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A linearized theory of gravity is constructed in the framework of Very Special Relativity (VSR),
maintaining the usual gauge invariance of linearized General Relativity (GR). After finding the
equations of motion of the model, choosing a suitable gauge, we prove that this extension of
linearized GR allows for a graviton mass 𝑚𝑔, which could be of extreme interest in different
astrophysical scenarios. Furthermore, as expected due to the gauge invariance, we verify the
presence of only two physical degrees of freedom in the theory. To start grasping the possible
consequences of this modification of linearized GR, we study Gravitational Waves (GW) effects
through the geodesic deviation equation: what we find is that VSR signatures would be proportional
to the small parameter 𝑚2

𝑔/𝐸2, with 𝐸 being the energy of a single graviton in a monochromatic
GW. While this parameter is very small (∼ 10−20) for GW detected by the interferometers LIGO and
VIRGO, it seems to get better (∼ 10−10) with the next generation of gravitational interferometers,
like LISA. Therefore, this increase plus the anisotropic nature of VSR could lead to observable
consequences of the VSR extension in the future.
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1. Introduction

The theory of Very Special Relativity (VSR) was introduced for the first time in 2006 by A.
Cohen and L. Glashow [1] as a relativistic theory with a reduced group of spacetime symmetries:
spacetime traslations plus a special kind of (Orthochronous and Proper) Lorentz’s subgroup. Orig-
inally, the main reason for this proposal was the possibility to introduce a new mechanism of mass
generation for neutrinos [2], without the need for new particles or extra dimensions. Since then,
consequences of VSR have been explored in a wide variety of fields: from General Relativity’s
extensions to Standard Model’s modifications.

1.1 Properties of VSR Subgroups

There exist four different subgroups suitable for VSR, which are{
𝑇 (2) = {𝑇1 := 𝐾1 + 𝐽2, 𝑇2 := 𝐾2 − 𝐽1} ; 𝐸 (2) = {𝑇1, 𝑇2, 𝐽3} ,
𝐻𝑂𝑀 (2) = {𝑇1, 𝑇2, 𝐾3} ; 𝑆𝐼𝑀 (2) = {𝑇1, 𝑇2, 𝐽3, 𝐾3} ,

(1)

where ®𝐽 and ®𝐾 are the usual rotations and boost generators of the Lorentz group. All of these
subgroups have the special property of being enlarged to the full Lorentz group with the addition to
them of some discrete transformation, like 𝑃, 𝑇 or 𝐶𝑃. Therefore, in this sense, a small violation
of discrete symmetries may be interpreted as the origin of small VSR effects, as could be the case
in the case of neutrinos’ masses [2].
Usually, the two most considered options are 𝐻𝑂𝑀 (2) and 𝑆𝐼𝑀 (2), since they do not allow new
invariant tensors other than the Minkowsky metric [, implying same kinematical consequences of
Special Relativity [1]. Furthermore, being that an invariance under 𝑆𝐼𝑀 (2) would also ensure𝐶𝑃𝑇
invariance in an eventual Quantum Field Theory, that’s the subgroup we will focus on and refer to
when talking of VSR in this work.
One of the main features of 𝑆𝐼𝑀 (2) is that, even if it does not allow new invariant tensors, it does
allow the existence of a preferred lightlike spacetime direction, labeled by the four-vector 𝑛`, which
under 𝑆𝐼𝑀 (2) transforms as

𝑛` −→
𝑆𝐼𝑀 (2)

𝑒𝜙𝑛` , (2)

implying the possibility of adding new lagrangian terms involving the contraction of the VSR
operator 𝑁` ≡ 𝑛`

𝑛·𝜕 with other dynamical quantities.

1.2 Why VSR in Linearized Gravity

As already stated above, VSR effects should become relevant only in contexts where some
discrete symmetry is broken. Due to Sakharov conditions [3], we know that in cosmology we must
have the breaking of 𝐶𝑃 in order to see the matter-antimatter asymmetry we see today. Therefore,
that means VSR could become relevant, for example, in the propagation of gravitational waves in
some cosmological background, like the de-Sitter one. From this observation, it shows up the need
of writing a field theory for the spacetime perturbation ℎ`a in the VSR framework, which we name
Very Special Linear Gravity (VSLG). In the following, to simplify the treatment, we will work in
momentum space and deal with a flat spacetime [`a . This way, the comparison with linearized
General Relativity (GR) will also be easier.
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2. Lagrangian

The first task we have to deal with is to find the Lagrangian of the Field Theory for ℎ`a . Since
we are interested in the linearized case, the Lagrangian L will be quadratic in the perturbation

L = ℎ`a𝑂
`a𝛼𝛽ℎ𝛼𝛽 . (3)

