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Studies of the baryon-baryon interaction involving hyperons within chiral effective field theory,
so far performed up to next-to-leading order (NLO) in the chiral expansion, have shown that for
the strangeness 𝑆 = −1 (Λ𝑁 , Σ𝑁) and 𝑆 = −2 (ΛΛ, Ξ𝑁) sectors a consistent and satisfactory
description of the available scattering data and experimental constraints can be achieved based
on the assumption of broken SU(3) flavor symmetry. We explore the possible extension of this
approach at the NLO level to strangeness 𝑆 = −3 and 𝑆 = −4 baryon-baryon systems where
empirical information is rather scarce. Specifically we address the question how measurements
of two-particle correlation functions in heavy-ion collisions and/or in high-energy proton-proton
collisions can help to constrain the interaction in channels like ΞΛ or ΞΞ.
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1. Introduction

Chiral effective field theory (𝜒EFT) is a powerful tool for calculating the dynamics of baryons in
low-energy hadronic processes [1]. This approach incorporates the same symmetries and symmetry
breaking patterns at low energies as QCD, but it builds on the relevant physical degrees of freedom,
namely hadrons, instead of quarks and gluons. Based on an expansion in small external momenta in
combination with an appropriate power counting, the results can be improved systematically by going
to higher orders, and at the same time theoretical uncertainties can be estimated. Furthermore, two-
and three-baryon forces can be constructed in a consistent way. The approach leads to an interaction
potential which can be readily employed in standard two- and few-body calculations. It consists
of contributions from an increasing number of pseudoscalar-meson exchanges, determined by the
underlying chiral symmetry, while the short-distance dynamics remains unresolved and is encoded
in contact terms whose strengths are parameterized by a priori unknown low-energy constants
(LECs). For the nucleon-nucleon (𝑁𝑁) system which is experimentally very well studied, 𝑁𝑁
potentials have been derived up to high order in the chiral expansion which describe the scattering
data with remarkably high precision [2, 3].

The Jülich-Bonn-Munich Collaboration has applied 𝜒EFT to investigate baryon-baryon (BB)
interactions involving hyperons. These studies, performed so far up to next-to-leading order (NLO)
in the chiral expansion, have shown that for the strangeness 𝑆 = −1 (Λ𝑁 , Σ𝑁) [4, 5] and 𝑆 = −2
(ΛΛ, Ξ𝑁) [6, 7] sectors a consistent and satisfactory description of the available scattering data
and other experimental constraints can be achieved within the assumption of (broken) SU(3) flavor
symmetry. In addition, applications of the resulting potentials in bound-state calculations for light
hypernuclei led to results close to the empirical values [5, 8, 9].

In this work we explore the possible extension of this approach to strangeness 𝑆 = −3 and
𝑆 = −4 BB systems where there is practically no experimental information. Until now solely lattice
QCD simulations [10–12] have provided a glimpse on such BB interactions. A full extension
of chiral EFT to the 𝑆 = −3 and −4 has been considered only at leading order (LO) [13, 14].
At this order all the ocurring LECs can be inferred from studies of the Λ𝑁 and Σ𝑁 systems by
exploiting the underlying SU(3) flavor symmetry. However, the resulting LO potentials turned out
to be strongly attractive, quite at odds with those lattice QCD predictions, which very likely signals
a non-negligible SU(3) symmetry breaking. Indeed, already at NLO terms involving external
fields arise which lead to genuine SU(3) symmetry breaking contact terms [15]. Those have been
taken into account in a first attempt for an extension to 𝑆 = −3,−4 at the NLO level [16], which
exploited the feature that for the 1𝑆0 partial wave and specific channels the number of SU(3)
symmetry breaking terms is small. Specifically, the interactions in the 𝑁𝑁 , Σ𝑁 , ΣΣ, ΞΣ, and ΞΞ

channel with maximal isospin are identical within strict SU(3) symmetry, and they involve only two
additional independent SU(3) symmetry breaking LECs. The situation for the 3𝑆1 state is much
more complicated because it involves different combinations of SU(3) symmetry preserving and
breaking contact terms in basically all reaction channels. Thus, without experimental constraints in
the 𝑆 = −3 and −4 systems fixing the corresponding LECs is practically impossible.

