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We report on the construction of an accurate relativistic chiral nucleon-nucleon interaction up to the
next-to-next-to-leading (NNLO) order. We compare the so-obtained neutron-proton phaseshifts
with the next-to-next-to-next-to-leading order (N3LO) nonrelativistic ones and we show that up
to 𝑇lab. = 200 MeV, the relativistic chiral nuclear force can describe the PWA93 phaseshifts and
inelasticities as well as its N3LO nonrelativistic counterparts. As a result, the relativistic chiral
nuclear force can be readily used for relativistic ab initio nuclear structure, reaction, as well
astrophysical studies.
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1. Introduction

The nucleon-nucleon (𝑁𝑁) interaction plays an essential role in our microscopic understanding
of nuclear physics. It is the residual part of the strong interaction, for which the underlying
theory is quantum chromodynamics (QCD). Although QCD has been well established, due to its
two peculiar features, i.e., color confinement and asymptotic freedom, one cannot yet understand
low-energy nuclear phenomena directly from QCD. As a result, understanding the strong force
holding nucleons together has long been recognized as one of the most difficult questions in
Nature [1–4]. Traditionally, various phenomenological methods have been employed to derive the
nucleon-nucleon interaction. Between 1990 and 1992, Weinberg [5] proposed that one can use the
low-energy effective theory of QCD, i.e., chiral peturbation theory, to derive the 𝑁𝑁 interaction.
Nowadays the so-called chiral nuclear forces have been constructed up to the fifth order [7, 8] and
sixth order [9], and reached the level of the most refined phenomenological forces, such as Argonne
V18 [10] and CD-Bonn [11]. These standard chiral forces and their variants [12, 13] are now widely
used in ab initio nuclear structure and reaction studies [14, 15]. However, almost all these studies
are performed in the nonrelativistic framework.

On the other hand, for nuclear structure studies, covariant density functional theories have been
extremely successful [16, 17]. The Dirac-Brucker-Hartree-Fock approach has also been employed
to construct a global nucleon-nucleus optical potential [18]. In recent years, there are renewed
interests in further refining the Dirac-Bruckner-Hartree-Fock approaches. Using the time-honored
Bonn potential developed almost thirty years ago [19], self-consistent studies of finite nuclei and
nuclear matter have been performed, yielding promising results [20]. Nonetheless, compared to the
remarkable progress achieved in the nonrelativistic framework, much more remain to be done in
the relativistic framework. In addition to further developments of relativistic few- and many-body
approaches, one crucial missing piece of information is an accurate relativistic chiral nucleon-
nucleon interaction. In this talk, we present the first accurate relativistic chiral nuclenon-nucleon
interaction recently constructed up to the next-to-next-to-leading (NNLO) order [21].

This paper is organized as follows. We first briefly review some of the leading order results,
then we explain the essential ingredients in constructing the relativistic chiral nucleon-nucleon
interaction up to the next-to-next-to-leading order. We comment on the fits of partial waves of low
angular momentum (𝐽 ≤ 2) and the predictions of peripheral waves, followed by a short summary
and outlook.

2. Brief review of leading order results

In 2016, we proposed to build a relativistic chiral nucleon-nucleon interaction based on the
covariant baryon chiral perturbation theory. To achieve this, we developed a covariant power
counting scheme [22, 23] similar to the extended-on-mass-shell (EOMS) scheme of the one-baryon
sector [24–26]. It is interesting to note that our approach is different from the modified Weinberg
approach of the Bochum group [27–30], which starts with the manifestly Lorentz-invariant effective
Lagrangian, performs nonrelativistic expansions, employs time-ordered perturbation theory, and
aims at improving the UV behavior of the Weinberg approach. In contrast, we keep the complete
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Dirac spinor of the nucleon and aim to provide the most wanted inputs for relativistic ab initio
nuclear structure and reaction studies.

At leading order (LO), the covariant scheme has been successfully employed to study the
nucleon-nucleon scattering [22, 31–34] and hyperon-nucleon scattering [35–41]. In particular, We
showed that in Ref. [22] a reasonable description of the 𝐽 = 0, 1 𝑛𝑝 phaseshifts can already be
achieved at leading order, in particularly, the typical low energy features of the 1𝑆0 partial wave [31].
Regarding renormalization group invariance, the covariant scheme also exhibits some interesting
features. For instance, the extensively studied 3𝑃0 channel becomes RG invariant in the covariant
power counting scheme [33].

