
P
o
S
(
I
C
H
E
P
2
0
2
2
)
0
8
0
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Bubble nucleation is a key feature in a cosmological first-order phase transition. The non-
equilibrium bubble dynamics and the properties of the transition are controlled by the density
perturbations in the hot plasma. We present, for the first time, the full solution of the linearized
Boltzmann equation. Our approach, differently from the traditional one based on the fluid approx-
imation, does not rely on any ansatz. We focus on the contributions arising from the top quark
species coupled to the Higgs field during a first-order electroweak phase transition. Our results
significantly differ from the ones obtained in the fluid approximation with sizeable differences for
the friction acting on the bubble wall.
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1. Introduction

The recent observation of gravitational waves has renewed a vivid interest in the study of
first-order cosmological phase transition (PhT) at the electroweak (EW) scale. The dynamics of
such PhT is source of a stochastic gravitational wave background whose frequency peak lies in the
region that future space based interferometers [1–7] will probe. A key quantity that characterizes
the gravitational wave spectrum together with many interesting relics left by the PhT such as the
matter-antimatter asymmetry, is the terminal velocity of the PhT front, namely the bubble wall
(BW) speed. In the steady state regime, the propagation velocity of the BW is a result of the balance
between the internal pressure, due to the potential difference between the two phases and the friction
that originates as a backreaction from perturbations around equilibrium in the plasma generated by
the moving wall.

Perturbations around equilibrium are modelled by an effective Boltzmann equation as first
shown in [8, 9] where a standard approach, dubbed "old formalism", to solve the Boltzmann
equation was established. To deal with the collision operator, the authors of [8, 9] considered
a perfect fluid distribution to model the perturbations and adopted a weighted strategy to recast
the Boltzmann equation in a set of coupled differential equations whose solution provides the
out-of-equilibrium perturbations.

The fluid approximation presents two main drawbacks, the presence of a singularity in the
friction for wall propagating at the speed of sound and the arbitrariness on the choice of weights
used to integrate the Boltzmann equation. Depending on the set of weights both friction and
perturbations present quantitative differences. Despite recently new strategies such as the "new
formalism" (NF) [10, 11] or the extended fluid approximation [12, 13] addressing the first issue,
they still rely on an ansatz to solve the Boltzmann equation.

The previous discussion highlights the necessity to find a solution to the full Boltzmann
equation without relying on any ansatz on the shape of the perturbation. The full solution (FS)
obtained in such a way provides reliable quantitative predictions both on the out-of-equilibrium
perturbation and the friction exerted on the bubble wall. Moreover, this will also clarify the issue
regarding the presence of a singularity at the speed of sound. In [14] we presented, for the first time,
a fully quantitative numerical solution to the Boltzmann equation. To present the methodology and
to compare with the previous formalisms, we considered the EWPhT and we focused on the study
of the top quark, the species that provide the leading contribution to the friction being the particle
with the largest coupling to the Higgs field.

2. The Boltzmann equation

For large enough bubbles we can consider a planar wall in a steady state that moves with a
velocity vw . Orienting the reference frame in such a way that the wall moves along the negative
side of the z−axis and boosting in the wall reference frame the Boltzmann equation can be written
in the following form

L[ f ] =
(

pz
E
∂z −

(m2)′

2E
∂pz

)
f = −C[ f ] (1)
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Figure 1: Left panel: Paths with fixed energy and transverse momentum in the z − pz phase space for the
choice m(z) ∝ 1+ tanh(z/L). The red, green and purple colors denote sets of contours with different behavior.
The arrows show the flow of a particle within the phase space. Right panel: Schematic representation of the
behaviour of the particles across the DW.

where m(z) is the mass of the particle, (m2)′ stands for d(m2)/dz. C[f] is the collision operator that
describes the microscopic interactions taking place in the plasma, while L is the Liouville operator.

The collision operator ensures that the plasma recovers equilibrium far from the DW. Thus for
z → ±∞ the distribution function is the standard Fermi-Dirac or Bose-Einstein distribution, namely

fv =
1

1 ± eβγw (E−vw pz )
(2)

where β = 1/T and γ = 1/
√

1 − v2
w . Deviations from equilibrium are expected to be small, thus

writing f = fv + δ f , we can linearize the Boltzmann equation in terms of δ f obtaining(
pz
E
∂z −

(m2)′

2E
∂pz

)
δ f + C̄[δ f ] =

(m(z)2)′

2E
∂pz fv = βγv

(m(z)2)′

2E
f ′v, (3)

where we defined

f ′v = −
eβγ(E−vpz )

(eβγ(E−vpz ) ± 1)2
, (4)

and C̄[δ f ] denotes the collision integral linearized in δ f . The source term rapidly decays far from
the DW where the Higgs profile is constant. Close to the DW, instead, the source term is present, in
agreement with the expectation that perturbations are localized on the DW and rapidly vanish away
from it.