Very recently a new doorway to BB interactions involving strangeness has been opened, in form
of two-particle momentum correlation functions [17] that can be measured in heavy-ion collisions
and/or in high-energy proton-proton collisions. Systems like Λ𝑝, ΛΛ, or Ξ−𝑝 [18–24] have been
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already successfully investigated over the last decade. However, now also correlation-function
measurements for channels like ΞΛ [25] or ΞΞ [26] are on their way. In view of this development,
in the present work we study how that information could help to constrain the interaction in the
𝑆 = −3 and −4 sectors. For that purpose, we consider extensions of BB interactions whose contact
terms have been fixed in line with the available constraints on the ΛΛ and Ξ𝑁 systems and explore
the predictions for such correlation functions.

2. Baryon-baryon interaction in SU(3) chiral effective field theory

The treatment of the BB interaction within SU(3) 𝜒EFT is described in detail in Refs. [4, 6, 27–
29]. Specifically, the formalism for deriving the potential up to NLO for strangeness 𝑆 = −1 (Λ𝑁 ,
Σ𝑁) is provided in [4] whereas the extension to 𝑆 = −2 (ΛΛ, Ξ𝑁 , ΛΣ, ΣΣ) can be found in [6].
The application to 𝑆 = −3 and −4 is only documented for the LO case [13], but is straightforward
for NLO. Indeed, the structure of the (irreducible) two-meson contributions is identical to the one
given in our work on the Λ𝑁 and Σ𝑁 interactions [4]. Only the coupling constants at the meson-
baryon-baryon vertices, given by the standard SU(3) relations, change since the nucleon is replaced
by the Ξ. The structure of the contact terms is similar too, at least for the SU(3) symmetric part,
except that the role of the {10} and {10∗} irreps of SU(3) is interchanged [13]. This concerns the
3𝑆1 state and, of course, all other spin-space symmetric partial waves. With the SU(3) symmetry
breaking contact terms included, the relations become more complex [15]. To be concrete, the
contributions from the contact terms up to NLO are of the general form

𝑉 (1𝑆0) = �̃�1𝑆0 + 𝐶1𝑆0 (𝑝
2 + 𝑝′2) + 𝐶𝜒1𝑆0

(𝑚2
𝐾 − 𝑚2

𝜋),

𝑉 (3𝑆1) = �̃�3𝑆1 + 𝐶3𝑆1 (𝑝
2 + 𝑝′2) + 𝐶𝜒3𝑆1

(𝑚2
𝐾 − 𝑚2

𝜋),

𝑉 (𝛼) = 𝐶𝛼 𝑝 𝑝
′ , 𝛼 ∈ {3𝑃1,

1𝑃1,
3𝑃1,

1𝑃1 − 3𝑃1,
3𝑃2},

𝑉 (3𝐷1 ↔ 3𝑆1) = 𝐶3𝑆1− 3𝐷1 𝑝
′2, 𝐶3𝑆1− 3𝐷1 𝑝

2, (1)

with 𝑝 and 𝑝′ the center-of-mass momenta of the initial and final BB state. �̃�𝛼 and 𝐶𝛼 generically
denote LECs that correspond to SU(3) symmetric contact terms and, for each BB channel and
partial wave, are given by a specific combination of LECs in the irreducible representation of SU(3)
as summarized in Table 1 of [13] for Λ𝑁 , Σ𝑁 and for ΞΛ, ΞΣ, ΞΞ, and in Table 1 of [6] for 𝑆 = −2.
The additional SU(3) breaking terms (𝐶𝜒) that arise at NLO have been worked out and summarized
in Table 10 of [15]. Those enter in various combinations into the different BB channels and, in
general, cannot be easily disentangled. Only for 1𝑆0 channels that are pure {27} states they can be
cast into a compact form [16]:

𝑉 𝐼=1
𝑁𝑁 = �̃�27 + 𝐶27(𝑝2 + 𝑝′2) + 1

2
𝐶
𝜒

1 (𝑚
2
𝐾 − 𝑚2

𝜋),

𝑉
𝐼=3/2
Σ𝑁

= �̃�27 + 𝐶27(𝑝2 + 𝑝′2) + 1
4
𝐶
𝜒

1 (𝑚
2
𝐾 − 𝑚2

𝜋),

𝑉 𝐼=2
ΣΣ = �̃�27 + 𝐶27(𝑝2 + 𝑝′2),

𝑉
𝐼=3/2
ΞΣ

= �̃�27 + 𝐶27(𝑝2 + 𝑝′2) + 1
4
𝐶
𝜒

2 (𝑚
2
𝐾 − 𝑚2

𝜋),

𝑉 𝐼=1
ΞΞ = �̃�27 + 𝐶27(𝑝2 + 𝑝′2) + 1

2
𝐶
𝜒

2 (𝑚
2
𝐾 − 𝑚2

𝜋), (2)
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As a consequence of that, the LEC 𝐶
𝜒