3. Next-to-next-to-leading order results

To construct an accurate relativistic chiral nucleon-nucleon interaction, three more ingredients
are needed: 1) contact 𝑁𝑁 Lagrangians beyond leading order; 2) relevant pion-nucleon couplings
determined in the covariant baryon chiral perturbation theory with the EOMS scheme; and 3) two-
pion exchange contributions at both leading order and next-to-leading order. As the pion-nucleon
scattering has been extensively studied in the EOMS scheme both in SU(2) [42, 43] and SU(3) [44],
we focus here on the construction of contact Lagrangians [23] and the calculation of covariant
perturbative two-pion exchange contributions [45].

3.1 Covariant chiral nucleon-nucleon contact Lagrangian up to order O(𝑞4)

The general expression of a covariant nucleon-nucleon contact Lagrangian reads,

1
(2𝑚)𝑁𝑑

(
�̄�𝑖
←→
𝜕 𝛼𝑖
←→
𝜕 𝛽 ...Γ𝐴𝜓

)
𝜕𝜆𝜕𝜇 ...

(
�̄�𝑖
←→
𝜕 𝜎𝑖
←→
𝜕 𝜏 ...Γ𝐵𝜓

)
, (1)

where 𝜓 = (𝜓𝑝, 𝜓𝑛)𝑇 denote the relativistic nucleon field,
←→
𝜕 𝛼 =

−→
𝜕 𝛼 −←−𝜕 𝛼, where

−→
𝜕 𝛼/←−𝜕 𝛼 refers

to the derivative on 𝜓/�̄�, and Γ ∈ {1, 𝛾5, 𝛾
𝜇, 𝛾5𝛾

𝜇, 𝜎𝜇𝜈 , 𝑔𝜇𝜈 , 𝜖 𝜇𝜈𝜌𝜎}. In the above expression, 𝑁𝑑

refers to the number of four-derivatives (including
←→
𝜕 and 𝜕 ) in the Lagrangian, 𝑚 refers to the

nucleon mass in the chiral limit, and the factor 1/(2𝑚)𝑁𝑑 is introduced to unify the dimension of
the contact terms. The Lorentz indices 𝛼, 𝛽... have to be contracted among themselves to fulfill
Lorentz invariance.

Table 1: Chiral dimensions and properties of fermion bilinears, derivative operators, Dirac matrices, and
Levi-Civita tensor, under parity (P), charge conjugation (C), and hermitian conjugation (h.c.) transforma-
tions.

1 𝛾5 𝛾𝜇 𝛾5𝛾𝜇 𝜎𝜇𝜈 𝜖𝜇𝜈𝜌𝜎
←→
𝜕 𝜇 𝜕𝜇

O 0 1 0 0 0 − 0 1
P + − + − + − + +
C + + − + − + − +

h.c. + − + + + + − +

To construct the chiral Lagrangian, one has to specify a proper power counting. In our present
case, we need to specify the chiral dimensions of all the building blocks. In the covariant case, the
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power counting is more involved, compared to the nonrelativistic case. The chiral dimensions and
properties of fermion bilinears, derivative operators, Dirac matrices, and Levi-Civita tensor under
parity, charge conjugation, and hermitian conjugation transformations are listed in Table 1. The
derivative 𝜕 acting on the whole bilinear is of order O(𝑞1), while the derivative

←→
𝜕 acting inside

a bilinear is of O(𝑞0) due to the presence of the nucleon mass, where 𝑞 denotes a genetic small
quantity, such as the nucleon three momentum or the pion mass. The Dirac matrix 𝛾5 is of order
O(𝑞1) because it mixes the large and small components of the Dirac spinor. The Levi-Civita tensor
𝜖𝜇𝜈𝜌𝜎 contracting with 𝑛 derivatives acting inside a bilinear raises the chiral order by 𝑛 − 1. If a
derivative

←→
𝜕 is contracted with one of the Dirac matrices 𝛾5𝛾

𝜇 or 𝜎𝜇𝜈 in a different bilinear, the
matrix element is of O(𝑞1), as can be explicitly checked by means of the equation of motion (EoM).
Therefore, at each order in the powering counting, only a finite number of 𝜕 and 𝜖𝜇𝜈𝜌𝜎 appear.
However, in principle, any number of pairwise contracted 𝑖

