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We review the recent developments on the light-flavor resonances in the * (3) chiral effective filed theory.

The spectral function sum rules and the semilocal duality in the scattering, which will be focus of this note,

can provide us interesting and useful theoretical objects to bridge the hadron resonances in the intermediate

energy region and the QCD behaviors in the asymptotic region. First the calculations of the meson-meson

scattering amplitudes and factor factors are elaborated. The scalar spectral functions are then calculated in

terms of the unitarized scalar form factors. The scalar and pseudoscalar spectral function sum rules in our

study are found to be consistent with the asymptotic behavior of QCD in the chiral limit. The semilocal

duality is found to be generally well satisfied, indicating the necessary cancellations of different contributions

from different resonances indeed happen in the scattering amplitudes. The #� evolutions of the resonance

poles, the ratios to quantify the semilocal duality and the spectral function integrals are also paid special

attention to in this note.
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1. Introduction

Hadron resonances manifest themselves in the strongly interacting systems of the underlying hadronic

states, such as the two- and many-body scattering processes, the form factors and the spectral functions of

the hadrons, etc. The combination of the chiral effective field theory and the requirements of the unitarity

and analyticity provides a reliable and powerful tool to systematically investigate the hadronic resonances

appearing in various physical quantities. The methodology developed in the hadronic sector could also

shed light on the exploring study of the possible resonances beyond the Standard Model that appear in the

scattering processes of the, and / bosons [1].

The spontaneous (* (3)! × (* (3)' → (* (3)+ chiral symmetry breaking of QCD leads to the eight

pseudo-Nambu-Goldstonebosons (pNGBs), which can be identified as the eight light mesons c,  and [. The

small masses of the pNGBs are caused by the explicit breaking of the chiral symmetry from the light-flavor

quark masses. Chiral perturbation theory (jPT) [2], as the first well-established effective theory of QCD,

has been extensively demonstrated to be powerful to describe the physical processes involving the pNGBs

c,  and [.

Another important property of QCD at low energy is the *�(1) anomaly arising from the strong

interactions, which is believed to be responsible for the large mass of the singlet [0, that gives the most

important component to the physical [′ state. Due to the *�(1) anomaly effect, "0, the mass of the singlet

[0, does not vanish and keeps a large value around 1 GeV even in the chiral limit. The appearance of the

new scale "0 breaks down the conventional chiral power-counting scheme, which relies on the perturbative

expansions of the external momenta and light meson masses. One way to systematically include the [′ state

in jPT is the large #� framework, being #� the number of colors in QCD. According to the large #�

QCD [3], the quark loops, which are responsible for the QCD *�(1) anomaly [4], are 1/#� suppressed,

implying that in the #� → ∞ limit the QCD *�(1) anomaly would disappear and the singlet [0 would

become a pNGB in the chiral limit [5], as the c,  and [. In this framework, the leading order mass squared

of the [0, "2
0
, scales as 1/#� when #� → ∞. Based on this argument, the triple X expansion scheme,

i.e. $ (X) ∼ $ (1/#� ) ∼ $ (?2) ∼ $ (<@), is proposed to simultaneously study the c,  , [ and [′ in jPT,

which is also referred as * (3) jPT in literature [6, 7]. By taking both the chiral and large #� limits, the

dynamical degrees of freedom of the very low energy QCD would be the nonet c,  , [8 and [0. From this

point of view, specially when one attempts to probe the #� behaviors of various hadron resonances, the* (3)
jPT offers a better motivated theoretical framework to study the resonance properties than the conventional

(* (3) case [2].

During the last decade, important progresses on the* (3) jPT within the X expansion scheme have been

made, including the one-loop calculation of all the two-meson scattering amplitudes, scalar and pseudoscalar

form factors and the study of the #� behaviors of the various light-flavor scalar and vector resonances [8–11].

Special attention has been paid to the light-flavor resonance dynamics in the scalar and pseudoscalar spectral

sum rules, and the semilocal duality from the meson-meson scattering. In this note, we first briefly introduce

the theoretical formalism and then discuss the key findings of the recent* (3) jPT developments.