1 can be easily fixed from a combined study of 𝑝𝑝 and Σ+𝑝

scattering [16]. However, there is no practical way to determine the altogether 6 (1𝑆0) + 6 (3𝑆1)
SU(3) symmetry breaking LECs [15] from the available data for the 𝑁𝑁 , Λ𝑁 , Σ𝑁 , and 𝑆 = −2
systems. Note that the SU(3) symmetry breaking in the meson-exchange part, caused by the mass
differences between the 𝜋, 𝐾 , and 𝜂 mesons, is taken into account in all our calculations.

3. Formalism for evaluating the two-particle momentum correlation function

Details for calculating the two-particle momentum correlation function 𝐶 (𝑘) within the
Koonin-Pratt formalism can be found, e.g., in [17], and for the case of coupled channels in [30]. The
inclusion of the Coulomb interaction is discussed in [31]. Below we only summarize the formulae
used here. We assume that the correlations are primarily due to the interaction in the 𝑆-waves.
Thus, only the contributions from the 1𝑆0 and 3𝑆1 partial waves are considered, though for the latter
the coupling to the 3𝐷1 state is taken into account. For an 𝑆-wave the correlation function is given
by

𝐶 (𝑘) = 1 +
∫ ∞

0
4𝜋𝑟2𝑑𝑟 𝑆12(𝑟)

[
|𝜓(𝑘, 𝑟) |2 − | 𝑗0(𝑘𝑟) |2

]
, (3)

where 𝑘 is the center-of-mass momentum in the two-body system. 𝑆12 is the so-called source
function [17] for which we adopt the usual static approximation and represent the source by a
spherically symmetric Gaussian distribution, 𝑆12(r) = exp(−𝑟2/4𝑅2)/(2

√
𝜋𝑅)3, so that it depends

only on a single parameter, the source radius 𝑅. 𝜓(𝑘, 𝑟) is the scattering wave function that can
be obtained by solving the Schrödinger or Lippmann-Schwinger equation for a given potential, and
𝑗0(𝑘𝑟) is the spherical Bessel function for 𝑙 = 0. When there are coupled channels one has to use
the corresponding coupled-channel wave functions [30]

|𝜓(𝑘, 𝑟) |2 →
∑︁
𝛽

𝜔𝛽 |𝜓𝛽𝛼 (𝑟) |2 (4)

where the sum 𝛽 runs over all two-body channels that couple to the state 𝛼. The quantity 𝜔𝛽 is
their weight with 𝜔𝛼 = 1. In the actual calculation we assume the spin states to contribute with the
same weight as for free scattering, 𝐶th(𝑘) = (1/4)𝐶1𝑆0 (𝑘) + (3/4)𝐶3𝑆1 (𝑘), and evaluate the actual
correlation function via

𝐶 (𝑘) = (𝑎 + 𝑏 𝑘) (1 + 𝜆 (𝐶th(𝑘) − 1)) (5)

where 𝜆 is the so-called impurity (or feed-down) parameter [17] and the polynomial factor accounts
for normalization and non-femtoscopic background effects [23, 32].

4. Results

We start with results for the BB interaction with strangeness 𝑆 = −2 and specifically for
the Ξ𝑁 system. In this case chiral potentials up to NLO have been already established by us in
2016 [6] and 2019 [7], respectively. Thereby constraints from the ΛΛ scattering length in the 1𝑆0
state together with experimental upper bounds on the cross sections for Ξ𝑁 scattering and for the
transition Ξ𝑁 → ΛΛ have been exploited. This allowed us to fix the additional LECs that arise in
the {1} irreducible representation of SU(3) [6]. Furthermore, the consideration of those empirical
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constraints necessitated to add SU(3) symmetry breaking contact terms in other irreps ({27}, {10},
{10∗}, {8𝑠}, {8𝑎}), with regard to those determined from the Λ𝑁 and Σ𝑁 data. This is anyway
expected and fully in line with the power counting of SU(3) chiral EFT, as discussed in Sect. 2.
Note that the interaction from 2019 is more attractive in the 3𝑆1 partial wave with isospin 𝐼 = 1 [7].
Specifically, it yields a moderately attractive (in-medium) Ξ-nuclear interaction and supports the
existence of boundΞ-hypernuclei [33], in line with experimental evidence [34, 35]. The interactions
in the (𝐼 = 0, 1) 1𝑆0 partial waves are the same in the two versions.