The ingredients we have to build the operator 𝑂 are: the flat metric [`a , the four-momentum 𝑝`

and the new VSR object 𝑁` = 𝑛`/𝑛 · 𝑝. Considering all combinations1 we obtain simbolically

𝑂 = 3 [[ + 9 𝑝𝑝[ + 12 𝑝𝑁[ + 12 𝑝𝑝𝑁𝑁 , (4)

where the numbers represent how many different terms we can construct with each set of objects. At
this point, we fix a series of conditions for the operator 𝑂, like the indices interchange symmetries
` ⇐⇒ a, 𝛼 ⇐⇒ 𝛽, `a ⇐⇒ 𝛼𝛽, and usual gauge invariance 𝑂`a𝛼𝛽𝑝

𝛼 = 0 of linearized GR. By
doing that, we get to an explicit expression of 𝑂 in momentum space

1
𝜒
𝑂`a𝛼𝛽 = 𝑝`𝑝a[𝛼𝛽 − 1

2
𝑝`𝑝𝛼[a𝛽 − 1

2
𝑝`𝑝𝛽[a𝛼 + 𝑝𝛼𝑝𝛽[`a −

1
2
𝑝a 𝑝𝛽[`𝛼 − 1

2
𝑝a 𝑝𝛼[`𝛽

− 𝑝2[`a[𝛼𝛽 + 1
2
𝑝2[`𝛼[a𝛽 + 1

2
𝑝2[`𝛽[a𝛼 − 𝑚2

𝑔[`a[𝛼𝛽 +
𝑚2

𝑔

2
[`𝛼[a𝛽 +

𝑚2
𝑔

2
[`𝛽[a𝛼

+ 𝑚2
𝑔𝑁`𝑁a 𝑝𝛼𝑝𝛽 −

𝑚2
𝑔

2
𝑁`𝑁𝛼𝑝a 𝑝𝛽 −

𝑚2
𝑔

2
𝑁`𝑁𝛽𝑝a 𝑝𝛼 −

𝑚2
𝑔

2
𝑁a𝑁𝛼𝑝`𝑝𝛽 −

𝑚2
𝑔

2
𝑁a𝑁𝛽𝑝`𝑝𝛼

+ 𝑚2
𝑔𝑁𝛼𝑁𝛽𝑝`𝑝a − 𝑚2

𝑔𝑝
2𝑁`𝑁a𝑔𝛼𝛽 +

𝑚2
𝑔

2
𝑝2𝑁`𝑁𝛼𝑔a𝛽 +

𝑚2
𝑔

2
𝑝2𝑁`𝑁𝛽𝑔a𝛼 +

𝑚2
𝑔

2
𝑝2𝑁a𝑁𝛽[`𝛼

+
𝑚2

𝑔

2
𝑝2[`𝛽𝑁a𝑁𝛼 − 𝑚2

𝑔𝑝
2𝑁𝛼𝑁𝛽[`a

+ 𝑚2
𝑔[`a𝑁𝛼𝑝𝛽 + 𝑚2

𝑔[`a 𝑝𝛼𝑁𝛽 −
𝑚2

𝑔

2
[`𝛼𝑁a 𝑝𝛽 −

𝑚2
𝑔

2
[`𝛼𝑝a𝑁𝛽 −

𝑚2
𝑔

2
[`𝛽𝑁a 𝑝𝛼 −

𝑚2
𝑔

2
[`𝛽𝑝a𝑁𝛼

−
𝑚2

𝑔

2
[a𝛼𝑁`𝑝𝛽 −

𝑚2
𝑔

2
[a𝛼𝑝`𝑁𝛽 −

𝑚2
𝑔

2
[a𝛽𝑁`𝑝𝛼 −

𝑚2
𝑔

2
[a𝛽𝑝`𝑁𝛼 + 𝑚2

𝑔[𝛼𝛽𝑁`𝑝a + 𝑚2
𝑔[𝛼𝛽𝑝`𝑁a ,

(5)
depending on only two parameters: an overall constant 𝜒, that we can identify with the Einstein-
Hilbert constant 𝜒 = 1

2^ = 𝑐4

16𝜋𝐺 , and 𝑚2
𝑔, that has the dimensions of a mass squared and, as we will

see, plays the role of a graviton mass.