2.1 Flow paths and collision operator

Along the paths on which both the transverse momentum p⊥ and the quantity p2
z + m2(z) are

constant, the Liouville operator reduces to a total derivative with respect to z :

L =

(
pz
E
∂z −

(m2)′

2E
∂pz

)
→

pz
E

d
dz

(5)
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Figure 2: Friction acting on the bubble wall as a function of the velocity. The black solid line corresponds
to the solution of the full Boltzmann equation (FS, our result), the dotted, dashed and solid green lines are
obtained with the old formalism (OF) at order 1, 2 and 3 respectively [9, 12], while the red line corresponds
to the new formalism (NF) [11].

These paths are the trajectories of the particles in the (p⊥, pz, z) phase space along which energy
and p⊥ are conserved. They are determined by the condition p2

z +m2(z) = c. We show in Fig. 1 the
curves for m(z) ∝ 1 + tanh(z/L) where L denotes the wall thickness. We recognize three different
families, red paths describe particles with enough momentum pz to eventually cross the wall, green
paths, on the contrary, describe particles which are reflected after the interaction with the DW and
finally, purple paths describe particles that travel in the negative z direction and eventually exit from
the bubble.

The collision operator for the 2→ 2 processes is given by

C[ f ] =
∑
i

1
4NpEp

∫
d3kd3p′d3k′

(2π)52Ek2Ep′2Ek′
|Mi |

2δ4(p + k − p′ − k ′)P[ f ] (6)

with the population factor

P[ f ] = f (p) f (k)(1 ± f (p′))(1 ± f (k ′)) − f (p′) f (k ′)(1 ± f (p))(1 ± f (k)), (7)

where the sum runs over the relevant processes with amplitudeMi. Np is the number of degrees of
freedom of the incoming particle with momentum p, k is the momentum of the second incoming
particle while p′ and k ′ are the momenta of the outgoing particles. The signs ± are + for bosons
and − for fermions.

3. Numerical analysis and results

As explained in [14] it is possible to recast the Boltzmann equation in the following form

d
dz
δ f −

Q(p)
2pz

δ f = S. (8)

Such equation can be exactly solved for δ f imposing the boundary conditions δ f → 0 as
z → ±∞, as we recover thermal equilibrium away from the DW. The term S contains contributions
where the perturbation is integrated. To solve Eq. (8) we thus developed a numerical iterative
procedure as described in [14].
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As a testing setup we considered a single species out-of-equilibrium in the plasma: the top
quark. Being the species with the largest coupling with the Higgs it is expected that the most
relevant effects on the PhT dynamics arise from it. We modelled the bubble wall assuming that the
Higgs profile can be approximated by

φ(z) =
φ0

2
[1 + tanh(z/L)], (9)

where L = 5/T is the wall thickness, φ0 = 150 GeV is the Higgs VEV in the broken phase and T is
the PhT temperature that we fixed T = 100 GeV.

A relevant quantity for the computation of the terminal velocity vw is the friction acting on the
bubble wall, namely

F(z) =
dm2

dz
Np

∫
d3p
(2π)32E

δ f (p) (10)

In Fig. 2 we show the integral of the friction over z as a function of the velocity. We compare our
results (full solution, FS) with the ones already present in the literature. The red line corresponds
to the result obtained in the NF of ref. [11], while the green lines represent the total friction in the
OF of ref. [9] when we include additional perturbations in the fluid approximation (1, 2 and 3).

Our solution predicts a smooth behaviour across the whole range of velocities with a plateau for
vw & 0.8 and a linear behaviour for small velocities instead. We found a fair numerical agreement
between the OF and the FS for vw . 0.2. However, at higher velocities, the OF develops peaks
corresponding to the zero eigenvalues of the Liouville operator pointing out an instability in the
weighted strategy. Since in the FS such peaks are absent we conclude that they are an artifact of the
OF meaning that no strong effect is present at the barrier of sound when only top contributions are
taken into account.

The new formalism, instead, correctly predicts a smooth behaviour for the integrated friction.
However, a good numerical agreement is found only for small velocities.

4. Conclusions and outlook

In [14] we presented for the first time the fully quantitative solution to the Boltzmann equation
that describes particle diffusion in the presence of a moving wall. Differently from previous
approaches, our solution does not rely on any particular ansatz nor momentum dependence. This
allows one to solve exactly the Boltzmann equation. We compared our results with the ones already
known in the literature , namely the OF [9], its extended version [12, 13] and the NF [11] and
we showed that reliable quantitative results are obtained using our method in the whole range of
propagating velocity.

This clearly represents a necessary step towards a reliable understanding of the bubble wall
dynamics. The friction computed using the numerical method that we developed in [14] allows to
compute the relevant quantities that determine the PhT dynamics, such as the terminal velocity and
the wall thickness, by solving the Higgs equation of motion. These parameters crucially have an
impact on the prospects of any BSM scenario to predict cosmological signals.

The inclusion of all the SM particles is clearly important to obtain quantitatively reliable
predictions. In a future work [15] we plan to include electroweak gauge bosons and to treat the light
degrees of freedom as a background plasma in local equilibrium as explained in [16].
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