Measurement of $R_{2}(\Delta \eta, \Delta \varphi)$ and $P_{2}(\Delta \eta, \Delta \varphi)$ correlation functions in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ with ALICE

Baidyanath Sahoo ${ }^{a, *}$ for the ALICE Collaboration
${ }^{a}$ Department of Physics, Indian Institute of Technology (IIT) Bombay, Mumbai, India
E-mail: baidya@iitb.ac.in

Two-particle normalized cumulants of particle number correlations (R_{2}) and transverse momentum correlations $\left(P_{2}\right)$ [1], measured as a function of relative pseudorapidity and azimuthal angle difference $(\Delta \eta, \Delta \varphi)$, provide key information about particle production mechanisms, diffusivity, and conservation of charge and momentum in high-energy collisions. To complement the recent ALICE measurements in $\mathrm{Pb}-\mathrm{Pb}$ collisions, as well as for better understanding of the jet contribution and nature of collectivity in small systems, these observables are measured in pp collisions at \sqrt{s} $=13 \mathrm{TeV}$ with similar transverse momentum range, $0.2 \leq p_{\mathrm{T}} \leq 2.0 \mathrm{GeV} / c$. The R_{2} and P_{2} results on the near- and away-side are qualitatively similar, but differ quantitatively. A much narrower near-side peak is observed for P_{2} compared to R_{2} for both charge-independent and charge-dependent combinations, as in the recently published ALICE results for $\mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions [2]. Since these results are sensitive to the interplay between the underlying event and mini-jets in pp collisions, they not only establish a baseline for heavy-ion collisions, but also allow a better understanding of signals that are compatible with the presence of collective effects in small systems.

[^0]

Figure 1: Correlation functions R_{2}^{CD} (left panel) and P_{2}^{CD} (right panel) of charged hadrons obtained in the selected p_{T} range in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$.

Motivation

The robust observables $R_{2}(\Delta \eta, \Delta \varphi)$ and $P_{2}(\Delta \eta, \Delta \varphi)$ are sensitive to the particle production mechanisms and transverse momentum fluctuations, respectively. The comparative study of R_{2} and P_{2} will provide valuable insights into the understanding of particle production in pp collisions and will also serve as a baseline for the interpretation of similar measurements performed in heavy ion collisions [2].

Analysis details

The R_{2} and P_{2} correlation functions are measured for unidentified charged hadrons in the transverse momentum range $0.2 \leq p_{\mathrm{T}} \leq 2.0 \mathrm{GeV} / c$ and $|\eta|<0.8$ in pp collisions at $\sqrt{s}=13$ TeV recorded by ALICE. The analysis of the R_{2} and P_{2} correlation functions are carried out for charge combination pairs $(+-),(-+),(++)$, and $(--)$ to obtain charge-independent, $R^{\mathrm{CI}}=$ $\frac{1}{2}\left[R^{+-}+R^{++}+R^{-+}+R^{--}\right]$, and charge-dependent, $R^{\mathrm{CD}}=\frac{1}{2}\left[R^{+-}-R^{++}+R^{-+}-R^{--}\right]$, correlation functions and similarly for P_{2} [3].

Results

The charge-dependent (CD) charge combination pairs of R_{2} and P_{2} correlation functions are shown in the left and right panels of Fig. 1, respectively. Due to the Hanbury Brown-Twiss (HBT) effect, both R_{2}^{CD} and P_{2}^{CD} have a dip around $(\Delta \eta, \Delta \varphi)=(0,0)$. The away-side of R_{2}^{CD} features a saddle-shape structure, whereas P_{2}^{CD} has a flat away-side.

Figure 2 shows the projections of R_{2}^{CD} and P_{2}^{CD} on $\Delta \eta$ and $\Delta \varphi$ in the left and right panels, respectively, where the width of $P_{2}^{C D}(\Delta \eta)$ is much smaller than that of $R_{2}^{\mathrm{CD}}(\Delta \eta)$. Similarly, the width of the near side of the $P_{2}^{\mathrm{CD}}(\Delta \varphi)$ correlator is also significantly smaller than that of the $R_{2}^{\mathrm{CD}}(\Delta \varphi)$ correlator. This difference is expected due to the angular and transverse momentum ordering [4].

Figure 2: Projections on $\Delta \eta$ (top row) and $\Delta \varphi$ (bottom row) of R_{2}^{CD} (left column) and P_{2}^{CD} (right column) correlation functions of charged hadrons in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$. The $\Delta \eta$ and $\Delta \varphi$ projections are calculated as averages of the two-dimensional correlations in the ranges of $|\Delta \varphi| \leq \pi$ and $|\Delta \eta| \leq 1.6$, respectively. Vertical bars and boxes represent statistical and systematic uncertainties, respectively.