←→
𝜕 of the form

Õ (𝑛)
Γ𝐴Γ𝐵

=
1

(2𝑚)2𝑛
(
�̄�𝑖
←→
𝜕 𝜇1𝑖
←→
𝜕 𝜇2 ...𝑖

←→
𝜕 𝜇𝑛Γ𝛼

𝐴𝜓

)
×

(
�̄�𝑖
←→
𝜕 𝜇1𝑖
←→
𝜕 𝜇2 ...𝑖

←→
𝜕 𝜇𝑛Γ𝐵𝛼𝜓

)
, (2)

is allowed, since it is ofO(𝑞0). On the other hand, the structure [ (𝑝1+𝑝3) · (𝑝2+𝑝4) ]𝑛

(2𝑚)2𝑛 can be rewritten as[
1 + (𝑠−4𝑚2)−𝑢

4𝑚2

]𝑛
,with 𝑠−4𝑚2 = −(𝑝1−𝑝2)2 = −(𝑝3−𝑝4)2 ∼ O(𝑞2) and 𝑢 = (𝑝1−𝑝4)2 ∼ O(𝑞2).

Therefore, atO(𝑞0), only the terms with 𝑛 = 0, 1, 2 are needed, atO(𝑞2) only the terms with 𝑛 = 0, 1
are needed, and at O(𝑞4) only the terms with 𝑛 = 0 are needed since no new structures appear for
𝑛 larger than those specified above.

Following the general principles of constructing effective Lagrangians and guided by Table 1,
one can write down all the terms of O(𝑞0), O(𝑞2), and O(𝑞4). However, not all of them are
independent up to the order of our concern and one can use the EoM to eliminate the redundant
terms. The EoM for the nucleon refers to the well-known Dirac equation at LO

/𝜕𝜓 = 𝛾𝜇𝜕𝜇𝜓 = −𝑖𝑚𝜓 + O(𝑞) , (3)

and its Hermitian conjugate. Up to higher order corrections one can replace /𝜕𝜓 by −𝑖𝑚𝜓 and �̄�
←−
/𝜕

by 𝑖𝑚�̄�. To fully utilize this EoM, one needs to transform terms that do not contain /𝜕 into forms
containing it. The master formula is

−2𝑖𝑚
(
�̄�Γ𝜓

)
≈

(
�̄�Γ′𝜆

←→
𝜕 𝜆𝜓

)
+ 𝜕𝜆

(
�̄�Γ′′𝜆𝜓

)
, (4)

where Γ, Γ′, and Γ′′ are Dirac matrices given in Ref. [23] and ≈ indicates equal up to higher orders.
Using the EoM together with the decomposition of Dirac matrices, one can obtain a set of linear
relations. With these relations, we obtained a minimal and complete set of relativistic 𝑁𝑁 contact
Lagrangian terms of 40 up to O(𝑞4) [23].

3.2 Two-pion exchange contributions

In order to calculate the contributions of two-pion exchanges, we need the following LO and
NLO 𝜋𝑁 Lagrangians [43],

L (1)
𝜋𝑁

= �̄�

(
i /𝐷 − 𝑚 + 𝑔𝐴

2 /𝑢𝛾5

)
𝜓, (5)

L (2)
𝜋𝑁

= 𝑐1⟨𝜒+⟩�̄�𝜓 −
𝑐2

4𝑚2 ⟨𝑢
𝜇𝑢𝜈⟩

(
�̄�𝐷𝜇𝐷𝜈𝜓 + ℎ.𝑐.

)
+ 𝑐3

2
⟨𝑢2⟩�̄�𝜓 − 𝑐4

4
�̄�𝛾𝜇𝛾𝜈

[
𝑢𝜇, 𝑢𝜈

]
𝜓, (6)
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where the covariant derivative 𝐷𝜇 is defined as 𝐷𝜇 = 𝜕𝜇 + Γ𝜇 with Γ𝜇 = 1
2
(
𝑢†𝜕𝜇𝑢 + 𝑢𝜕𝜇𝑢†