2. The theoretical setups of the * (3) chiral theory

At leading order (LO) in the X expansion, the* (3) Lagrangian consists of three independent terms

L (0)
=
�2

4
〈D`D`〉 +

�2

4
〈j+〉 +

�2

12
"2

0 -
2 , (1)

where the basic chiral operators take the form

* = D2
= 48

√
2Φ
� , j = 2�(B + 8?) , - = ln (det*) , j± = D†jD† ± Dj†D , D` = 8D†�`*D

† ,

�`* = m`* − 8(E` + 0`)* + 8* (E` − 0`) , (2)
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and the contents of the pNGBs in the * (3) case are given by

Φ =

©­­­
«

1√
2
c0 + 1√

6
[8 + 1√

3
[0 c+  +

c− −1√
2
c0 + 1√

6
[8 + 1√

3
[0  0

 −  
0 −2√

6
[8 + 1√

3
[0

ª®®®
¬
. (3)

Here � stands for the pion decay constant at LO, with the physical normalization �c = 92.1 MeV. E`, 0`, ?

and B represent the vector, axial-vector, pseudoscalar and scalar external sources, respectively. By taking

the vacuum expectation values of the scalar source as B = diag(<D , <3, <B), being <@=D,3,B the light quark

masses, one can implement the explicit chiral symmetry breaking in the same way as that in QCD. It is noted

that we work in the isospin symmetric situation throughout, that is to take <D = <3 = <̂. The quantity �

is proportional to the quark condensate via 〈0|@̄0@1 |0〉 = −� �2X01. The last term in Eq. (1) introduces the

QCD *�(1) anomaly effect and gives the [0 the LO mass "0.

Generally, the higher-order operators in the effective field theory incorporates the higher energy dy-

namics. So that, apart from introducing the higher order local operators, another approach to take into

account the higher order effects is to explicitly include dynamical degrees of freedom beyond low energy

ones. One of such successful attempts along the line of this research is the resonance chiral theory (RjT),

which explicitly includes the light-flavor vector, scalar and pseudoscalar resonances in its construction of

the Lagrangians [12]. Later on RjT also turns out to be very useful for the phenomenological study of

the physical processes involving resonances [13]. Although the rigorous generalization of the RjT into

the loop calculation still faces problems, the large #� QCD argument provides useful guidelines for the

construction of the RjT operators [14]. The relevant ones that enter the meson-meson scattering, the scalar

and pseudoscalar form factors in our study are analyzed in detail in Refs. [8–10]. The RjT Lagrangian that

describes the interactions between the pNGBs and the vector resonances reads [12]

L+ =
8�+

2
√

2
〈+`a [D`, Da]〉 , (4)

and the one describing the interactions between the pNGBs and the scalar resonances is given by

L( = 23〈(8D`D
`〉 + 2<〈(8j+〉 + 2̃3(1〈D`D`〉 + 2̃<(1〈j+〉 . (5)

The relevant Lagrangian involving the pseudoscalar resonances is

L% = 83<〈%8j−〉 + 83̃<%1〈j−〉 . (6)

For the definitions of the explicit matrix contents of the vector nonet + , scalar octet (8 and scalar singlet (1,

we refer to Ref. [8] and references therein for details. The matrix contents of the pseudoscalar resonances

share the same flavor structures of the pNGBs in Eq. (3). Since we focus on the resonance dynamics in the

study of the meson-meson scattering and the form factors, the RjT Lagrangians in Eqs. (4), (5) and (6) are

used in the calculation. By integrating out the resonances, one can get the higher-order local operators, most

of which are the ones surviving in the large #� limit. In the X expansion, there are two next-to-leading order

(NLO) pure* (3) local operators, namely

L (1)
= −�

2
Λ1

12
m`-m`- − �2

Λ2

12
- 〈j−〉 , (7)

in the sense that they do not appear in the (* (3) jPT. These two operators can not be generated from the

resonance Lagrangians in Eqs. (4), (5) and (6). So we explicitly include the Λ1 and Λ2 operators in the

phenomenological study. Moreover, we also include a remnant part of the !8 term to account for the large

uncertainties of the pseudoscalar resonances [9, 10].

The complete one-loop two-pNGB scattering amplitudes involving the c,  , [ and [′ with tree-level

resonance exchanges in the* (3) chiral theory have been calculated in Ref. [8]. The one-particle-irreducible

3
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(1PI) Feynman diagrams of the two-pNGB scattering amplitudes are illustrated in Fig. 1. The one-loop

diagrams of the self-energies and the decay constants of the light mesons are given in Fig. 2. The 1PI

one-loop diagrams with tree-level resonance exchanges of the two-pNGB scalar form factors and the one-

pNGB pseudoscalar form factors are shown in Fig. 3 and they are calculated in Refs. [9, 10]. Within the X

expansion scheme, the conventional dimensional regularization method that is used in the (* (2) and (* (3)
jPT [2], is still valid in the * (3) case, since the new scale "0, behaves as 1/#� in the large #� limit.

