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In high-energy particle physics, complex Monte Carlo (MC) simulations are needed to compare
theory predictions to measurable quantities. Many and large MC samples are needed to be
generated to take into account all the systematics. Therefore, the MC statistics (and hence the
MC modeling uncertainties) become a limiting factor for most measurements. Moreover, the
significant computational cost of these programs becomes a bottleneck in most physics analyses.
Therefore, it is extremely important to find a way to reduce the MC samples generated to decrease
the MC statistical uncertainties and lower the computational cost. In these proceedings, we
evaluate an approach called Deep neural network using Classification for Tuning and Reweighting
(DCTR). DCTR is a method based on a Deep Neural Network (DNN) to reweight simulations
to different models or model parameters and fit simulations, using the full kinematic information
in the event. This reweighting methodology avoids the need for simulating the detector response
multiple times by incorporating the relevant variations in a single sample. In this way, the
MC statistical uncertainties and the computational cost are both reduced. Moreover, unlike the
standard reweighting, in which the ratio in bins of two histograms at truth level is performed,
multidimensional and unbinned information can be used as inputs to the DNN. In addition, DCTR
can perform tasks that are not possible with other current existing methods, such as continuous
reweighting as a function of any MC parameter, simultaneous reweighting of more MC parameters
and tuning MC simulations to the data. We test the method on MC simulations of top quark pair
production, which we reweight to different SM parameter values and to different QCD models.
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1. Introduction

In high-energy particle physics, complex Monte-Carlo (MC) simulations are needed to com-
pare theory predictions to the measurable quantities, i.e. data. Many and large MC samples are
needed to be generated to take into account all the systematics. For this reason, MC modeling
uncertainties are a limiting factor for most measurements. For example, in a recent measurement
of the top quark-antiquark (tt̄) pair production cross section in pp collisions at a centre of mass
energy

√
𝑠 = 13 TeV, where a simultaneous fit of the cross section of the tt̄ system and of the MC

mass of the quark top 𝑚MC
t was performed [1], the main contribution to the 𝑚MC

t was given by the
MC statistics of the samples used to estimate the systematics. Furthermore, the generation of many
MC samples significantly increases the computational cost of these programs requiring to simulate
the detector response multiple times. A possible solution is to reweight the MC sample. In this
case, only the MC sample with the parameter nominal values is generated, while the variations
are obtained by reweighting the nominal sample. Employing this strategy, only a sample is gener-
ated reducing MC statistics (hence MC modeling uncertainties) and lowering the computational cost.

Unlike the standard reweighting, in which the ratio in bins of two histograms at truth level
is performed, Deep neural network using Classification for Tuning and Reweighting (DCTR) is
presented in these proceedings. DCTR is an approach based on a Deep Neural Network (DNN) to
reweight simulations to different models or model parameters using the full kinematic and flavor
information in the event [2]. While the standard reweighting is sensitive to the binning chosen and
the dimension of the inputs could be 1, or at maximum 2, due to the increasing difficulty of the
method with the number of dimensions, there are no restrictions on the size of the input feature space
nor on the number of interpolated parameters using a DNN. The first feature permits improving
the reweighting precision using all the kinematic and flavor information of the event as inputs. The
second feature has as a consequence that simultaneous reweighting of more MC parameters can be
performed, taking into account the correlations between the parameters. Moreover, in addition to
the advantages of the reweighting using a DNN, DCTR permits to perform several tasks not possible
with the other methods. First of all, DCTR is not limited to applying a discrete reweighting, but
permits to perform a continuous reweighting as a function of any MC parameter. In this way, a
fast and more precise estimation of the systematic uncertainties is possible since any parameter
value can be extrapolated. Secondly, in addition to reweighting, the method can be also exploited
to directly tune MC simulations to the data. In this case, a classifier is used to construct the loss
function used to optimize the simulation parameters.

2. Deep neural networks using Classification for Tuning and Reweighting

The default MC sample of top pair production in CMS is generated using the Heavy Quark
Process (HVQ) [4] of the event generator Powheg [5][6]. In Powheg, the resummation of the next-
to-leading-order radiation is regulated by the ℎdamp variable, which enters the damping parameter
D as in Eq. 1:

𝐷 =
ℎ2

damp

𝑝2
T + ℎ2

damp
(1)
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Figure 1: The PFN architecture used in the DCTR method is depicted. It parametrizes the per-particle
mapping Φ (on the left) and the function F (on the right), shown for the case of a latent space of dimension
𝑙 = 8. The latent observable is 𝑂a =

