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Nucleon-nucleon interaction is studied within chiral effective field theory with a finite cutoff at
next-to-leading order in the chiral expansion. The leading order interaction is resummed non-
perturbatively, whereas the next-to-leading-order terms are taken into account in a perturbative
manner. Explicit renormalizability of such a scheme is proven in certain important cases. In
particular, it is verifiedwhether the power-counting breaking terms originating from the integration
regions characterized by large momenta can be absorbed by the renormalization of the low energy
constants. The importance of non-perturbative effects is analyzed in detail.
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1. Introduction

Renormalization and power counting are the basic ingredients of any effective quantum field
theory (EFT). In the nucleon-nucleon (NN) and the few-nucleon sector, chiral EFT, originally
introduced by Weinberg [1, 2], has become a powerful tool to systematically study the dynamics
of these systems. The non-perturbative nature of the NN interaction makes renormalization rather
complicated, see, e.g. discussions inRefs. [3–6]. Weinberg power counting implies the resummation
of the leading order (LO) potential (two-nucleon irreducible) diagrams, which are divergent. The
divergence increases with the number of iterations of the LO potential.

In order to avoid introducing an infinite number of counter terms that would absorb those
divergent contributions, one can introduce a regulator in the form of a finite (of the order of the
hard scale Λb) cutoff Λ. Such an approach has phenomenological success. Calculation within this
scheme have been extended to high orders in the chiral expansion and achieved high accuracy, see,
e.g. Refs. [7–9].

A formal justification of such an approach has been addressed only recently in Ref. [10],
where the iterations of the LO potential were assumed to be perturbative. In particular, it has been
shown that (extended when necessary) Weinberg power counting holds for the LO nucleon-nucleon
amplitude. For the next-to-leading (NLO) amplitude, the power counting can be restored by the
renormalization of the LO contact interactions to all orders in the LO potential.

In this talk, we report on a generalization of the analysis of Ref. [10] and discuss the compli-
cations originating from the inclusion of the non-perturbative effects.

2. Effective Lagrangian and power counting

We start with the chiral effective Lagrangian:

Leff = L
(2)
π + L

(1)
πN + L

(0)
NN + L

(2)
NN + . . . , (1)

expressed in terms of the nucleon and pion fields. The superscripts denote the number of derivatives
or the power of the pion mass Mπ . The scattering amplitude obtained from this Lagrangian is
expanded in terms of the small quantity Q, which is the ratio of the soft and the hard scale Q = q

Λb
.

The soft scale is given by external on-shell nucleon momenta pon, and Mπ and the hard scaleΛb can
be associated with the ρ-meson mass. The chiral order of potential (2N-irreducible) contributions
to the amplitude in Weinberg’s approach is given by the power counting formula

D = 2L +
∑
i

(
di +

ni
2
− 2

)
, (2)

where L is the number of loops, the sum runs over all vertices of the diagram, ni is the number of
nucleon lines in vertex i and di is the number of derivatives and the pion-mass insertions at vertex i.

Equation (2) implies that that the LO potential contains the derivativeless contact interaction
and the one-pion exchange contribution, whereas the NLO potential contains two-pion-exchange
contributions and subleading contact terms. In practical calculations, one can include more terms
into the LO potential if they appear to be numerically large.
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The 2N-reducible graphs are enhanced compared to the potential graphs due to the infrared
singularity of the nucleon propagators. This makes it necessary to take into account all iterations
of the LO potential V0 at the same chiral order.

The LO (O(Q0)) and NLO (O(Q2)) amplitudes are given by

T0 = V0 + V0GV0 + V0GV0GV0 + · · · =

∞∑
n=0

T [n]0 = V0R = R̄V0, (3)

T2 = V2 + V2GV0 + V0GV2 + V2GV0GV0 + · · · =

∞∑
m,n=0

T [m,n]2 = R̄V2R, (4)

with the resolvents

R =
1

1 − GV0
, R̄ =

1
1 − V0G

. (5)

3. Perturbative case

In this section, we consider the situation when the series in the LO potential V0 is convergent
for both LO and NLO amplitudes, but the rate of such a convergence is slower than that of the chiral
expansion and one still needs to iterate the LO potential.

The integrals in Eqs. (3), (4) converge at momenta of the order of the cutoff Λ (we will discuss
here the spin-triplet channels or the spin-singlet channels with both short- and long-range LO
potentials as having more singular ultraviolet behaviour). For the LO amplitude T0, this does no
lead to a power counting violation since each power of Λ is compensated by the inverse hard scale
originating from the LO potential 1/ΛV . We demonstrated this explicitly in Ref. [10].