While by treating the [0 as a heavy field, the dimensional regularization will break the well-established chiral

power-counting rule and different regularization methods have been correspondingly suggested to study the

[′ in Refs. [15, 16].

S S,V

Crossed diagrams

(a) (e)(d)(c)(b)

Figure 1: 1PI Feynman diagrams for the meson-meson scattering up to one loop with explicit tree-level exchanges.

S
S

Figure 2: Feynman diagrams for the one-loop self-energy (the left two diagrams) and the decay constant (the right two

diagrams) for the light pseudoscalar meson.

(a) (b) (c)

S
S

(d) (e) (f)

(a) (b)

S

(c)

P

(e)(d)

Figure 3: Feynman diagrams for the scalar (left panel) and pseudoscalar (right panel) form factors.

To incorporate the meson-meson nonperturbative strong interactions at the resonance energy region, the

perturbative calculations elaborated in Figs. 1 and 3, even after the explicit inclusion of the bare resonance

exchanges, are not enough, because the chiral interactions between the meson pairs could increase rapidly

when the energies lie above the two-meson thresholds. One efficient way to include such nonperturbative

effects is to perform the unitarization of the amplitudes, and there are vast literatures on this subject, see

recent comprehensive and pedagogical reviews in Refs. [17, 18] and references therein for further details.

The basic unitarization formalism for the two-body partial-wave scattering amplitudes that we use is an

approximated version of the #/� method [19]

T� � (B) =
#� � (B)

1 − #� � (B) � � � (B)
, (8)
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where the subscripts �� denote the quantum numbers of the isospin and angular momentum. We will omit

the subscripts �� in the next discussions for simplicity. By construction, the quantity # (B) only contains the

crossed-channel contributions (including the local contact terms as well) and the function � (B) includes the

right-hand cut contributions. Above the threshold the unitarity of the S matrix determines the imaginary part

of the � (B) function

Im� (B) = d(B) ≡ @(B)
8c

√
B
, (B > Bth) (9)

where Bth = (<1 + <2)2 stands for the threshold of the two particles with masses <1 and <2, and the center

of mass (CM) three momentum takes the form

@(B) =
√
[B − (<1 + <2)2] [B − (<1 − <2)2]

2
√
B

. (10)

The K-matrix unitarization method includes only the imaginary part of the � (B) function in its construction

of the unitarized scattering amplitudes. Clearly by taking only the imaginary part of the � (B) the analyticity

is not preserved. One can improve the K-matrix description by using a once subtracted dispersion relation to

include the real part of the � (B) function. It turns out that by using the dimensional regularization method

to calculate the one-loop two-point function we can also obtain the same result for the � (B) function by

replacing the divergent term with a free subtraction constant. The explicit expression takes the form [19]

� (B)DR
= − 1

16c2

[
0(`2) + log

<2
2

`2
− G+ log

G+ − 1

G+
− G− log

G− − 1

G−

]
, (11)

where ` is the regularization scale and will be set to ` = 770 MeV throughout, and G± are given by

G± =
B + <2

1
− <2

2

2B
± @(B)

√
B
. (12)

Notice that due to the inclusion of the minus sign of the � (B) function, comparing with the definition in

Refs. [8–10], the positive sign in the denominator becomes the minus sign in Eq. (8). The corresponding

changes should also apply in the following discussions. By matching the unitarized amplitudes of Eq. (8) and

the perturbative chiral amplitudes order by order [20], one can obtain the expression for the # (B) function

#� � (B) = )� � (B)LO+Res+Loop − )� � (B)LO� � � (B) )� � (B)LO , (13)

where )� � (B) stand for the partial-wave projections of the perturbative chiral amplitudes. The explicit

expressions for the leading order (LO), resonance exchanges (Res) and loop diagrams (Loop) are given in

Ref. [8].

For the scalar form factors of the two-meson states, we use a similar unitarization method to resum the

nonperturbative strong interactions between the two mesons [9, 10]

F� (B) =
'�

1 − #� � (B) � � � (B)
, (14)

where #� � (B) is given by Eq. (13) and '� (B) can be obtained by matching the unitarized form factor F (B)
and the perturbative chiral results

'� (B) = �� (B)LO+Res+Loop − #� � (B)LO� � � (B) �� (B)LO . (15)

�� (B) stands for the scalar form factors from the perturbative chiral calculation with definite isospin number

� . The explicit expressions for the chiral perturbative scalar form factors are given in Ref. [10]. In the

coupled-channel case with = channels, one should understand the functions #� � (B) and � � � (B) as = × =
matrices, and '� (B) as an =-row vector.
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3. Resonance dynamics in the meson-meson scattering, form factor and spectral

functions

In order to fix the unknown parameters, we have fitted a large amount of experimental and lattice

data. The experimental data include the phase shifts and inelasticities from the (- and %-wave cc → cc,

cc →   ̄ and c → c scattering processes. Regarding the c[ case, the experimental measurement on

this scattering process is still not available and there are only various c[ event distributions, which would

require more theoretical inputs apart from the c[ scattering parameters. It turns out that the uncertainties

of the c[ scattering amplitudes obtained from the fits to the event distributions alone are quite large [8–10].