∑
𝑖 Φn (𝑝T, 𝑦i, 𝜙i, 𝑚i, 𝑝𝑑𝑔𝑖𝑑i) [3].

where 𝑝T is the transverse momentum of the particle and ℎdamp a parameter defined as ℎdamp = ℎ×𝑚t,
where 𝑚t is the mass of the quark top and ℎ is a real number. This parameter affects the kinematic
information of the entire event, such as the transverse momentum and the pseudorapidity of the tt̄
system (𝑝T(tt̄), [(tt̄)). Since the parameter ℎdamp is not physical, an arbitrary value must be chosen
in the simulation and varied to calculate the associated systematic uncertainty. As the parameter
cannot be reweighted internally by MC generators, and ℎdamp variations are important in many top
quark precision studies, this parameter is especially well suited to be implemented in the DCTR
method. Therefore, variations of ℎdamp in tt̄ system were studied to test how well the method works.

3. Results and Conclusions

The DCTR method was tested by performing the training on samples of four different values
of ℎdamp, respectively equal to (0.5 × 𝑚𝑡 , 1 × 𝑚t, 2 × 𝑚t, 4 × 𝑚t), where 𝑚t corresponds to the
default value of CMS (172.5 GeV). For each value of ℎdamp, two million events were generated.
The parton-level information is passed as inputs to the DNN. The quadrimomentum and the particle
PDGID (𝑝T, 𝑦, 𝜙, 𝑚, PDGID) of the tt̄ system and of the additional quark or gluon are presented
to the DNN for training, plus the reweighting parameter ℎdamp. The Particle Flow Network (PFN)
[6], which is the composition of two DNNs (Φ and 𝐹) is used. The DNN architecture can be seen
in Fig. 1.

The impact of the parameter ℎdamp on the 𝑝T of the tt̄ system can be seen on the left plot
in Fig. 2. To check the performance of the reweighting, the observable 𝑝T of the tt̄ system was
employed. The weights obtained in the training were applied to reweight a distribution with ℎdamp

value equal to 4 × 𝑚t to the nominal one generated with ℎdamp value equal to 1 × 𝑚t. The results
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Figure 2: Left: The differential cross section as a function of the 𝑝T of the tt̄ system for Powheg HVQ
samples generated with four different values of the ℎdamp parameter. Right: The differential cross section in
𝑝T of the tt̄ system as a function of the transverse momentum of the tt̄ system for a sample generated with
ℎdamp = 1 × 𝑚t in black and ℎdamp = 4 × 𝑚t in blue. The orange distribution is the second sample (blue)
reweighted to the first one (black).

are shown on the right plot in Fig. 2. The precision of the reweighting is quantified by the ratio plot
between the reweighted sample (orange) and the original one (black). The original sample and the
reweighted one agree within an uncertainty of 5%. The next step would be to integrate the DCTR
method into the CMS software to be used in all future top analyses.

References

[1] CMS collaboration, Measurement of the tt production cross section, the top quark mass, and
the strong coupling constant using dilepton events in pp collisions at

√
𝑠 = 13 TeV, EPJC 79

(2019) 368 [1812.10505].

[2] A. Andreassen and B. Nachman, Neural Networks for Full Phase-space Reweighting and
Parameter Tuning, PRD 101 (2020) 091901 [1907.08209].

[3] P.T. Komiske, E.M. Metodiev and J. Thaler, Energy Flow Networks: Deep Sets for Particle
Jets, JHEP 01 (2019) 121 [1810.05165].

[4] S. Frixione, P. Nason and G. Ridolfi, A Positive-weight next-to-leading-order Monte Carlo for
heavy flavour hadroproduction, JHEP 09 (2007) 126 [0707.3088].

[5] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower
simulations: the POWHEG method, JHEP 11 (2007) 070 [0709.2092].

[6] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043
[1002.2581].

4

https://doi.org/10.1140/epjc/s10052-019-6863-8
https://doi.org/10.1140/epjc/s10052-019-6863-8
https://arxiv.org/abs/1812.10505
https://doi.org/10.1103/PhysRevD.101.091901
https://arxiv.org/abs/1907.08209
https://doi.org/10.1007/JHEP01(2019)121
https://arxiv.org/abs/1810.05165
https://doi.org/10.1088/1126-6708/2007/09/126
https://arxiv.org/abs/0707.3088
https://doi.org/10.1088/1126-6708/2007/11/070
https://arxiv.org/abs/0709.2092
https://doi.org/10.1007/JHEP06(2010)043
https://arxiv.org/abs/1002.2581

	Introduction
	Deep neural networks using Classification for Tuning and Reweighting
	Results and Conclusions

