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According to the current experimental data, the Higgs vacuum appears to be metastable due to the
development of a second lower ground state in its potential. Consequently, vacuum decay would
induce the nucleation of true vacuum bubbles with catastrophic consequences for our Universe and
therefore we are motivated to study possible stabilising mechanisms in the early universe. In our
latest investigation (2207.00696), we studied the electroweak metastability in the context of the
observationally favoured model of Starobinsky inflation. Following the motivation and techniques
from our first study (2011.037633), we obtained constraints on the Higgs curvature coupling ξ,
while embedding the SM on the modified gravity scenario R + R2, which introduces Starobinsky
inflation naturally. This had significant repercussions for the effective Higgs potential in the form
of additional negative terms that destabilize the false vacuum. Another important aspect lay in
the definition for the end of inflation, as bubble nucleation is most prominent during its very last
moments. Our results dictated that these stronger lower ξ-bounds are very sensitive to the final
moments of inflation, where spacetime deviates increasingly from de Sitter.
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1. Introduction

1.1 The electroweak vacuum metastability

The Standard Model (SM) of particle physics has famously been one of our most successful
theories, with remarkable accuracy in its predictions about the behaviour and interactions of the
subatomic particles of our Universe. Even though there are various shortcomings of the theory
that would require physics beyond the SM [1], in principle from the SM’s internal point of view, it
remains valid up to very high energy scales, beyond the TeV’s we probe with accelerators. Therefore,
in this work we adopt a conservative approach that utilises the SM with the addition of cosmological
inflation as a minimal model to describe the early Universe.

According to the experimental measurements of SM parameters [2], the electroweak (EW)
vacuum that the Higgs field currently resides in, is prone to decay to a lower ground state. This
additional vacuum state in the Higgs potential, called the true vacuum, and the potential barrier
that separates it from the false EW vacuum come from the running of the Higgs quartic interaction
λ that switches sign at µ ∼ 1010 GeV, as shown in Fig. 1. The scale dependence of the Higgs
self coupling is calculated according to its β-function, where the competing bosonic and fermionic
contributions are dominated by their heaviest particles, the Higgs and the top quark, weighted by
their corresponding masses mh, mt .

Figure 1: Left: The evolution of the Higgs self interaction λ with the renormalisation scale µ for the current
experimental measurements of the Higgs mh and top quark mt masses, and the strong coupling aS to 3σ
variance [3]. Right: A metastable double-well potential for a scalar field φ that can decay to its true vacuum
via fluctuations, quantum tunnelling, or a combination of both [4].

Vacuum decay can proceed either via thermal fluctuations over the barrier, tunnelling through
it, or a mixture of the two. Since the EW vacuum has survived throughout our cosmological history,
we can constrain fundamental physics so that they allow for this long-lasting metastability. The
potential of the Higgs field h at tree-level on a curved background is given by

VH(h, µ, R) =
ξ(µ)

2
Rh2 +

λ(µ)
4

h4 , (1)

where ξ is the non-minimal coupling between the field and spacetime curvature R. This Higgs
curvature coupling is the last unknown renormalisable SM parameter, because it cannot be probed
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experimentally in the flat spacetime of the late Universe. Thus, demanding the stability of the EW
vacuum in the cosmological context constrains ξ accordingly, so that vacuum decay is suppressed.

1.2 Bubble nucleation from vacuum decay

Vacuum decay takes place at a point in spacetime and subsequently excites its surroundings in
a chain reaction, that results in a bubble of true vacuum growing with relativistic velocity. Since
our Universe is still in the metastable vacuum, no bubbles were nucleated during our cosmological
evolution. Therefore, the expectation value for the number of true vacuum bubbles N has to obey

⟨N⟩ ≲ 1 , (2)

in order to be compatible with observations [4], and it is given by the product of the decay rate Γ per
spacetime volume V integrated over the past lightcone, where g is the determinant of the metric,

d⟨N⟩ = ΓdV ⇒ ⟨N⟩ =
∫

past
d4x

√−gΓ(x) . (3)

In the context of the SM, the bubble interior is a singularity, but its exact description depends
on the shape of the potential, whether the true vacuum is bounded from below or not, and the
UV completion of the theory, where quantum gravity effects become important. However, these
considerations are beyond our scope, because we are interested in the number of bubbles in our
false vacuum Universe and not in the exotic physics within them, since even one nucleation event is
ruled out, as the bubble would expand and consume our Universe in a rapid and violent manner.

