrant 𝐴𝑄, and sextant 𝐴𝑆 asymmetry parameters [11–13], by integrating
over the population of the Dalitz-plot distribution in the different sectors defined by the Dalitz-plot
geometry, cf. Fig. 1, and obtain

𝐴𝐿𝑅 = −7.9(4.5) , 𝐴𝑄 = 1.9(2.5) , 𝐴𝑆 = 2.0(3.8) , (15)

where all three asymmetry parameters are given in units of 10−4. For correlations of the observables
presented in this work we refer to Ref. [1]. We find 𝐴𝐿𝑅, 𝐴𝑄, and 𝐴𝑆 in good agreement with the
results reported by the KLOE-2 collaboration [9]. Again, there is no hint for𝐶-violation as all three
asymmetries are compatible with zero in not more than 1.8𝜎. Note that the error budget in Eq. (15)
is completely dominated by the statistical uncertainties of the KLOE-2 data.

Our dispersive representation allows us to extract coupling strengths 𝑔0 and 𝑔2 of the underlying
isoscalar and isotensor BSM operators as defined Eq. (13), for which we obtain

𝑔0/GeV−6 = −2.8(4.5) , 𝑔2/10−3 GeV−2 = −9.3(4.6) , . (16)

Note that for the central values we find a ratio of 𝑔0/𝑔2 ≈ 103 GeV−4, demonstrating a much
reduced sensitivity for constraining 𝑔0. Furthermore we can utilize these coupling strengths to
obtain a more general representation of the Dalitz-plot asymmetries. Carrying out the phase space

5
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Figure 1: Decomposition of the Dalitz-plot distribution for 𝜂 → 𝜋+𝜋−𝜋0 as given in Eq. (14) for the central
fit result. The normalization is chosen such that |𝜉M𝐶

1 |2 (top left) is one in the center. Note the individual
scales of each contribution. The interferences of M𝐶

1 with M𝐶̸

0 (bottom left) and M𝐶̸

2 (bottom right) give
rise to mirror symmetry breaking in the Dalitz plot. The total 𝐶-violating contributions to the full Dalitz plot
is shown in the upper right, including the symmetry axes to define asymmetry parameters.

integrals individually for contributions involving interference effects of M /𝐶
0 or M /𝐶

2 in the Dalitz-
plot distribution, we find that the asymmetry parameters (15) given in units of 10−4 are related to
the BSM couplings 𝑔0 and 𝑔2 by

𝐴𝐿𝑅 = −0.300 𝑔0 + 0.936 𝑔2 ,

𝐴𝑄 = 0.443 𝑔0 − 0.336 𝑔2 ,

𝐴𝑆 = −0.850 𝑔0 + 0.043 𝑔2 .

(17)

Here, 𝑔0 and 𝑔2 enter in units of 1 GeV−6 and 10−3 GeV−2, respectively. Equation (17) shows that
especially the sextant asymmetry parameter 𝐴𝑆 is sensitive to contributions generated by M /𝐶

0 .
Finally, we refer to Ref. [1] regarding a generalization of the dispersive analysis to 𝜂′ → 𝜋+𝜋−𝜋0.

3. Dispersive representation of 𝜼′ → 𝜼𝝅𝝅

In this section we turn our attention to another class of TOPE forces by studying the decay
𝜂′ → 𝜂𝜋+𝜋−. As this decay preserves 𝐺-parity, transitions of even isospin Δ𝐼 = 0, 2 conserve 𝐶,

6
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while odd ones violate the latter. Thus we can write the most general amplitude up to linear order
in isospin breaking as

M(𝑠, 𝑡, 𝑢) = M𝐶
0 (𝑠, 𝑡, 𝑢) +M𝐶̸

1 (𝑠, 𝑡, 𝑢), (18)

where for this decay, the isoscalar amplitude M𝐶
0 is isospin- and 𝐶-conserving, whereas M𝐶̸

1
violates both quantum numbers. Note that the decay 𝜂′ → 𝜂𝜋+𝜋− is sensitive to a different class of
𝐶- and 𝐶𝑃-violating operators from those tested in 𝜂 (′) → 𝜋+𝜋−𝜋0, namely the ones for transitions
with Δ𝐼 = 1.