This motivates us to include the lattice finite-volume spectra from the Hadron Spectrum Collaboration [21]

to further constrain the c[,   ̄ and c[′ coupled-channel scattering amplitudes [11]. Interested readers are

recommended to go through Refs. [8, 10, 11] for details of the fit results. Next we elaborate the resonance

dynamics in the various physical processes.

R M (MeV) Γ/2 (MeV) R M (MeV) Γ/2 (MeV)

50 (500) 442+4
−4

246+7
−5

d(770) 760+7
−5

71+4
−5

50 (980) 978+17
−11

29+9
−11

 ∗(892) 892+5
−7

25+2
−2

50 (1370) 1360+80
−60

170+55
−55

q(1020) 1019.1+0.5
−0.6

1.9+0.1
−0.1

 ∗
0
(800) 643+75

−30
303+25

−75
00 (980) 1019+22

−8
24+57

−17

 ∗
0
(1430) 1482+55

−110
132+40

−90
00 (1450) 1397+40

−27
62+79

−8

Table 1: The masses and the half widths of the resonances appearing in the meson-meson scattering. The resonance

poles of the 00 (980) and 00 (1450) are determined by fitting simultaneously the experimental c[ event distributions, the

cross sections of WW → c[ and also the lattice finite-volume spectra with the NLO chiral amplitudes [11]. The other

resonance poles are determined by fitting the experimental phase shifts and inelasticities [10].

The resonance contents are briefly summarized in Table 1, where both the mass (real part) and the half

width (imaginary part) for each pole are given. It is interesting to dissect the roles of these resonance poles

that are played in the various physical quantities, such as the form factors, spectral functions and semilocal

duality from the scattering. In Fig. 4, we show two different types of cc scalar form factors with the scalar

densities of D̄D + 3̄3 and B̄B. The real parts, imaginary parts and the magnitudes from the two similar fit

results in Refs. [8, 10] are shown together in Fig. 4. It is clear that the 50 (500) or the f resonance should be

responsible for the low energy bump around 0.5 GeV in the scalar form factor � D̄D+3̄3
c c (B), which is defined

as

� � D̄D+3̄3
c c (B) = 〈0| D̄D + 3̄3 | (cc)�=0 〉 . (16)

In contrast the broad f resonance barely contributes to the scalar form factor � B̄B
c c (B), which is defined as

� � B̄B
c c (B) = 〈0| B̄B | (cc)�=0 〉 . (17)

Interestingly, the 50 (980) manifests itself as a dip in the � D̄D+3̄3
c c (B), but shows up as a peak in the � B̄B

c c (B).
While in the energy region above 1 GeV, we do not see any narrow structure appearing in both types of scalar

form factors of cc. In this way, one can discern the role of the higher mass resonance 50(1370) played in

the cc scalar form factors. Other types of strangeness conserving two-meson scalar form factors defined as

〈0| @̄_0@ | %& 〉 are also calculated, with _0 the Gell-Mann matrices.

The scalar spectral function, i.e. the imaginary part of the correlating two-point scalar-density function,

can be given by the scalar form factors via

ImΠ(0 (B) =
∑
8

d8 (B) |�0
8 (B) |2\ (B − Bth8 ) , (18)

6
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where 8 runs over the relevant two-meson channels, Bth
8

stands for the threshold of the 8th channel, \ (G) is the

standard Heaviside step function and d8 (B) is the kinematical factors defined in Eq. (9). In Fig. 5, the scalar

spectral functions of 0 = 0, 3, 8 calculated with the parameters given in Refs. [8, 10] are shown.

In the chiral limit the scalar and pseudoscalar spectral functions follow a set of sum rules [22]∫ ∞

0

[
ImΠ- (B) − ImΠ-′ (B)

]
3B = 0 , (19)

with - or - ′ corresponding to either scalar or pseudoscalar light-flavor quark densities @̄_0@ or 8@̄_0W5@.

