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Jet-flavour identification algorithms are of paramount importance tomaximise the physics potential
of the Future Circular Collider (FCC). Out of the extensive FCC-ee physics program, flavour
tagging is crucial for the Higgs physics program, given the dominance of hadronic decays of the
Higgs boson. Highly efficient discrimination of 1-, 2-, B-, and gluon jets allows access to novel
decay modes that cannot be identified at the LHC, adding quantitatively new dimensions to the
Higgs physics programme.
This contribution presents new jet flavour identification algorithms based on advanced machine-
learning techniques that exploit particle-level information. Beyond an excellent performance of
1- and 2-quark tagging, they are also able to discriminate jets from strange quark hadronisation,
opening the way to improve the sensitivity of the Higgs to strange quark coupling. The impact of
different detector design assumptions on the flavour tagging performance is assessed using one of
the baseline detector concepts for FCC-ee, IDEA.
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1. Introduction

One of the main objectives of FCC-ee [1] is the precise measurements of Standard Model
parameters, like the couplings of the Higgs boson to the bottom and charm quarks and gluons. This
requires an efficient reconstruction and identification of the hadronic final states of these processes,
which entails identifying the flavour of the parton that initiated the jet, referred to as jet-flavour
tagging. Efficient and accurate jet-flavour identification is also necessary to assess the feasibility of
measurements such as / → BB̄ or � → BB̄ and therefore is essential to utilise the maximal physics
potential of future collider experiments. Another aim of the jet-flavour tagging studies is to drive the
detector development by providing requirements that result in improved performance in identifying
the hadronic final states, which will reduce the statistical limits on physics measurements and will
open up the potential to access previously unobserved or imprecisely-measured physics channels.

Hadronic jets originating from the heavier 1 and 2 quarks contain 1 and 2 hadrons. These have
a significant lifetime and tend to decay at some distance from the interaction point. The charged
tracks can be clustered to reconstruct these displaced decay vertices, known as secondary vertices
(SVs). These SVs can be used to distinguish the heavier quark jets from the lighter quark jets,
which typically don’t have any SVs. The strange jets tend to have a higher (lower) multiplicity
of Kaons (Pions) than up/down jets, which consist the majority of the background while tagging
s-jets. Therefore, particle identification (PID) techniques that can distinguish  ± and c± and can
reconstruct  0

(
are crucial for B-jet tagging.

This contribution reports on three different algorithms that use advanced machine-learning
techniques to identify hadronic jet flavours. Two of the algorithms have been developed for FCC-
ee and are motivated by tagging algorithms currently being used at the LHC experiments and one
algorithm has been developed for the International Linear Collider (ILC) [2]. The effects of different
detector designs and of using different input variables are also discussed.

2. Flavour Tagging with Transformer-based Neural Network Architecture

This tagging algorithm using a novel transformer-based neural network architecture that relies
on the attention mechanism [3] has been adopted for use in the FCC-ee case. The network was
trained using samples of 4−4+ → / → @@̄ process, where @ ≡ D, 3, B, 2, 1, at the center-of-mass
energy (

√
B) of 91.2 GeV. Pythia8.303 [4] is used for the parton showering and hadronisation,

event reconstruction is done with Delphes [5] using fast-simulation of the IDEA detector concept
[6], and jet clustering is performed with 4−4+ :) algorithm [7] using FastJet-3.3.4 [8].

The stable jet constituents are distributed in particle-flow categories, charged (neutral) hadrons,
electrons, muons, and photons. The charged tracks are used to reconstruct V0 vertices to identify
 0
(
and Λ0, which helps to improve the B-tagging performance. The remaining tracks are clustered

to reconstruct SVs, which are relevant for 1- and 2-tagging. Vertex reconstruction is performed
using an implementation of the vertexing module of the LCFIPlus framework [9].

The orange point in figure 1 shows that the performance of B-tagging improves by a few percent
by adding V0s. While identifying B-jets, the background consists mainly of D- and 3-jets and, to
reduce it, PID variables are crucial.
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Preliminary 
Results

(a) Performance without V0s

Preliminary 
Results

(b) Performance with V0s

Figure 1: Impact of V0s on performance of jet-flavour tagging with transformer-based neural network.

3. Flavour Tagging with Graph Neural Network Architecture

ParticleNetIDEA [10] is a tagging algorithm based on graph neural networks (GNN) and
is adopted from ParticleNet jet-tagging algorithm [11]. The simulated sample used to train the
network consists of 4−4+ → /� events produced at the

√
B = 240 GeV with � → 66/@@̄, where

@ ≡ D, 3, B, 2, 1. The / boson is forced to decay to a neutrino pair. The training is performed
with five different samples, corresponding to each jet-flavour category (D3, B, 2, 1, 6), containing
106 events each. Pythia8 [4] is used for the decay, parton shower, and hadronisation; final state
particles are reconstructed using Delphes PF algorithm. PID variables, number of ionisation
clusters (3#/3G) and time-of-flight, are calculated using dedicated modules in Delphes [5]. The
IDEA detector concept [6] is used. Jet clustering is performed with generalised 4−4+ :) algorithm
[7] with parameter ? = −1, using FastJet-3.3.4 [8].

Three sets of input variables are used for training: kinematic variables derived from the
momentum of each jet-constituent, displacement variables related to the longitudinal and transverse
displacement of charged tracks (relevant for 1- and 2-tagging), and identification variables derived

(a) Impact of PID on B-tagging (b) Impact of inner tracking geometry on 2-tagging

Figure 2: Effect of detector designs on performance of jet-flavour tagging with GNN [10].
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Figure 3: Comparison of B-tagging performance of jet-flavour tagging with RNN for PID in different
momentum ranges [12].

from PF reconstruction and PID algorithms.
At 90% efficiency in 1-tagging, there is 2% misidentification rate for 6- and 2-jets. At 90%

efficiency in 2-tagging, there is a 7% misidentification rate for 6 and D3-jets and 4% for 1-jets. The
impact of PID on B-tagging performance can be seen in Figure 2a. Cluster counting brings in the
most gain and, along with time-of-flight measurement with 30 ps timing resolution, performs very
close to the scenario with perfect PID. Figure 2b shows that 2x background rejection, consisting of
D3-jets, can be achieved in 2-tagging with an additional pixel layer in the inner tracker.

4. Flavour Tagging with Recurrent Neural Network Architecture

A tagging algorithm [12] using recurrent neural networks (RNN) developed for the ILC also
substantiates the results of the taggers developed for FCC-ee. The algorithm reports significant
improvement in B-tagging performance compared to the ILC baseline tagger [9] that does not use
any PID information. Figure 3 shows the effect of PID information for different momentum range
on the B-tagging performance. Due to such crucial importance of PID, a compact RICH detector
has also been proposed for ILC [12].

5. Conclusion

The state-of-the-art jet-flavour tagging algorithms being developed for FCC-ee show promising
results and have excellent performance in 1- and 2-tagging modes. Additional inner-tracking layers
or reaching closer to the interaction point will improve the performance further. It has motivated
studying the feasibility of a smaller beam pipe. The clean environment at FCC-ee and the precisely
known initial state, along with the use of advanced ML algorithms, make possible new analysis
techniques like B-tagging. A good PID strategy is necessary for a well-performing B-tagger. Cluster
counting, time-of-flight, and V0 reconstruction provide good PID for particles in the momentum
range of interest. Suitably designed detectors and algorithms that can exploit the full potential
of these detectors will enable future colliders like FCC-ee to study rare processes and maximally
utilise their extensive dataset to reach their goal of high-precision measurements.
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