3.1 Reconstruction theorem

In the ongoing, we restrict our amplitude to discontinuities in the lowest contributing partial
waves, i.e., to ℓ = 0 for 𝜋𝜋 states with isospin 𝐼 = 0, or ℓ = 1 for those with 𝐼 = 1, and to ℓ = 0
for the 𝜂𝜋 system with 𝐼 = 1. With these approximations the decomposition of the Standard-Model
amplitude in terms of single-variable functions takes the simple form [14]

M𝐶
0 (𝑠, 𝑡, 𝑢) = F𝜋𝜋 (𝑠) + F𝜂𝜋 (𝑡) + F𝜂𝜋 (𝑢) , (19)

with the abbreviations F𝜋𝜋 (𝑠) ≡ F ℓ=0
𝐼=0 𝜋𝜋 (𝑠) and F𝜂𝜋 (𝑡) ≡ F ℓ=0

𝐼=1 𝜂𝜋 (𝑡). In this notation the indices
𝜋𝜋 and 𝜂𝜋 denote the two-particle final state of the respective scattering process. In a similar
fashion we obtain the reconstruction theorem for the 𝐶-violating amplitude

M𝐶̸

1 (𝑠, 𝑡, 𝑢) = (𝑡 − 𝑢) G𝜋𝜋 (𝑠) + G𝜂𝜋 (𝑡) − G𝜂𝜋 (𝑢) . (20)

In this equation we use the short forms G𝜋𝜋 (𝑠) ≡ G1
1 𝜋𝜋 (𝑠) and G𝜂𝜋 (𝑡) ≡ G0

1 𝜂𝜋 (𝑡).

3.2 Elastic unitarity

To ensure the conservation of probability, the single-variable functions have to obey

discA𝜋𝜋 (𝑠) = 2𝑖 𝜃 (𝑠 − 4𝑀2
𝜋)

[
A𝜋𝜋 (𝑠) + Â𝜋𝜋 (𝑠)

]
sin 𝛿𝜋𝜋 (𝑠) 𝑒−𝑖 𝛿𝜋𝜋 (𝑠) ,

discA𝜂𝜋 (𝑡) = 2𝑖 𝜃
(
𝑡 − (𝑀𝜂 + 𝑀𝜋)2) [A𝜂𝜋 (𝑡) + Â𝜂𝜋 (𝑡)

]
sin 𝛿𝜂𝜋 (𝑡) 𝑒−𝑖 𝛿𝜂𝜋 (𝑡) ,

(21)

withA ∈ {F ,G} and the indices of the phase shifts labeling the respective two-particle intermediate
states. Note that in case of M0 the 𝜋𝜋-state has isospin 𝐼 = 0, such that 𝛿𝜋𝜋 = 𝛿𝐼=0

𝜋𝜋 for A = F .
Analogously, the 𝐶-odd contribution M𝐶̸

1 is driven by a 𝜋𝜋-state that has isospin 𝐼 = 1, i.e.,
𝛿𝜋𝜋 = 𝛿𝐼=1

𝜋𝜋 for A = G. Introducing the abbreviations

⟨𝑧𝑛𝑠 A⟩ ≡ 1
2

∫ 1

−1
d𝑧𝑠 𝑧𝑛𝑠 A

(
𝑡 (𝑠, 𝑧𝑠)

)
,

⟨𝑧𝑛𝑡 A⟩+ ≡ 1
2

∫ 1

−1
d𝑧𝑡 𝑧𝑛𝑡 A

(
𝑢(𝑡, 𝑧𝑡 )

)
, ⟨𝑧𝑛𝑡 A⟩− ≡ 1

2

∫ 1

−1
d𝑧𝑡 𝑧𝑛𝑡 A

(
𝑠(𝑡,−𝑧𝑡 )