These scalar and pseudoscalar spectral sum rules offer an important tool to study the complicated scalar

resonance dynamics. It is advisory to split the integrals of the above sum rules into the nonperturbative and

perturbative parts as∫ B0

0

[
ImΠ- (B) − ImΠ-′ (B)

]
3B +

∫ ∞

B0

[
ImΠ- (B) − ImΠ-′ (B)

]
3B = 0 , (20)

where the nonperturbative integrands in the 0 and B0 region can be evaluated via Eq. (18) and the operator

product expansion (OPE) can be used to calculate the perturbative parts above B0. According to the QCD

OPE calculation [22], in the high energy perturbative region different types of the spectral integrals with - or

- ′
= (0, %1 are equal in the chiral limit, which implies that the second integrals in Eq. (20) are always zero

in the chiral limit. This reduces the discussions of the spectral sum rules to the nonperturbative integrals in

Eq. (20). Since there is lack of a rigorous criteria to set the separation scale B0, we have chosen three different

values for B0, namely 2.5, 3.0 and 3.5 GeV2, in our study. In practice, we find that the uncertainty caused by

the ambiguity of B0 is not that big, because the form factors and the spectral functions in our method tend to

vanish in the high energy region, or at least they approach to rather small values in magnitudes, which can be

clearly seen in Fig. 5. According to the curves in the figure, it seems that the broad f resonance contributes

to both the spectral functions with 0 = 0 and 0 = 8, i.e. the isocalar (* (3) singlet and octet currents,

respectively. To be more specific, the height of the bump around the f resonance region in the isocalar

singlet spectral function is around twice as that in the octet case. Similarly the 50 (980) peak in the 0 = 0 case

is also higher than that in the 0 = 8 case. While for the 50(1370) resonance, it dominantly contributes to the

isocalar octet spectral function. For the isovector spectral function with 0 = 3, both 00(980) and 00(1450)
will contribute. Based on the fit results from Refs. [8, 10], which are obtained by only including the c[

event distributions to constrain the c[ scattering, we conclude that the 00(980) peak is much more prominent

than the one from the 00(1450). Nevertheless there will be large uncertainties from those determinations.

It will be interesting to make an analysis of the c[ form factor and to further explore its phenomenological

application in a future work.

-3

-2

-1

 0

 1

 2

 3

 4

 400  600  800  1000  1200  1400  1600

Energy (MeV)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 400  600  800  1000  1200  1400  1600

Energy (MeV)

PRD12-|F |

PRD12-|F |

PRD11-|F |

PRD11-|F |

Re

Re

Im

Im

F
ū
u
+
d̄
d

π
π

(s
)

F
s̄
s

π
π
(s
)

〈 0|ūu+ d̄d|ππ 〉I=0 〈 0|s̄s|ππ 〉I=0

Figure 4: Results for the scalar cc form factors. The curves labeled as PRD11 and PRD12 are obtained by using the

parameters from Ref. [8] and Ref. [10], respectively.
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Figure 5: The scalar spectral functions with the definitions in Eq. (18). The left and right panels give the results with

the parameters determined in Ref. [10] by taking the physical masses and the chiral limit, respectively.

For the pseudoscalar spectral function, we will only consider the single-meson contributions, so that it

is simply given by the X functions

ImΠ%0 (B) =
∑
:

cX(B − <2
%:
) |�0

: (B) |2 , (21)

where : runs over the proper intermediate pNGBs and the one-meson pseudoscalar form factor �0
:

is defined

as

� �0
: (B) = 〈0|8@̄_0W5@ |%:〉 . (22)

The one-meson pseudoscalar form factors are calculated up to one-loop level, see the relevant Feynman

diagrams in the right panel of Fig. 3.

In order to quantity the fulfillment of the spectral sum rules in Eq. (20), several quantities based on the

nonperturbative spectral integrals are proposed

, =

∑
=,=

3 × 6
, f, =

√√∑
=

(,= −,)2

3 × 6 − 1
, (23)

with

,= = 16c

∫ B0

0

ImΠ= (B) 3B ,
(
= = {(0,3,8, %0,3,8}

)
. (24)

The valuef, /, can be interpreted as a parameter to judge at which level the spectral sum rules are satisfied.

The results by taking the fit parameters from Ref. [10] and the physical masses for the mesons are

, = 9.0 , f, = 1.5 ⇒ f,

,
= 0.16 , (25)

which implies that the scalar and pseudoscalar spectral sum rules in Eq. (20) are only violated at the level

around 15%. However, the violation of such sum rules is more severe when taking the fit parameters from

Ref. [8], which can reach around 30%. We have also tried to perform the chiral extrapolation of the spectral

functions to the chiral limit case, which introduces more uncertainties due to the less controlled extrapolating

behaviors of the subtraction constants in the unitarized amplitudes [9, 10].

