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The reconstruction and calibration of hadronic final states in the ATLAS detector at the LHC
present complex experimental challenges. For isolated pions in particular, classifying 𝜋0 versus
𝜋± and calibrating pion energy deposits in the ATLAS calorimeters are key steps in the hadronic
reconstruction process. The baseline methods for local hadronic calibration were optimized early
in the lifetime of the ATLAS experiment. This publication presents a significant improvement over
existing techniques using machine learning methods that do not require the input variables to be
projected onto a fixed and regular grid. Instead, Deep Sets and Graph Neural Network architectures
are used to process calorimeter clusters and particle tracks as point clouds, or a collection of data
points representing a three-dimensional object in space. This note demonstrates the performance
of these new approaches as an important step towards a low-level hadronic reconstruction scheme
that fully takes advantage of deep learning to improve its performance.
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1. Introduction

A fundamental task in hadronic final state reconstruction in the ATLAS detector [1] at the
Large Hadron Collider (LHC) is the identification and calibration of the detector response to
single particles. As the hadronic showers produced in proton-proton collisions at the CERN Large
Hadron Collider (LHC) are primarily generated by pions, it is essential to accurately characterize
the calorimeter response to both charged and neutral pions. Neutral pions (𝜋0) decay promptly to
photons and develop compact showers with relatively small intrinsic fluctuations. These showers
are mostly captured by the electromagnetic calorimeter. On the other hand, showers emanating
from charged pions (𝜋±) generally fluctuate more dramatically in the course of their development.
They also penetrate deeper into the detector than electromagnetic showers, thereby necessitating an
additional hadronic calorimeter outside of the electromagnetic calorimeter to measure their energy
deposits.

In the ATLAS experiment, three-dimensional clusters of topologically-connected calorimeter
cell signals called topo-clusters are employed as the baseline signal definition used in the recon-
struction of hadronic final states [2]. The ATLAS calorimeters are non-compensating, meaning
that their response to hadrons is smaller than their corresponding response to electrons and photons
depositing the same amount of energy. The hadronic calibration for topo-clusters is a multi-step
process called Local Cell Weighting (LCW) that aims to correct this non-compensating calorimeter
response to hadrons [2].

The results presented here explore new perspectives for pion identification and energy calibra-
tion using Deep Learning techniques.

2. Methods

One of the the most powerful advantages of deep learning techniques is the ability to process
large numbers of correlated inputs. For the hadronic calibration task, each cell of a topo-cluster can
be treated as a potential input variable.

To date, the deep learning approaches to pion classification and calibration in ATLAS have only
considered image-based representations of pions. Densely-connected neural networks (DNNs) and
convolutional neural networks (CNNs) were explored for image-based pion classification and energy
regression in the context of the complex ATLAS detector geometry in the central barrel region [3].
However, this image-based approach may be suboptimal, considering that calorimeter layers have
different spatial granularities, deposition geometries are irregular, and calorimeter images are sparse
with most cells not passing the selection criteria. Furthermore, image-based representations of the
calorimeter restrict studies to using calorimeter information only.

Pion deposits in the ATLAS detector can also be thought of as point clouds, or collections
of points in space, often representing a three-dimensional object. Each point in a point cloud
representation has unique position coordinates. In this view, pions are represented not as a series
of images, but as a complex three-dimensional form composed of many individual topo-cluster
cells. All topo-clusters are used, and each of them is considered separately for the classification and
regression tasks. The methods considered here are Deep Sets and Graph Neural Networks (GNNs).
Details on the architecture used can be found in Reference [4].
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Figure 1: Comparison of topo-cluster classification performance of all methods for |[ | < 0.7 (1a), and for
|[ | < 3 in bins of topo-cluster energy, 𝐸EM

cluster (1b), for the GNN model. Performance is measured as 𝜋0

topo-cluster rejection (defined as the inverse of 𝜋0 selection efficiency) versus 𝜋± topo-cluster efficiency [4].

3. Results: 𝝅0/𝝅± Classification

Performance is shown as 𝜋0 rejection (defined as the inverse of 𝜋0 selection efficiency) versus
𝜋± efficiency with respect to all truth pions, where higher rejection indicates better classification
performance for the same selection efficiency. Figure 1a shows a comparison of the classification
performance for the various models. Even though the CNN model was trained for the central
barrel as a point of comparison with respect to previous results [3], both the GNN and Deep Sets
models were trained without any pseudo-rapidity selection. Across the full range of 𝜋± efficiencies,
all machine learning models notably outperform the PEM

clus baseline classifier used in the LCW
calibration. At high 𝜋± efficiencies, the CNN pion classification performance is comparable to the
performance of the new Deep Sets model, while the GNN shows the highest rejection across all 𝜋±

efficiencies.
Pion topo-cluster classification performance for the GNN model is shown in Figure 1b for

different exclusive ranges of 𝐸EM
cluster. Performance increases with higher topo-cluster energies

𝐸EM
cluster due to both higher sampling statistics and reduced stochastic fluctuations.

4. Results: Pion Energy Regression

The energy calibrations for both the baseline LCW and the point cloud regression methods
target the true topo-cluster energy. The true topo-cluster energy is defined as the sum of all energy
deposits, as given by the Geant4 simulation, within the physical extent of the topo-cluster. The
performance of the regression models can be quantified by measuring the energy response, i.e.
𝑅 = 𝐸predicted/𝐸true, as a function of 𝐸true. 𝐸predicted should be close to the target value 𝐸true after
calibration, leading to a mean response 𝑅 close to unity.

The energy resolution is also a relevant metric used to evaluate regression performance. An
ideal calibration would have a small resolution of predicted values, meaning that its predictions
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are more precise and stable. The resolution of the energy measurement can be quantified with the
interquantile range (IQR), representing the width of the response data from 1𝜎 to −1𝜎 (84% - 16%)
of the median.

The performance comparison of the point cloud deep learning methods to the EM and LCW
baseline are shown in Figure 2. The median energy response ratio for the GNN is significantly
closer to unity throughout the full energy spectrum considered than the baselines EM or LCW
calibration schemes for charged and neutral pions. The IQR is narrower for the GNN than for the
baselines across both charged and neutral pions.
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Figure 2: Median energy response (𝑎) and IQR (𝑏) for the EM and LCW baselines as well as the GNN and
Deep Sets as a function of true cluster energy [4].

5. Conclusion

A variety of machine learning methods designed for 𝜋0 vs. 𝜋± classification and pion energy
regression were studied. All of these methods outperformed the existing baseline classifier in
ATLAS, PEM

clus, in terms of 𝜋0 rejection vs. 𝜋± efficiency. Regarding the pion energy regression
task, all the studied architectures outperform the baseline LCW calibration in terms of both the
accuracy and precision of the predicted energy responses. These results show the potential of deep
learning techniques for low-level hadronic reconstruction with the ATLAS detector at LHC, and are
therefore an important step towards implementing a version of Particle Flow that optimally takes
advantage of performance improvements from machine learning.
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