Two-body momentum correlation functions for Ξ−𝑝 have been measured by the ALICE Col-
laboration in 𝑝-Pb collisions at 5.02 TeV [23] and in 𝑝𝑝 collisions at 13 TeV [24]. Those data are
shown in Fig. 1 and compared with the predictions based on our interactions. There are also new
but still preliminary results from Au+Au collisions at 200 GeV by the STAR Collaboration [26].

One of the crucial ingredients in the evaluation of the correlation function is the value of the
source radius 𝑅, see Eq. (3). Among other things it depends on the reaction and also on the reaction
energy. In the initial works of the ALICE Collaboration it was assumed that 𝑅 is the same for all
final BB systems produced in a specific collision at a specific energy. Accordingly, the value of 𝑅
was calibrated from data on the 𝑝𝑝 correlation function measured in parallel, where the pertinent
two-body interaction is very well established, and then this value was used for analyzing data on
other systems like Λ𝑁 , ΛΛ, Ξ𝑁 , etc. Recently, a model has been applied that allows them to relate
the source radii for different final states with each other [36]. On the other hand, in the studies of
Kamiya et al. [32, 37], 𝑅 is considered essentially as a free parameter that should be determined,
case by case, directly from the correlation data in the course of the analysis. This strategy has been
applied in their recent work on the ΛΛ and Ξ−𝑝 systems [32] but, e.g., also for the 𝐾−𝑝 interaction
[37]. In our own calculations we allow likewise for some flexibility in the choice of 𝑅.

0 50 100 150 200 250 300
k (MeV/c)
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1.4
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1.8

2.0

2.2

2.4
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p5.02 TeV

0 50 100 150 200 250 300
k (MeV/c)

1.0

1.5

2.0

2.5

3.0

3.5

C
(k

)

NLO16 (R=1.05 fm)

NLO19 (R=1.18 fm)

ALICE ’20

Ξ−
p13 TeV

Figure 1: Ξ−𝑝 correlation functions measured in 𝑝-Pb collisions at 5.02 TeV [23] (left) and in 𝑝𝑝 collisions
at 13 TeV [24] (right). Results are shown for the NLO16 and NLO19 potentials.

In Fig. 1 we present predictions for 𝐶 (𝑘) for the 𝑆 = −2 interactions from 2016 (NLO16) and
2019 (NLO19), respectively. We show the results as bands which reflect the uncertainty due to the
residual cutoff dependence of the chiral interactions [6, 7]. Interestingly, the correlation function
calculated for NLO19 with 𝑅 taken from the corresponding 𝑝𝑝 fits by ALICE [22] (1.43 fm for
5.02 TeV and 1.18 fm for 13 TeV) agree nicely with the measurements, cf. the red bands. Note that
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in case of the 𝑝-Pb data a correction to the baseline has been applied, following Ref. [32], and the
feed-down parameter 𝜆 = 0.513 has been adopted, see Eq. (5). For the 13 TeV data 𝜆 = 1 is used.

Results for the more weakly attractive NLO16 potential (blue bands) are also close to the data,
provided one uses the source radii deduced in the work by Kamiya et al. [32] (1.27 fm for 5.02 TeV
and 1.05 fm for 13 TeV). There a 𝑆 = −2 potential established from lattice QCD simulations by
the HAL QCD Collaboration [38] has been employed. A recent study of Liu et al. [39] uses a LO
interaction based on covariant 𝜒EFT that was fitted to the phase shifts of the aforementioned HAL
QCD potential. In this case similar 𝑅 values as those adopted by us for our NLO19 results seem to
be preferred for getting agreement with the ALICE data and not those of [32].

We note that our calculation includes all relevant wave functions of the channels that can couple
to Ξ−𝑝. Thus, besides the actual Ξ−𝑝 wave function, those from the coupling to channels that are
already open (Ξ0𝑛 and ΛΛ) are included too. Furthermore, components due to the coupling of Ξ𝑁
to theΛΣ channel (which opens at around 𝑘 ≈ 230 MeV/c) are taken into account. As a result of that
there is a small but visible cusp in the predicted correlation function at the Ξ𝑁 threshold, see Fig. 2.
(See also Ref. [39] in this context.) There is no visible cusp for NLO16 because here the (𝐼 = 1)
3𝑆1 interaction is weaker/repulsive [7]. A cusp appears also in the Λ𝑝 correlation function at the
opening of the Σ𝑁 threshold and has been experimentally established in a recent measurement by
the ALICE Collaboration [20]. Whether the much less pronounced cusp predicted for Ξ−𝑝 can be
experimentally observed/confirmed remains to be seen. In the present calculation all components
are included with the weight 𝜔𝛽 = 1 and by assuming the same source function as for the diagonal
channel [30].