)
,

(22)

the inhomogeneities for the Standard-Model amplitude become

F̂𝜋𝜋 (𝑠) = 2⟨F𝜂𝜋⟩ , F̂𝜂𝜋 (𝑡) = ⟨F𝜋𝜋⟩− + ⟨F𝜂𝜋⟩+ , (23)

7



P
o
S
(
C
D
2
0
2
1
)
0
2
5

Dispersive representation of 𝐶- and 𝐶𝑃-violation in 𝜂 → 𝜋+𝜋−𝜋0 and 𝜂′ → 𝜂𝜋+𝜋− Hakan Akdag

and the ones entering the 𝐶-violating amplitude yield

Ĝ𝜋𝜋 (𝑠) =
6
𝜅𝜋𝜋

⟨𝑧𝑠 G𝜂𝜋⟩ , Ĝ𝜂𝜋 (𝑡) = −⟨G𝜂𝜋⟩+−
3
2

(
𝑟 − 𝑡 + Δ

3𝑡

)
⟨G𝜋𝜋⟩− +

1
2
𝜅𝜂𝜋 ⟨𝑧𝑡 G𝜋𝜋⟩− . (24)

Again we fix the input phase shifts and the high-energy behavior of each independent constituent
entering the dispersive representation according to Ref. [1], leading to a representation of the
corresponding SVAs involving four (real) subtraction constants in the SM amplitude,

F𝜋𝜋 (𝑠) = Ω0
𝜋𝜋 (𝑠)

(
𝛼 + 𝛽 𝑠 + 𝛾 𝑠2 + 𝑠

3

𝜋

∫ ∞

𝑠th

d𝑥
𝑥3

sin 𝛿0
𝜋𝜋 (𝑥) F̂𝜋𝜋 (𝑥)

|Ω0
𝜋𝜋 (𝑠′) | (𝑥 − 𝑠)

)
,

F𝜂𝜋 (𝑡) = Ω𝜂𝜋 (𝑡)
(
𝜆 𝑡2 + 𝑡

3

𝜋

∫ ∞

𝑡th

d𝑥
𝑥3

sin 𝛿𝜂𝜋 (𝑥) F̂𝜂𝜋 (𝑥)
|Ω𝜂𝜋 (𝑥) | (𝑥 − 𝑡)

)
,

(25)

and two (complex) subtraction constants in the 𝐶-violating SVAs,

G𝜋𝜋 (𝑠) = Ω1
𝜋𝜋 (𝑠)

(
𝜚 + 𝑠

𝜋

∫ ∞

𝑠th

d𝑥
𝑥

sin 𝛿1
𝜋𝜋 (𝑥) Ĝ𝜋𝜋 (𝑥)

|Ω1
𝜋𝜋 (𝑥) | (𝑥 − 𝑠)

)
,

G𝜂𝜋 (𝑡) = Ω𝜂𝜋 (𝑡)
(
𝜁 𝑡 + 𝑡

2

𝜋

∫ ∞

𝑡th

d𝑥
𝑥2

sin 𝛿𝜂𝜋 (𝑥) Ĝ𝜂𝜋 (𝑥)
|Ω𝜂𝜋 (𝑥) | (𝑥 − 𝑡)

)
.

(26)

The index of each Omnès function decides which scattering phase shift is used according to Eq. (8).
In addition to that, one has to differentiate the case Ω𝜋𝜋 = Ω𝐼=0

𝜋𝜋 for A = F from Ω𝜋𝜋 = Ω𝐼=1
𝜋𝜋

for A = G. Again, the phase of the subtraction constants 𝜚 and 𝜁 is fixed by 𝑇-violation, so that
M𝐶̸

1 has two real-valued degrees of freedom, in contrast to the 𝐶-violating isoscalar and isotensor
contributions in 𝜂 → 3𝜋 which are fixed by a single normalization each.