)
and

𝑢 = exp
(

iΦ
2 𝑓𝜋

)
. The pion field Φ is a 2 × 2 matrix Φ =

(
𝜋0 √

2𝜋+√
2𝜋− −𝜋0

)
, and the axial current type

quantity 𝑢𝜇 = i
(
𝑢†𝜕𝜇𝑢 − 𝑢𝜕𝜇𝑢†

)
, where 𝜒+ = 𝑢†𝜒𝑢 + 𝑢𝜒𝑢† with 𝜒 = M = 𝑑𝑖𝑎𝑔

(
𝑚2

𝜋 , 𝑚
2
𝜋

)
. The

following values for the relevant LECs and masses are adopted in the numerical calculation: the
pion decay constant 𝑓𝜋 = 92.4 MeV, the axial coupling constant 𝑔𝐴 = 1.29 [4], the nucleon mass
𝑚𝑛 = 939 MeV, the pion mass 𝑚𝜋 = 139 MeV [46], and the low-energy constants 𝑐1 = −1.39,
𝑐2 = 4.01, 𝑐3 = −6.61, 𝑐4 = 3.92, all in units of GeV−1, taken from Ref. [43] .

In Ref. [45], it was shown that the relativistic effects in the perturbative two-pion-exchange
(TPE) contributions do improve the description of the peripheral 𝑁𝑁 scattering data compared to
their nonrelativistic counterparts. In Ref. [47], the same feature is found also for the non-perturbative
TPE contributions.

3.3 Relativistic chiral nucleon-nucleon interaction

Due to the non-perturbative nature of the nucleon-nucleon interaction, we need to solve a
relativistic scattering equation with the chiral potential as inputs. In this work, we solve the
following relativistic Blankenbecler-Sugar (BbS) equation [48],

𝑇 ( 𝒑′, 𝒑, 𝑠) = 𝑉 ( 𝒑′, 𝒑, 𝑠) +
∫

d3𝒌

(2𝜋)3
𝑉 ( 𝒑′, 𝒌, 𝑠)𝑚

2

𝐸𝑘

1
𝒒2
𝑐𝑚 − 𝒌2 − 𝑖𝜖

𝑇 (𝒌, 𝒑, 𝑠), (7)

where |𝒒𝑐𝑚 | =
√︁
𝑠/4 − 𝑚2 is the nucleon momentum on the mass shell in the center of mass (c.m.)

frame, and a regulator 𝑓𝑅 (𝑝) = 𝜃 (Λ2 − 𝑝2) is introduced to regularize the potential. Up to NNLO,
the relativistic chiral potential consists of the following terms

𝑉 = 𝑉LO
CT +𝑉

NLO
CT +𝑉OPE +𝑉NLO

TPE +𝑉
NNLO
TPE −𝑉IOPE, (8)

in which the first two terms refer to the LO [O(𝑞0)] and NLO [O(𝑞2)] contact contributions,
while the next three terms denote the one-pion exchange (OPE), leading, and subleading TPE
contributions. The last term represents the iterated OPE contribution.

Following the strategy adopted in nonrelativistic studies, e.g., Refs. [6, 49], we perform a
global fit to the 𝑛𝑝 phaseshifts for all the partial waves with total angular momentum 𝐽 ≤
2 [50]. For each partial wave, we choose eight data points with laboratory kinetic energy
𝑇lab = 1, 5, 10, 25, 50, 100, 150, 200 MeV for the fitting. The 𝜒2-like function to be minimized,
�̃�2, is defined as

�̃�2 =
∑︁
𝑖

(𝛿𝑖 − 𝛿𝑖PWA93)
2, (9)

where 𝛿𝑖 are theoretical phaseshifts or mixing angles, and 𝛿𝑖PWA93 are their empirical PWA93
counterparts [50].