Recently the ALICE Collaboration presented first results for the correlation function of the
𝑆 = −3 system Ξ−Λ [25]. The data, obtained in 𝑝𝑝 collisions at 13 TeV, are still very preliminary.
Thus, only qualitative conclusions can be drawn at the present stage. Nevertheless, the fact that
𝐶 (𝑘) is close to the baseline (dashed curve) over the whole momentum region, see Fig. 2, strongly
suggests that the interaction in the Ξ−Λ system should be weak, though a scenario like that observed
for Σ+𝑝 [40] cannot be excluded at this stage. Since𝐶 (𝑘) at the lowest momentum is well above the
baseline one is tempted to conclude that the ΞΛ interaction is overall weakly attractive [17]. Some
phenomenological BB potentials in the literature predict such a weak ΞΛ interaction (NSC97a [41],
fss2 [42]). Studies within 𝜒EFT, so far performed only at LO, lead, however, to strongly attractive
forces in the 𝑆 = −3 sector, and even support the existence of bound states in some spin-isospin
channels [13, 14]. The preliminary ALICE data practically rule out any ΞΛ bound states and make
clear that the simple extension of LO potentials, fitted to Λ𝑁 and Σ𝑁 data, to 𝑆 = −3,−4 based on
strict SU(3) symmetry is certainly unrealistic.

In Fig. 2 we present results for the Ξ−Λ correlation function based on an NLO 𝑆 = −3
interaction with LECs fixed in the 𝑆 = −2 sector. This choice accounts for the overall trend that
the BB interaction becomes gradually less attractive with increasing |𝑆 |, but ignores a possible
SU(3) symmetry breaking in the contact terms between 𝑆 = −2 and 𝑆 = −3. Nonetheless, it is
instructive to see the predictions of such an interaction. The results are for the cutoffs Λ = 500 and
650 MeV [7]. We use the parameters given by the ALICE Collaboration, namely 𝑅 = 1.03 fm and
𝜆 = 0.36 [25], and we multiply our results with 𝑎 ≈ 0.95, cf. Eq. (5), to correct for the shifted
baseline. The blue (solid and dash-dotted) curves are results with LECs taken over from the NLO16
interaction [6]. As discussed above, the NLO16 Ξ𝑁 interaction is possibly too weak. However,
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the predicted Ξ−Λ correlation functions are perfectly in line with the preliminary ALICE data, see
Fig. 2. The ΞΛ scattering lengths are 𝑎𝑠 = −0.99 · · · −0.89 fm (1𝑆0) and 𝑎𝑡 = 0.026 · · · −0.12 fm
(3𝑆1). For LECs taken from the more attractive NLO19 potential, the Ξ−Λ correlation function is
larger and, moreover, there is also a sizable cutoff dependence, cf. the red (solid and dash-dotted)
lines. There is also a small cusp at the opening of the ΞΣ channel (at around 𝑘 ≈ 310 MeV/c). The
3𝑆1 scattering lengths are 𝑎𝑡 = −0.42 · · · −1.66 fm. Those for the 1𝑆0 are the same as for NLO16.
Anyway, once the analysis of the experiment is finalized, quantitative and reliable conclusions on
the actual strength of the Ξ−Λ interaction are possible. Then one can try to fix the LECs for the
SU(3) symmetry breaking contact terms, appropriate for the extension to 𝑆 = −3.

0 50 100 150 200 250 300
k (MeV/c)

0.8

1.0

1.2

1.4

1.6

1.8

C
(k

)

NLO16(500)

NLO16(650)

NLO19(500)

NLO19(650)

ALICE ’21

Ξ−Λ

Figure 2: Ξ−Λ correlation functions for different ΞΛ interactions, see text. Preliminary data from 𝑝𝑝

collisions at 13 TeV are by the ALICE Collaboration [25].