On the other hand, the unrenormalizedNLO amplitude fromEq. (4) violates the power counting
of Eq. (2) and contains terms of order O(Q0) in the channels that couple to S-waves. In Ref. [10],
we showed that such power-counting breaking contributions can be absorbed by a renormalization
of the LO contact interactions as one would expect from the principles of quantum field theory.

In order to renormalize theNLOamplitude, we perform subtractions at zero externalmomentum
in the spirit of the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization procedure
[11–13]. We introduce the subtraction operationT that replaces an operator X with matrix elements
Xl′l(p′, p; pon) with its value at p = p′ = pon = 0:

T(X) = X00(0, 0, 0)Vct , (6)

where Vct is the contact operator

Vct = |χ〉〈χ |, 〈p, ls j |χ〉 = δl,0. (7)

The subscripts of X refer to the orbital angular momentum in the ls j basis, p and p′ are the initial and
final off-shell momenta and pon is the on-shell momentum. Analogously, we define the subtraction
operation Tmi,ni for a subdiagram of T [m,n]2 .

The BPHZ R-operation that renormalizes T [m,n]2 is given by

R(T [m,n]2 ) = T [m,n]2 +
∑

Uk ∈F
m,n

∏
(mi,ni )∈Uk

(−Tmi,ni )T [m,n]2 , (8)
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Figure 1: An example of a forest for the amplitude T [3,3]2 .
.

where Fm,n represents the set of all forests, i.e, the set of all possible distinct sequences of nested
subdiagrams (mi, ni):

Uk = ((mk;1, nk;1), (mk;2, nk;2), . . . ) ,

m ≥ mk;i+1 ≥ mk;i ≥ 0 , n ≥ nk;i+1 ≥ nk;i ≥ 0. (9)

An example of a forest that contributes to Eq. (8) for m = n = 3 is shown in Fig. 1. One can show
that the on-shell renormalized amplitude R(T [m,n]2 ) satisfies the following inequality:���R(T [m,n]2 )(pon)

��� ≤ 8π2MT2

mNΛV

(
M̃T2

Λ

ΛV

)m+n p2
on

Λ2
b

log
Λ

Mπ
, (10)

whereMT2 and M̃T2 are constants of order one, and 8π2

mNΛV
is a normalization factor. Therefore,

R(T [m,n]2 ) is of order O(Q2) (strictly speaking o(Q) due to logarithmic corrections) in accordance
with the original power counting.

4. Non-perturbative effects

In this section, we extend the renormalization to the non-perturbative case when the series in
Eqs. (3) and (4) do not converge. In this situation, we apply the Fredholm method. The resolvent
R of the partial-wave Lippmann-Schwinger equation can be represented as [14]

R = 1 +
Y
D
, R̄ = 1 +

Ȳ
D
, (11)

where the Fredholm determinant is a function of only the on-shell momentum: D = D(pon).
Analogous representations for T0 and T2 are given by

T0;l′l(p′, p; pon) =
N0;l′l(p′, p; pon)

D(pon)
, T2;l′l(p′, p; pon) =

N2;l′l(p′, p; pon)
D(pon)2

. (12)
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Although the whole expressions in Eqs. (11) and (12) are non-perturbative, each individual quantity
converges as a series in V0:

Y =
∞∑
n=1

Yn, Ȳ =
∞∑
n=1

Ȳn, D =
∞∑
n=0

Dn, N0 =

∞∑
n=1
(N0)n, N2 =

∞∑
n=0
(N2)n, (13)

which allows us to analyze the non-perturbative case similarly to the perturbative one.
The quantities N0 and D can be shown to be bounded as

|N0 | ≤
8π2MN0

mNΛV
, |D | ≤ MD, (14)

whereMN0 andMD are constants of order one. On the other hand, we assume that |D | is also
bounded from below as

|D | ≥ M̃D

(
pon
Mπ
+ κ

)
, (15)

where κ can be small compared to one, which enables us to consider also the situation when the
amplitude is enhanced close to threshold due to the presence of a (quasi) bound state. In particular,
the nucleon-nucleon scattering amplitude in the channels 1S0 and 3S1 −

3D1 can be analyzed under
this assumption.