The so-obtained fitting results are shown in Fig. 1, where the theoretical uncertainties are
obtained via the Bayesian model for a DoB level of 68% [51–53]. For comparison, we also show
the nonrelativistic N3LO results obtained with different strategies for regularizing chiral potentials
from Refs. [4, 54] and Refs. [6, 55] which are denoted as NR-N3LO-Idaho and NR-N3LO-EKM,
respectively.
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Figure 1: 𝑁𝑁 phaseshifts for partial waves with 𝐽 ≤ 2. The red solid lines denote the relativistic NNLO
results obtained with a cutoff of Λ = 0.9 GeV and the blue dashed lines denote the relativistic NLO results
obtained with a smaller cutoff of Λ = 0.6 GeV. The corresponding bands represent the uncertainties for a
DoB level of 68%. For comparison, we also show the LO relativistic results (black dotted lines) obtained
with a cutoff of Λ = 0.6 GeV and the two sets of nonrelativistic N3LO results NR-N3LO-Idaho (Λ = 0.5 GeV,
green dash-dotted lines) [4, 54] and NR-N3LO-EKM (cutoff = 0.9 fm, magenta short-dotted lines) [6, 55].
The black dots denote the PWA93 phaseshifts [50]. The shaded regions denote that those data are not fitted
and the corresponding relativistic results are predictions.
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Figure 2: Same as Fig. 1 but for peripheral partial waves with 𝐽 ≤ 4 and 𝐿 ≤ 4. Note that for these partial
waves, the chiral results are predictions and independent from the partial wave analyses. Note that we do not
show the LO and NLO relativistic chiral results for these peripheral partial waves.

First we notice that the NLO and NNLO relativistic results describe the 𝑛𝑝 phaseshifts very
well up to 𝑇lab = 200 MeV, at a level similar to the nonrelativistic N3LO results. Particularly
interesting is that the NLO and the NNLO results also agree well with each other for 𝑇lab ≤ 200
MeV, while the NNLO results are in better agreement the PWA93 data for larger kinetic energies.
This demonstrates that the chiral series converge well. On the other hand, for 3𝐹2, the NLO results
are better, which can be attributed to the compromise that one has to make to fit all the 𝐽 = 2 partial
waves with five LECs to balance the large contributions of subleading TPE. It can be improved
once the correlation between the 𝐷-waves with 𝐽 = 2 and 3𝑃2-3𝐹2 are removed, i.e., the 𝐷-waves
and 3𝑃2-3𝐹2 are fitted separately or the cutoff is slightly modified. We note that in obtaining the
NR-N3LO-Idaho results, the phaseshifts of this channel were lowered by a careful fine-tuning of 𝑐2

and 𝑐4 [54].
In Fig. 2, we compare the NR-N3LO-Idaho [4, 54] and the NR-N3LO-EKM [6, 55] chiral forces

with the relativistic NNLO chiral force for peripheral partial waves with 𝐽 ≤ 4 and 𝐿 ≤ 4. Higher
partial waves are not explicitly shown since for them the one-pion exchange contribution plays the
dominant role. Clearly for these partial waves, the relativistic NNLO results are as good as or even
slightly better than the nonrelativistic N3LO results for 𝑇lab ≤ 200 MeV except for 3𝐹4. For 3𝐷3

and 1𝐹3, our relativistic NNLO results and those NR-N3LO-EKM are not able to describe well the
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high-momentum data, while the NR-N3LO-Idaho results miss the data for 𝑇lab ∈ [100,200] MeV.
For 3𝐹3, no results can reproduce the behavior above 𝑇lab = 200 MeV but the NR-N3LO-Idaho
results are slightly better. For 3𝐹4, the subleading TPE is strong such that it shifts the relativistic
results well above the PWA93 phaseshifts, while the NR-N3LO-Idaho results behave much better.
For the 𝐺-waves and the mixing angle 𝜖3, all three results are in good agreement with the empirical
data below 𝑇lab = 200 MeV, while the NR-N3LO-Idaho results tend to yield smaller values at higher
energies.

4. Summary and outlook

To summarize, we constructed an accurate relativistic chiral nucleon-nucleon interaction up
to the next-to-next-to-leading order in covariant baryon chiral perturbation theory and we obtained
a good description of the PWA93 phaseshifts. The next-to-leading order (NLO) and the NNLO
results agree well with each other for 𝑇lab ≤ 200 MeV, while at higher energies the NNLO results
agree better with the PWA93 phaseshifts. This demonstrated the convergence of the covariant
chiral expansions. Given the quality already achieved in describing the 𝑛𝑝 phaseshifts, the NNLO
relativistic chiral 𝑁𝑁 interaction provides the much wanted inputs for relativistic ab initio nuclear
structure and reaction studies. In the future, it will be interesting to extend the present study to
the 𝑢, 𝑑, 𝑠 flavor sector and construct accurate hyperon-nucleon/hyperon interactions that are of
great relevance for studies of neutron stars. Furthermore, one can study the antinucleon-nucleon
interaction in the covariant framework as well. Such works are in progress.
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