3.3 Taylor invariants

Similarly to Sect. 2.3, the subtraction constants fixing our dispersive representation have to be
translated into meaningful observables. Therefore we again introduce their linear combinations as
ambiguity-free Taylor invariants obtained by an expansion of the SVAs around 𝑠, 𝑡 = 0, i.e.,

A𝜋𝜋 (𝑠) = 𝐴A
𝜋𝜋 + 𝐵A

𝜋𝜋 𝑠 + 𝐶A
𝜋𝜋 𝑠

2 + 𝐷A
𝜋𝜋 𝑠

3 + . . . ,

A𝜂𝜋 (𝑡) = 𝐴A
𝜂𝜋 + 𝐵A

𝜂𝜋 𝑡 + 𝐶A
𝜂𝜋 𝑡

2 + 𝐷A
𝜂𝜋 𝑡

3 + . . . .
(27)

The matrix element for the Δ𝐼 = 1 transition takes the form

M𝐶̸

1 (𝑠, 𝑡, 𝑢) = 𝑖 𝑔1 (𝑡 − 𝑢) (1 + 𝑠 𝛿𝑔1) + O(𝑝6) , (28)

where in addition to the effective isovector coupling 𝑔1, we also consider the leading 𝑠-dependent
correction 𝛿𝑔1. In terms of the Taylor coefficients these quantities read

𝑔1 = −𝑖(𝐴G
𝜋𝜋 + 𝐵G

𝜂𝜋 + 3𝑟 𝐶G
𝜂𝜋) , 𝛿𝑔1 = −𝑖

(
𝐵G
𝜋𝜋 − 𝐶G

𝜂𝜋

)
/𝑔1 . (29)

Note that the additional parameter 𝛿𝑔1 ensures that the degrees of freedom of the Taylor expansion
match the ones of the dispersive representation forM𝐶̸

1 . Both couplings are real-valued as demanded
by 𝑇-violation and give rise to the phases of the subtraction constants 𝜚 and 𝜁 . Anyway, the latter
can be considered as purely imaginary due to the small available phase space.
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Figure 2: Dalitz-plot decomposition for 𝜂′ → 𝜂𝜋+𝜋− as given in Eq. (30) for our central solution. The
normalization is chosen such that the full amplitude |M|2 is one in its center.

3.4 Extraction of observables

Comparing our dispersive representation of the SM amplitude M𝐶
0 , which contains the four

real degrees of freedom, with the 𝜂′ → 𝜂𝜋+𝜋− Dalitz-plot distribution measured by the BESIII
collaboration [15] we obtain 𝜒2

red ≈ 0.994. The additional incorporation of the𝐶-violating isovector
contribution M𝐶̸

1 , with three real parameters, leaves 𝜒2
red unaffected within the given precision. The

dominant contribution of the Dalitz-plot distribution arising from Eq. (18), i.e.,

|M|2 ≈ |M𝐶
0 |2 + 2 Re

[
M𝐶

0 (M𝐶̸

1 )∗
]
, (30)

is depicted in Fig. 2. We observe a similar, however slightly flattened, hierarchy as in the case of
𝜂 → 3𝜋 worked out in Sect. 2.4. The interference term giving rise to the Dalitz-plot asymmetry is
constrained to be two orders of magnitude smaller than the SM contribution |M𝐶

0 |2 .
To finalize our analysis we quantify the asymmetry and the coupling strength of the Δ𝐼 = 1

transition in 𝜂′ → 𝜂𝜋+𝜋−. We find left-right asymmetry in units of 10−3 to be

𝐴𝐿𝑅 = 2.1(1.5) . (31)

Thus the mirror symmetry breaking vanishes within less than 1.4𝜎. Furthermore, we can parame-
terize 𝐴𝐿𝑅 in terms of Taylor invariants

𝑔1/GeV−2 = 0.037(55) , 𝛿𝑔1/GeV−2 = −5.5(7.3) . (32)

These couplings allow us to write the left-right asymmetry, again in units of 10−3, in the compact
form

𝐴𝐿𝑅 = 0.13 𝑔1
(
1 + 0.10 𝛿𝑔1

)
, (33)

where 𝑔1 and 𝛿𝑔1 enter in units of GeV−2.
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