In order to renormalize the amplitude T2 in the non-perturbative case, it is convenient to
introduce the quantities ψ and ψ̄ that correspond to the scattering wave functions at the origin in
coordinate space:

|ψ̄〉 = R̄(pon)|χ〉, 〈ψ | = 〈χ |R(pon),

ψ̄l(p) = ψl(p) = 〈ψ |p, ls j〉 = 〈p, ls j |ψ̄〉. (16)

or more explicitly:

ψl(pon) = δl,0 +
∫

p2dp
(2π)3

G(p; pon)T0;l,0(p, pon; pon). (17)

The renormalization of the NLO amplitude in P-waves and higher works automatically, i.e. T2 does
not violate power counting. For the S-waves, Eq. (8) can be resummed explicitly, and we obtain for
the on-shell amplitude:

R(T2;l′,l)(pon) = T2;l′,l(pon) − T2;0,0(0)
ψl′(pon)ψl(pon)

ψ0(0)2
. (18)

In Eq. (18), we choose the renormalization condition

R(T2)(0) = 0 . (19)

Introducing the quantity ν,

ψl(pon) =
νl(pon)
D(pon)

, (20)
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we can rewrite Eq. (18) as follows:

R(T2;l′l)(pon) =
1

D(pon)2

(
N2;l′l(pon) − N2;0,0(0)

νl′(pon)νl(pon)
ν0(0)2

)
C
R(N2;l′l)(pon)

D(pon)2
. (21)

One can prove thatR(T2;l′l)(pon) satisfies the power counting of Eq. (2) and is of order O(Q2) if the
renormalized quantity R(N2) can be represented as convergent series in V0,

R(N2) =

∞∑
m,n=0

[R(N2)(pon)]m,n < ∞, (22)

[R(N2)]m,n =

m∑
m1=0

n∑
n1=0

Dm1 Dn1[R(T2)]m−m1,n−n1, (23)

and the convergence rate is sufficiently high. The function ν(pon) is a convergent series in V0.
However, it appears in the denominator in the definition ofR(N2). Therefore, a sufficient condition
for the series in Eq. (22) to converge is the absence of zeros of the function ν(λ, pon) of a complex
variable λ inside the circle |λ | ≤ 1

ν(λ, pon) , 0, |λ | ≤ 1. (24)

The function ν(λ, pon) is obtained from ν(pon) by rescaling V0 → λV0.
Condition (22) (or (24)) is the constraint on the short range part of the LO potential. If it

holds, the renormalization condition in Eq. (19) leads to the following bound on R(N2) (assuming
Λ ∼ ΛV ):

|R(N2)(pon)| ≤
8π2MN2

mNΛV

(
p2
on

Λ2
b

+ κ2

)
Φlog, (25)

where Φlog is a factor that can contain, e.g., log Mπ

Λ
terms that do not modify the power counting.

Equation (25) together with Eq. (15) yields

|R(T2)(pon)| ≤
8π2MT2;NP

mNΛV

M2
π

Λ2
b

Φlog, (26)

where MN2 and MT2;NP are constants of order one. The bound in Eq. (26) satisfies the desired
power counting.

Note that in some cases, the condition in Eq. (24) is obeyed automatically. For example, if
the LO potential V0 in the 1S0 channel is fully local, ψ(pon) coincides with the inverse of the Jost
function f (pon) and the inverse of the Fredholm determinant [14],

ψ(pon) = f (pon)−1 = D(pon)−1, (27)

and therefore,

ν0(pon) = ν0(0) = 1. (28)
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5. Cutoff dependence

The formalism developed in Ref. [10] allows one to treat a regulator of the LO potential
explicitly as a higher order effect. The difference between the regulated and the unregulated LO
potential is considered as a perturbation of order O(Q2)

δΛV0 = VΛ=∞0 − VΛ0 = O(Q2). (29)

The corresponding unrenormalized NLO amplitude is of order:

δTΛ2 = (1 + T0G)δVΛ0 (1 + GT0) ∼ O(Q0). (30)

After renormalization, the power counting is expected to be restored

R
(
δTΛ2

)
∼ O(Q2). (31)

However, as was discussed in the previous section, this is not guaranteed in general. Additional
constraints on the LO potential, see Eqs. (22) and (24), must be imposed.

6. Summary

We have studied the nucleon-nucleon interaction within Chiral effective field theory with a
finite cutoff. The renormalizability of the considered scheme and the power-counting restoration at
next-to-leading order is achieved by applying the BPHZ subtraction scheme if the LO potential can
be treated perturbatively.

In the non-perturbative case, i.e. when the series in the LO potential does not converge,
additional constraints have to be imposed on the short range part of the LO interaction. This has
consequences also for the cutoff dependence of the scattering amplitude.
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