Despite the decay rate being slow in the late Universe, it could have been enhanced significantly
at early times, and thus we are motivated to study vacuum decay during the period of cosmological
inflation. This corresponds to an epoch of exponential expansion of the Universe, whose duration
we quantify with the number of e-foldings of inflation N = ln

( ainf
a

)
, where a is the scale factor and

the index “inf” denotes the end of inflation. We integrate Eq. (3) backwards in time from Ninf = 0
until the total duration Nstart, which is bounded from below according to observations at Nstart ≳ 60,

⟨N⟩ = 4π
3

∫ Nstart

0
dN

(
ainf (η0 − η (N))

eN

)3
Γ(N)
H(N) , (4)

where H = Ûa
a is the Hubble rate, and η0 − η(N) the comoving radius of the spacetime volume from

the present day to N e-folds before the inflationary finale.
The classical solutions for the transition from false to true vacuum are called instantons. For

the high Hubble scales during inflation, the Hawking-Moss (HM) process dominates the decay rate

Γ ≈
(

R
12

)2
e−

384π2∆VH
R2 , (5)

where ∆VH corresponds to the barrier height, since in the HM regime the field “goes” over the
barrier [5]. Therefore, there are two parallel streams of computations that start independently,
before coalescing into a complete calculation that constrains the non-minimal coupling. On the one
hand, the particle physics aspect involves Γ via the estimation of the effective Higgs potential in
curved spacetime, while on the other hand, there are cosmological quantities associated with the
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lightcone volume, that are subject to the choice of the inflationary potential VI(ϕ), the total duration
and the endpoint of inflation. After inserting them in Eq. (3) and imposing the condition (2), while
assuming that inflation lasts for 60 e-foldings, we finally obtain the bounds ξ ≥ ξ⟨N⟩=1 in addition
to cosmological implications from the time of predominant bubble nucleation.

2. The effective Higgs potential in Starobinsky inflation

Beyond the tree-level potential (1), we include Minkowski terms to 3-loops and curvature
corrections in de Sitter (dS) at 1-loop, and a small gravitational correction is radiatively generated,

VH(h, µ, R) =
ξ

2
Rh2 +

λ

4
h4 +

α

144
R2 + ∆Vloops , (6)

where the loop contribution from all the SM degrees of freedom in dS reads

∆Vloops =
1

64π2

31∑
i=1

{
niM4

i

[
log

(
|M2

i |
µ2

)
− di

]
+

n′
iR

2

144
log

(
|M2

i |
µ2

) }
, (7)

whereMi is each particle’s effective mass, and ni, di, n′
i are constant numbers [6]. The “unphysical”

µ-dependence of the potential can be eliminated through Renormalisation Group Improvement
(RGI), where the scale is chosen as µ = µ∗(h, R) so that ∆Vloops(h, µ∗, R) = 0 , which implies a valid
perturbative expansion. Thus, the RGI effective Higgs potential is written as

VRGI
H (h, R) = ξ(µ∗(h, R))

2
Rh2 +

λ(µ∗(h, R))
4

h4 +
α(µ∗(h, R))

144
R2 . (8)

However, when embedding the SM in R + R2 gravity, which gives rise to Starobinsky inflation
[7], the calculation of the effective potential is more complicated. Starting from the action of the
Higgs field in the Jordan frame, where the geometric R2-term is added to the Einstein-Hilbert
R-term of General Relativity (GR),

S =
∫

d4x
√−gJ

[
M2

P

2

(
1 − ξh

2

M2
P

)
RJ +

1
12M2 R2

J +
1
2
g
µν
J ∂µh∂νh − λ

4
h4

]
, (9)

where MP = 2.435 × 1018 GeV is the reduced Planck mass and M is a a small dimensionless
parameter. We perform the necessary conformal transformation to the Einstein frame gJ µν → gµν,
where we recover GR with the addition of a scalar field, the inflaton ϕ, in the matter sector. After
a field redefinition h → h̃ that allows us to RG improve the potential in the dS limit, where ϕ is
approximately constant, we have to perform two more field redefinitions ϕ → ϕ̃ and h̃ → ρ, in
order to express the Lagrangian in a canonical form