Figure 3: The widths of $R_{2}^{\mathrm{CD}}(\Delta \varphi)$ (blue markers) and $P_{2}^{\mathrm{CD}}(\Delta \varphi)$ (red markers) correlation functions along $\Delta \varphi$ measured within $|\Delta \eta| \leq 1.6$ in $\mathrm{pp}, \mathrm{p}-\mathrm{Pb}$, and $\mathrm{Pb}-\mathrm{Pb}$ collisions as a function of $\left\langle\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta\right\rangle_{|\eta|<0.5}$. Vertical bars represent statistical uncertainties; boxes and bands represent systematic uncertainties.

Note that balance functions (BF) [3] are related to R_{2}^{CD}, so the width of the near-side peak of R_{2}^{CD} may be used to understand BF . The widths of the CD pairs of R_{2} and P_{2} correlation functions along $\Delta \varphi$ measured in $\mathrm{pp}, \mathrm{p}-\mathrm{Pb}$, and $\mathrm{Pb}-\mathrm{Pb}$ collisions are shown in Fig. 3 as a function of the average charged-particle multiplicity density. Due to the radial flow and diffusivity in $\mathrm{Pb}-\mathrm{Pb}$
collisions, the widths of R_{2}^{CD} and P_{2}^{CD} vary with centrality. In $\mathrm{p}-\mathrm{Pb}$ collisions, the widths of R_{2}^{CD} decrease, while the widths of P_{2}^{CD} increase. This is related to the angular ordering [4] of the p_{T} of the jet constituents, which leads to a narrowing of the width of R_{2}^{CD}. In pp collisions, the widths of $R_{2}^{\mathrm{CD}}(\Delta \varphi)$ and $P_{2}^{\mathrm{CD}}(\Delta \varphi)$ are in good agreement with the peripheral p -Pb collisions.

Figure 4: The widths of $R_{2}^{\mathrm{CI}}(\Delta \eta)$ (blue markers) and $P_{2}^{\mathrm{CI}}(\Delta \eta)$ (red markers) correlation functions along $\Delta \eta$ measured within $|\Delta \varphi| \leq \pi$ in pp, $\mathrm{p}-\mathrm{Pb}$, and $\mathrm{Pb}-\mathrm{Pb}$ collisions as a function of $\left\langle\mathrm{d} N_{\mathrm{ch}} / \mathrm{d} \eta\right\rangle_{|\eta|<0.5}$. Vertical bars represent statistical uncertainties; boxes and bands represent systematic uncertainties.

The widths along $\Delta \eta$ increase monotonically as a function of multiplicity for both $R_{2}^{\mathrm{CI}}(\Delta \eta)$ and $P_{2}^{\mathrm{CI}}(\Delta \eta)$, except for $P_{2}^{\mathrm{Cl}}(\Delta \eta)$ for low multiplicities, as shown in Fig. 4. The observed trend in $\mathrm{Pb}-\mathrm{Pb}$ collisions is mainly due to the anisotropic flow. The widths in pp collisions are comparable to those measured for $\mathrm{p}-\mathrm{Pb}$ collisions, where the dependence is rather weak compared to $\mathrm{Pb}-\mathrm{Pb}$.

Summary

The two-particle correlation functions $R_{2}(\Delta \eta, \Delta \varphi)$ and $P_{2}(\Delta \eta, \Delta \varphi)$ have been measured for unidentified charged hadrons in the p_{T} range of $0.2-2.0 \mathrm{GeV} / c$ in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ recorded by ALICE. The widths of the charge-independent and charge-dependent R_{2} and P_{2} correlation functions are compared with previously published results in $\mathrm{p}-\mathrm{Pb}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions [2]. The widths show a consistent trend among the three collision systems.

References

[1] M. Sharma and C. A. Pruneau, Phys. Rev. C79, 024905 (2009).
[2] J. Adam et al. (ALICE Collaboration), Phys. Rev. C100, 044903 (2019).
[3] S. Bass, P. Danielewicz and S. Pratt, Phys. Rev. Lett. 85, 2689 (2000).
[4] B. Sahoo, B.K. Nandi, P. Pujahari, S. Basu and C. Pruneau, Phys. Rev. C100, 024909 (2019).

[^0]: *Speaker