2.1 Gauge Freedom and Equation of Motion

The expression (5) and the related equations of motion (E.o.M) 𝑂`a𝛼𝛽ℎ
𝛼𝛽 = 0 are quite

complicated. However, we fortunately have plenty of gauge freedom to exploit. In the end, due to
the residual gauge invariance after imposing the usual Lorentz condition 𝑝`ℎ`a = 0, we are able to
fix the following set of compatible conditions

𝑝`ℎ`a = 0 ,
𝑛`ℎ`a = 0 ,
ℎ ≡ ℎ`` = 0 ,

(6)

1We are considering only terms with up to two 𝑝` and parameters with (energy) dimension up to 4
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which, first of all, implies that

ℎ0𝛽 = − 𝑛
𝑖

𝑛0 ℎ𝑖𝛽 = − 𝑝
𝑖

𝑝0 ℎ𝑖𝛽 → ( 𝑛
𝑖

𝑛0 − 𝑝𝑖

𝑝0 )ℎ𝑖𝛽 = 0 . (7)

By using the conditions (6) in the E.o.M for the ℎ−field, we finally obtain the following fully
simplified dispertion equation

(𝑝2 − 𝑚2
𝑔)ℎ`a = 0 , (8)

from which we see, directly, that the parameter 𝑚𝑔 plays for the graviton the role of a mass. This
is a very interesting result since we already know that massive gravitons could be of interest in
a variety of gravitational applications, like dark matter [4] and Universe’s accelerated expansion
[5]. Still, the difference with VSLG is that here we are still left with only two physical degrees of
freedom, against the five of non-gauge invariant massive gravity, as stated and demonstrated in [8].

3. Gravitational Waves and Geodesic Deviation

Let’s introduce, for our solution, the plane wave ansatz for ℎ`a , labeling the axis of propagation
as the z-axis: 𝑝` = (𝐸, 0, 0, 𝑝)

ℎ`a = RE(𝐴`a𝑒
𝑖 𝑝`𝑥` ) = RE(𝐴`a𝑒

𝑖 (𝐸𝑡−𝑝𝑧) ) , (9)

where 𝐴`a is the polarization tensor satisfying the conditions 𝑝`𝐴`a = 0 , 𝑛`𝐴`a = 0 , 𝐴`
` = 0.

Note that, by deriving ℎ`a respect to 𝑡, 𝑧, we see{
𝜕0ℎ`a = 𝑖𝐸ℎ`a

𝜕3ℎ`a = −𝑖𝑝ℎ`a
→ 𝜕3ℎ`a = − 𝑝

𝐸
𝜕0ℎ`a . (10)

Furthermore, since here ℎ`a has no dependence on 𝑥 and 𝑦 we have 𝜕1ℎ`a = 𝜕2ℎ`a = 0, and from
the Lorentz gauge condition we find 𝑝`ℎ`a = 0 → ℎ3a = −𝐸

𝑝
ℎ0a .

3.1 Geodesic Deviation from Gravitational Waves

As a first application, we studied the modifications produced by VSR to the known geodesic
deviation equations for a gravitational wave, represented by the space-time perturbation ℎ`a , in
a flat background. The expression of the geodesic deviation equation depends on the linearized
Riemann Tensor 𝑅`a𝛼𝛽 = 1

2 (ℎ𝜌a,`^ − ℎ`a,𝜌^ − ℎ𝜌^,`a + ℎ`^,𝜌a)2, in the following way

𝜕2
0 𝛿b

` = 𝑅
`

00𝛾𝛿b
𝛾 = [`𝛿𝑅𝛿00𝛾𝛿b

𝛾 = [``𝑅`00𝛾𝛿b
𝛾 . (11)

The case ` = 0 is trivial, since we have already seen that 𝑅000𝛾 = 0, then 𝜕2
0 b

0 = 0, that combined
with the initial conditions 𝛿b0(𝑡 = 0) = 𝜕0𝛿b

0(𝑡 = 0) = 0, implies 𝛿b0 = 0. So we have no temporal
displacement. For the spatial component of the equation, we see that

𝜕2
0 𝛿b

𝑖 = [𝑖𝑖𝑅𝑖00 𝑗𝛿b
𝑗 = −𝑅𝑖00 𝑗𝛿b

𝑗 =
1
2
(ℎ00,𝑖 𝑗 + ℎ𝑖 𝑗 ,00 − ℎ0𝑖,0 𝑗 − ℎ0 𝑗 ,0𝑖)𝛿b 𝑗 . (12)

2Here we are using the notation ℎ`a,𝛼 ≡ 𝜕𝛼ℎ`a
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Figure 1: Representation of “+" and “×" polarizations’ effects on a circle of particles in linearized GR [7].