The scalar and pseudoscalar spectral sum rules discussed previously enable us to discern the underlying

relations of the scalar and pseudoscalar mesons. On the other hand, the semilocal or the average duality

from the meson-meson scattering provides another interesting theoretical framework to study the possible

8
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relations between the scalar and the vector resonances. The semilocal/average duality here refers to the

relations between the hadronic system and the Regge theory in the fixed-C scattering amplitudes. The key

object is given by ∫ a2

a1

a−=Im) �
t,Regge (a, C)3a =

∫ a2

a1

a−=Im) �
t,Hadron (a, C)3a , (26)

with B, C, D the Mandelstam kinematical variables and a = (B − D)/2. The Regge amplitudes and the relevant

phenomenological inputs are given in details in Refs. [23, 24].

The general linear relations between the C- and B-channel isospin amplitudes can be found in many text

books in literature, e.g. the one in Ref. [25]. Usually the averaging integration region a2 − a1 in Eq. (26)

should be taken as : · GeV2, with : = 1, 2, 3, · · · . The semilocal duality in Eq. (26) should in principle work

well for the forward scattering amplitude, i.e. by taking C = 0. It is reasonable to also consider small changes

of the C, e.g., by taking C = Cth = 4<2
c for the cc scattering. Regarding the exponent = in Eq. (26), clearly

different values of = allow us to probe the interactions in different energy ranges. We will study the duality by

setting = at several integers from 0 to 3, which are demonstrated to be proper for the interested energy region

below 3 GeV2 [24]. In practice it turns out to be useful to consider the ratios of the average integrations for

the cc scattering, e.g., two different types of ratios are considered in Refs. [9, 10, 24]

'�
= =

∫ a2

a1
a−= Im)

(� )
t,Hadron

(a, C) 3a∫ a3

a1
a−= Im)

(� )
t,Hadron

(a, C) 3a
, (27)

� � � ′
= =

∫ amax

a1
a−= Im)

(� )
t,Hadron

(a, C) 3a∫ amax

a1
a−= Im)

(� ′)
t,Hadron

(a, C) 3a
, (28)

where a1, a2 and a3 will be set at the cc threshold, 1 GeV2 and 2 GeV2, respectively. Two different

values for amax = 1 or 2 GeV 2 are tested in our study. Nevertheless, since we include the excited scalar

resonances around 1.4 GeV, it is meaningful to fix amax = 2 GeV2, instead of 1 GeV2. Indeed the results with

amax = 2 GeV2 turn out to be more reasonable than the case with amax = 1 GeV2. Therefore in the following

discussions, we only show the results by taking amax = 2 GeV2. The integrands in the ratios (27) and (28)

can be decomposed into a set of the sum of the partial-wave amplitudes [10, 24], which can be calculated

with unitarized chiral approach in Eq. (8). In this way one can discern the roles of the resonances played in

the semilocal duality.

We focus on the situation of the fulfillment of semilocal duality for the cc scattering here. The values

for the ratios with different isospin numbers and = are summarized in Table 2. The smaller(larger) values of =

enable us to probe the fulfillment of the semilocal duality in the higher(lower) energy region. Apart from the

scalar and vector resonances, it is found that the inclusion of the �-wave tensor resonances generally improves

the fulfillment of the semilocal duality, except the = = 0 case. To incorporate the �-wave contributions to

the ratios (27) and (28), we follow Ref. [26] to include the tree-level tensor exchanges. In addition, the

other contributions to the �-wave amplitudes from the chiral loops, higher order contact terms and the

crossed-channel scalar and vector exchanges are also taken into account. The additional parameters related

to the tensor resonances are fixed by properly reproducing the 52(1270) pole [10]. The ratios of �20
= and

�21
= are particularly interesting to probe the semilocal duality, since the Regge contributions to the C-channel

amplitudes with � = 2 are greatly suppressed. As a result, the values of �20
= and �21

= should tend to zero

according to the Regge theory. Therefore one would expect the cancellations between the scalar, vector and

tensor resonance exchanges for the integrals with � = 2 in the ratios of �20
= and �21

= . By only including

the scalar or vector resonance contributions, one obtains that the magnitude of �21
= should approach to 1,

which can be considered as a value that signals the complete violation of the semilocal duality. For the

= = 1, 2, 3 cases, the magnitudes of the �21
= are smaller than 0.3, which indicate that the semilocal duality is

well satisfied. Similar conclusion is also obtained for the �20
= case. Regarding the values of the '�

=, generally

9
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speaking the semilocal duality is better satisfied for higher values of = and we verify that the inclusion of the

�-wave tensor resonance contributions plays relevant roles in the description of the semilocal duality. It is

verified that the results when taking C = 0 lead to quantitatively similar conclusions as the case with C = 4<2
c.

n '0
= '1

= �21
= n '0

= '1
= �21

=

Regge 0 0.225 0.325 ≃ 0 Hadrons 0 0.410 0.453 0.531

1 0.425 0.578 ≃ 0 (( + % + �) 1 0.653 0.694 0.154

2 0.705 0.839 ≃ 0 2 0.850 0.875 0.027

3 0.916 0.966 ≃ 0 3 0.954 0.965 0.225

Table 2: The results of the ratios defined in Eqs. (27) and (28) to quantify the semilocal duality in the cc scattering. All

the numbers shown in this table are evaluated by taking C = 4<2
c and amax = 2 GeV2. The entries in the hadronic parts

include the contributions from the (, % and � waves.

4. #� behaviors of the resonances and various physical quantities

As mentioned previously, the * (3) chiral theory provides a more appropriate theoretical framework to

study the large #� dynamics of QCD than the (* (3) case, since the singlet [0 would become the ninth

pNGB in the large #� and chiral limits. Indeed rather different #� evolutions for the masses of the c,  

and [ in the * (3) chiral theory, which can be seen in Fig. 6, have been found, when compared to the more

or less flat behaviors in the (* (3) case. The most significant change happens for the [ meson, which mass

greatly decreases to 300 MeV and tends to become degenerate with the pion. For the kaon and [′, their

masses still remain large in the large #� mainly due to the large physical strange quark mass. The leading

order [-[′ mixing angle \ monotonically decreases and approaches to the ideal mixing value in the large #�

limit. The #� evolutions of the masses for the pNGBs and the [-[′ mixing will be taken into account in the

following discussions on the #� behaviors of the resonances and various physical quantities, including the

spectral functions integrals and the ratios defined in the previous section to quantify the semilocal duality.

It is mentioned that previous works on the study of #� behaviors of the resonances [27] have neglected

the QCD *�(1) anomaly effect. In order to explicitly show the influences of the QCD *�(1) effect in the

determinations of the #� trajectories for the resonances, we propose a way to imitate the (* (3) results

from the* (3) case, which include the following operations: fixing the leading order mixing angle \ at zero

throughout, freezing the c,  and [ masses at their physical values and fixing the [′ mass at its leading

order value. The results can be seen in Fig. 7, where the resonance poles of the  ∗
0
(1430) and  ∗ (892)

are taken as examples to illustrate the differences from the * (3) and (* (3) chiral theories. Generally we

can conclude that the QCD *�(1) effects are not negligible and they have more important influences on the

scalar resonances than the vector ones.

According to the large #� QCD [3], the mass and width for the conventional @̄@ meson when #� → ∞
scale as #0

�
and 1/#� , respectively. This fact provides us a qualitative criteria to study the inner structures

of hadrons, once the #� trajectories of the resonance poles are known. In order to obtain the #� behaviors

of the resonance poles, we need to provide the #� scaling rules for the various parameters in the unitarized

scattering amplitudes. In Refs. [9, 10] detailed discussions on the leading and subleading #� scalings of the

relevant parameters are given. By taking into account the #� evolutions of the pNGBs’ masses, the [-[′

mixing angle and the various parameters, the corresponding results for the #� trajectories of the scalar and

vector resonances appearing in the cc scattering are shown in Fig. 8. The most important lesson we learn is

that the poles of 50(980), 50(1370) and d(770) fall down to the real axis when #� becomes large, indicating

that at least there are some @̄@ seeds inside these resonances in the large #� limit, which are also supported

10
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Figure 6: The #� evolutions for the masses of the pNGBs (left panel) and the LO [-[′ mixing angle (right panel).
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Figure 7: Comparisons of the #� trajectories from the* (3) and (* (3) cases.

in our later calculations by using the generalized Weinberg compositeness relations in Refs. [28, 29]. To be

more specific, it is verified that the width of the d(770) behaves perfectly as 1/#� for #� ≥ 3 and its mass

approaches to a constant for #� ≥ 15. Therefore the #� trajectory of the d(770) clearly manifests itself as

a standard @̄@ resonance. For the 50 (980) and 50 (1370), although their #� trajectories show some peculiar

trends when #� ≤ 10, the widths of both resonances approach to zero and their masses tend to constants

for large values of #� , implying that important @̄@ components start to become dominant when #� → ∞.