L ≈
M2

P

2
R +

1
2
∂µ ϕ̃∂

µ ϕ̃ +
1
2
∂µρ∂

µρ − Ũ(ϕ̃, ρ) . (10)

The characteristic Starobinsky potential VI(ϕ̃) =
3M2M4

P

4

(
1 − e−

√
2
3

ϕ̃
MP

)2
has been generated “nat-

urally” in the full potential of the theory,

Ũ(ϕ̃, ρ) = VI(ϕ̃) + m2
eff(ϕ̃, µ∗)

ρ2

2
+ λeff(ϕ̃, µ∗)

ρ4

4
+
α(µ∗)
144

R2(ϕ̃) + O(ρ6/M2
P) , (11)
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where the effective Higgs potential resembles Eq.(8) with the addition of a Planck suppressed
ρ6-term and the ϕ̃-dependent contributions to the effective mass and self-coupling

m2
eff = ξR + 3M2M2

PΞ

(
1 − e−

√
2
3

ϕ̃
MP

)
e−

√
2
3

ϕ̃
MP +

Ξ

M2
P

∂µ ϕ̃∂
µ ϕ̃ , (12)

λeff = λ + 3M2
Ξ

2e−2
√

2
3

ϕ̃
MP +

4
[
ξR + ∆m2

1
]
Ξ2

M2
P

+
4Ξ3

M4
P

∂µ ϕ̃∂
µ ϕ̃ , (13)

respectively, where Ξ(µ∗) = ξ(µ∗) − 1
6 . Since 0 < ξEW < 1/6 in the HM regime, these additional

negative terms, in particular the quadratic ones, destabilise the vacuum. This means that stronger
ξ-bounds are needed, compared to the field theory case of [8], to counter them and allow for the
survival of the EW vacuum, as shown in Fig. 2.

Figure 2: Lower bounds on the non-minimal coupling’s electroweak value ξEW with respect to the top quark
mass mt around its central value (vertical dashed orange line) with ±σmt and ±2σmt (orange shades). The
purple areas denote the excluded parameter space when the end of inflation is set at ÛH/H2 = −1/4 (darker)
and ÛH/H2 = −1 (lighter). The blackened curves show the threshold below which the false vacuum is pushed
to higher field values due to ξ turning negative as it runs. The results from the field theory case of [8] are
shown by the dotted blue curve for comparison. The horizontal black line lies at the conformal point ξ = 1/6
and the vertical dashed black line depicts the minimum mt , below which the EW vacuum is stable. [3]

Therefore, in Starobinsky inflation ξEW ≳ 0.13, as opposed to the field theory result ξEW ≳ 0.06,
for mt = 172.76 GeV and where the end of inflation is set at Üa = 0. However, because bubbles
are predominantly produced very close to the inflationary finale, due to the negative terms in m2

eff ,
we have to be more conservative with our definition of inflation’s endpoint, for the ξ-bounds to be
valid. This is due to the dS approximations used when calculating the effective potential and Γ, but
spacetime deviates increasingly from dS towards the end of inflation. Thus, if inflation lasts until
Üa
a =

H2

2 , we obtain the more trustworthy constraint ξEW ≳ 0.1, shown in dark purple in Fig. 2.
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3. Conclusions

In this work, we presented an overview of our latest study [3], where we have assumed a
minimal model to describe the early Universe, consisting of the SM and Starobinsky inflation. The
latter is supported by observations and arises from the simple modification of gravity R+R2, where
a higher-order geometric term is included in the action. Utilising the techniques and software from
[8], we obtained stronger vacuum decay constraints on the Higgs-curvature coupling

ξEW ≳ 0.1 > 0.06 , (14)

with a state-of-the-art RG improved effective Higgs potential, where the negative terms that have
arisen are in competition with the ξR factor. Since bubble nucleation takes place in the last moments
of inflation, the dS approximations for ΓHM start to break down, and therefore it is necessary to
consider the dynamics of reheating, in order to acquire more precise and definite constraints on ξ.
However, the early time behaviour of the potential is identical to the field theory case, and thus, we
obtain the same hints against eternal inflation as in [8].
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