Finally, we consider the Ξ−Ξ− system where experiments have been performed by the STAR
Collaboration. Also those data, obtained in Au+Au collisions at 200 GeV [26], are still preliminary.
For systems with two identical particles the correlation function involves an additional term from
quantum statistics [17, 30], besides the contribution from the actual interaction, which in case of
two fermions yields a suppression of the correlation at low momenta due to the anti-symmetrization
of the wave function. The presence of a repulsive Coulomb interaction in that system leads to an
even stronger suppression. Nonetheless for a strongly attractive hadronic interaction as in the 1𝑆0
partial wave of the 𝑝𝑝 system the corresponding correlation function shows a pronounced peak at
moderate momenta with values well above the baseline of 𝐶 (𝑘) = 1 [22]. The preliminary data
reported by STAR suggest that 𝐶 (𝑘) ≤ 1 in case of Ξ−Ξ− for all momenta, which indicates that the
ΞΞ interaction in the 1𝑆0 state could be much less attractive than that in 𝑝𝑝.

Our results for the Ξ−Ξ− correlation function are presented in Fig. 3. As mentioned, contrary to
the systems discussed above, the SU(3) structure and also SU(3) symmetry breaking is very simple
for this channel because it is a pure {27} state and, thus, closely related to the 1𝑆0 interactions in
the 𝑝𝑝, Σ+𝑝, and Σ+Σ+ systems. Indeed, if SU(3) symmetry would be strictly fulfilled, all those
interactions are identical, see Eq. (2). This feature has been exploited in Ref. [16] to estimate the
pertinent SU(3) symmetry breaking contact terms and to make predictions for the corresponding
ΞΞ interaction. Nevertheless, the decisive LEC 𝐶

𝜒

2 could not be pinned down quantitatively and
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Figure 3: Ξ−Ξ− correlation functions for different ΞΞ interactions, see text. The results are for a source
radius of 𝑅 = 1.0 fm (left) and of 2.5 fm (right), respectively.

three different scenarios for its magnitude were considered in that work. We show here predictions
for those scenarios, for the cutoff Λ = 500 MeV [16].

The source radii appropriate for correlation functions measured in heavy ion collisions as done
by the STAR Collaboration are typically in the order of 𝑅 = 2.5 − 5 fm [18]. In our illustrative
calculation we use 𝑅 = 2.5 fm and 𝜆 = 1 fm (right). For comparison and in order to stimulate
measurements in 𝑝𝑝 collisions we present also predictions based on a source radius of 𝑅 = 1 fm
(left). The blue curves are results with the {27} LECs deduced for Σ+Σ+ in [16]. It corresponds
to the assumption that there is no further SU(3) symmetry breaking in the contact terms beyond
𝑆 = −2. In this case the strength of the ΞΞ interaction is comparable to that for 𝑝𝑝, see the phase
shifts in Fig. 4 in Ref. [16], and the shape of the correlation function (Fig. 3) is also similar to
that for 𝑝𝑝 [22]. Assuming that the symmetry breaking is as large as that required for a consistent
description of 𝑝𝑝 and Σ+𝑝 leads to the green curves. The may be most realistic assumption that
the breaking is roughly half way between yields the red curves. For the latter two scenarios the
correlation function remains below the baseline of 𝐶 (𝑘) = 1. Indeed, such a behavior is supported
by the preliminary STAR data. The dashed lines indicate results without the Coulomb interaction
for the latter two scenarios. One can see that already in this case 𝐶 (𝑘) < 1 because of the quantum
statistical effect. Note that lattice QCD simulations from the HAL QCD Collaboration, for almost
physical masses (𝑚𝜋 ≈ 146 MeV), suggest phase shifts of the 1𝑆0 state within the range spanned by
the latter two scenarios [11].

5. Summary

The Jülich-Bonn-Munich Collaboration has applied chiral effective field theory to investigate
the baryon-baryon interaction involving hyperons. These studies, performed so far up to next-to-
leading order (NLO) in the chiral expansion, have shown that for the strangeness 𝑆 = −1 (Λ𝑁 , Σ𝑁)
[1,2] and 𝑆 = −2 (ΛΛ, Ξ𝑁) [3,4] sectors a consistent and satisfactory description of the available
scattering data and experimental constraints can be achieved within the assumption of broken SU(3)
flavor symmetry.
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In the present contribution we have discussed a possible extension of this approach to strangeness
𝑆 = −3 and 𝑆 = −4 baryon-baryon systems where empirical information is rather scarce. Specifi-
cally we have shown that measurements of two-particle correlation functions in heavy-ion collisions
and/or in high-energy proton-proton collisions can be used to constrain the interaction in channels
like ΞΛ or ΞΞ. Pertinent measurements are already on their way [25, 26] and, hopefully, experi-
mental studies of further 𝑆 = −3 and −4 systems will follow.
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