While for the 50(500) pole, its #� trajectory tends to go deep in the complex plane, instead of falling down

to the real axis, i.e. the width of the 50 (500) obviously does not behave as 1/#� even at large #� . This tells

us that in our study the @̄@ component does not seem playing dominant roles in the 50 (500) when #� → ∞.

The complex #� behaviors of the various resonances will be also reflected in the #� evolutions of

the physical quantities, such as the form factors, spectral functions and semilocal dualities, etc. Regarding

the #� evolutions of the spectral function sum rules, it is explicitly verified that the spectral integrals in

Eq. (24) obtained in the chiral limit, perfectly scale as #� , as expected from the large #� QCD [9, 10]. It is

found that the subtle subleading #� scalings of the various parameters in the unitarized amplitudes also play

relevant roles in the #� study of the semilocal duality. We show in Fig. 9 the #� evolutions of the ratios

(28) by including the subleading #� scalings of the various parameters [10]. The Regge theory predicts the

vanishing values of the ratios �21
= . Indeed the magnitudes of the �21

= ratios turn to be small for a wide range

of #� , indicating that there are cancellations between the contributions from different types of resonances.

Nevertheless the cancellation pattern is not universal at different values of #� . We find that rather different

cancellation patterns happen for different values of #� . E.g., in the physical case with #� = 3 the bump

11
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Figure 8: #� trajectories of the scalar and vector resonance poles in the cc scattering.

around the f resonance region gives dominant contribution that balances the one from the d(770) in the

ratio �21
2

. When #� = 30 the bump in the f region barely contributes any more and the contribution from

the d(770) to the �21
2

also get greatly reduced. For the ratio �21
0

, the d(770) contribution for all the values

of #� is mainly canceled by the one from the 50(1370), which however barely affects the ratios with = ≥ 1.

Comparing with the left and right panels of Fig. 9, we see that the �-wave tensor contributions generally

improve the fulfillment of the semilocal duality, except the = = 0 case. This indicates that more types of

resonances would be needed to better fulfill the duality for the = = 0 ratio.

5. Summary and conclusions

Recently we have continuously pushed forward the consistent higher-order calculations in the * (3)
chiral effective field theory, which include not only the meson-meson scattering and the form factors briefly

discussed here, but also the systematical calculations of the light pseudoscalar meson properties, the [-[′

mixing and their thermal behaviors. The* (3) chiral effective field theory can be clearly used to investigate

more subjects on the hadron phenomenologies than the (* (3) case. The energy regions covered by the* (3)
theory in principle are higher than the (* (3) one. It has been also demonstrated to be useful and efficient to

analyze the various lattice data [11, 30, 31].

In this note we mainly focus on the resonance dynamics in various physical quantities calculated in the

* (3) resonance chiral theory. Special attention has been paid to the #� evolutions of the resonance poles and

various physical quantities, including the spectral functions and the ratios to quantify the semilocal duality. To

properly take into account the nonperturbative strong interactions between the meson pairs, the approximated

#/� method is employed to unitarize the perturbative * (3) chiral amplitudes and the scalar form factors.

All the relevant scalar resonances below around 1.4 GeV and almost all the ground vector resonances are

12
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Figure 9: The #� evolutions of the ratios �21
= defined in Eq. (28). The curves correspond to the results by including

the subleading #� scalings of the various parameters [10]. The left panel is to show the results by only considering the

( and % waves. The right panel includes the contributions from the � wave with tensor resonances, as well as the ( and

% waves.

obtained in a consistent theoretical framework in our study, including 50 (500), 50 (980), 50 (1370),  ∗
0
(800),

 ∗
0
(1430), 00(980), 00(1450), d(770),  ∗ (892) and q(1020). The scalar spectral functions of the two-point

correlators are calculated in terms of the unitarized scalar form factors and the pseudoscalar spectral functions

are approximated by the single-meson contributions. Two kinds of ratios have been defined to quantify the

semilocal duality, which gives us further insight into the underlying relations between different types of

resonances. The #� trajectory curves of the resonance poles reveal that in the large #� the @̄@ components

seem playing marginal roles for the 50 (500), 00(980) and  ∗
0
(800), while there are strong evidences in our

study that the @̄@ seeds are important for the other resonances mentioned above. The scalar and pseudoscalar

spectral sum rules are found to be rather well satisfied and perfectly scale as #� in the chiral limit. Although

to a good extent the semilocal duality is generally fulfilled, the cancellation patterns among the contributions

from the different resonances are found to be subtle at different values of #� . We foresee that the* (3) chiral

theory can be further investigated to address many interesting phenomenological and lattice problems.
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