The equation (12) for 𝑖 = 1, 2 becomes

𝜕2
0 𝛿b

𝑖 =
1
2
𝜕2

0 ℎ𝑖 𝑗𝛿b
𝑗 − 1

2
𝜕0𝜕3ℎ0𝑖𝛿b

3 , (13)

but, using (7) and (10), we get 𝜕2
0 ℎ𝑖3 − 𝜕0𝜕3ℎ0𝑖 = 𝜕

2
0 ℎ𝑖3(1 − 𝑝2

𝐸2 ) =
𝑚2

𝑔

𝐸2 𝜕
2
0 ℎ𝑖3, then

𝜕2
0 𝛿b

𝑖 =
1
2
𝜕2

0 ℎ𝑖1𝛿b
1 + 1

2
𝜕2

0 ℎ𝑖2𝛿b
2 + 1

2
𝑚2

𝑔

𝐸2 𝜕
2
0 ℎ𝑖3𝛿b

3 . (14)

Since ℎ`a is a perturbation we can solve the differential equation in a perturbative way by defining
𝛿b` (𝑡) = 𝛿b`0 + 𝛿b`1 (𝑡), where 𝛿b`1 is a small perturbation of 𝛿b`0 . The Eq. (14) becomes

𝜕2
0 𝛿b

𝑖
1 =

1
2
𝜕2

0 ℎ𝑖1𝛿b
1
0 + 1

2
𝜕2

0 ℎ𝑖2𝛿b
2
0 + 1

2
𝑚2

𝑔

𝐸2 𝜕
2
0 ℎ𝑖3𝛿b

3
0 ,

the solution of which, with initial conditions 𝛿b𝑖1(𝑡 = 0) = 𝜕0𝛿b
𝑖
1(𝑡 = 0) = 0, is

𝛿b𝑖1 =
1
2
ℎ𝑖1𝛿b

1
0 + 1

2
ℎ𝑖2𝛿b

2
0 + 1

2
𝑚2

𝑔

𝐸2 ℎ𝑖3𝛿b
3
0 .

Doing the same for the case 𝑖 = 3, at the end we obtain the following set of equations
𝛿b1 = 𝛿b1

0 − 1
2 (ℎ11𝛿b

1
0 + ℎ12𝛿b

2
0 + 𝑚2

𝐺

𝐸2 ℎ13𝛿b
3
0) ,

𝛿b2 = 𝛿b2
0 − 1

2 (ℎ12𝛿b
1
0 + ℎ22𝛿b

2
0 + 𝑚2

𝑔

𝐸2 ℎ23𝛿b
3
0) ,

𝛿b3 = 𝛿b3
0 − 1

2
𝑚2

𝑔

𝐸2 (ℎ13𝛿b
1
0 + ℎ23𝛿b

2
0 + 𝑚2

𝑔

𝐸2 ℎ33𝛿b
3
0) .

(15)

Considering Eq. (15) in the case of a circle of particle, as shown in Fig. 1, we immediately see two
new effects affecting the two usual “+" and “×" polarizations: first of all, the presence of a non
trivial 𝛿b3 implies a motion also on the propagation direction of the gravitational waves, which is
not there in linearized GR. Furthermore, the two oscillation modes also get directly modified in their
transversal plane’s motion, while the VSR anisotropic nature is encoded in the ℎ𝑖 𝑗 components.

3.2 Magnitude of VSR effects

We want to conclude our analysis by studying the magnitude of VSR effects in this framework,
which means estimating the perturbative factor 𝑚2

𝑔

𝐸2 . To do that, we will use an averaged upper
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bound for the graviton mass from literature of 𝑚𝑔 ∼ 10−24 𝑒𝑉 [6].
With this restriction in mind, we see that in the range of frequencies spanned by the interferometers
LIGO and VIRGO, [10𝐻𝑧, 10𝑘𝐻𝑧], we would get a very small perturbative parameter of 𝑚2

𝑔

𝐸2 ∼
10−20. Nevertheless, as expected, we observe that lowering the frequency of the GW gets us a larger
factor: for example, for the future generations of interferometers, like LISA, which will explore a
lower frequency range [0.1𝑚𝐻𝑧, 1𝐻𝑧], we get 𝑚2

𝑔

𝐸2 ∼ 10−10, that combined with larger dimensions
of future interferometers and the anisotropic nature of VSR could lead to observable effects.

4. Conclusions

In these few pages, we tried to introduce the reader to a new theory of linearized gravity in the
framework of VSR: Very Special Linear Gravity. We have shown that one of the most important
features of VSLG is the presence of a massive graviton with still only two physical d.o.f, due to the
conservation of gauge invariance. Through the geodesic equation for GW, we tried to understand
some of the VSR effects and their magnitude, finding results proportional to the perturbative
parameter 𝑚2

𝑔/𝐸2. Despite the smallness of the new effects, more work should be carried on to
give precise numerical predictions on distinct gravitational phenomena, above all in “integrated"
ones: a clear example is the binary system’s energy loss over a period of time due to gravitational
radiation, on which we are already working. In the end, the presence of a “gauge-invariant" graviton
mass may be such an important feature that many gravitational areas of study would result affected,
making VSLG worth exploring.
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