

PoS

New physics contributions to Wtb anomalous couplings and top-quark decay

Apurba Tiwari^{*a*,*} and Sudhir Kumar Gupta^{*a*}

^aAligarh Muslim University,
 Aligarh-202002, UP, India
 E-mail: atiwari@myamu.ac.in, sudhir.ph@amu.ac.in

In this work, we study the new physics effects arising due the presence of anomalous Wtb vertex through the semileptonic decay modes of the top-quark at the Large Hadron Collider. An estimate on the sensitivities of the aforementioned interaction at 5σ CL in the context of top-quark decay-width measurements and cross-section measurements would also be discussed for the pre-existing 13 TeV LHC data and its projections for the proposed LHC runs at 14 TeV, 27 TeV and 100 TeV. We also incorporate the *CP*-violating effects to such interactions by constructing the *CP*-violating asymmetries.

41st International Conference on High Energy physics 6-13 July, 2022 Bologna, Italy

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

The charge parity (*CP*)-violation phenomenon that was first observed in neutral-kaon decay [1] needs to be explored beyond the Standard-Model (SM) as SM only provides a small amount of *CP*-violation via the CKM-matrices [2] which is not sufficient to explain the matter-antimatter asymmetry of the Universe [3]. The aim of this present article is to investigate the *CP*-violating effects of the anomalous *Wtb* vertex and provide stringent constraints on anomalous *Wtb* couplings using the measurements of top-quark decay width and cross-section as well as production asymmetries. Anomalous interactions in top-quark production and decay have been widely explored in the previous literature [4].

We consider an effective field theory approach to parameterise the anomalous Wtb vertex. In this framework, the most general Wtb vertex is expressed as [5]:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \left[\gamma^{\mu} \left(C_{1L} P_L + C_{1R} P_R \right) W_{\mu}^{-} - i \sigma^{\mu\nu} \left(\tilde{C}_{2L} P_L + \tilde{C}_{2R} P_R \right) \left(\partial_{\nu} W_{\mu}^{-} \right) \right] t + h.c., \tag{1}$$

Where C_{1L} , C_{1R} , \tilde{C}_{2L} $(\frac{C_{2L}}{\Lambda})$ and \tilde{C}_{2R} $(\frac{C_{2R}}{\Lambda})$ are dimensionless complex anomalous couplings, $P_{L,R} = \frac{1}{2}(1 \mp \gamma_5)$ and Λ is the energy scale. In SM at tree level $C_{1L} = V_{tb} = 1$ and other couplings are zero.

2. Numerical Analysis

We begin the analysis by incorporating the Lagrangian given in Eq. 1 into Feynrules [6], which then interfaced with Feyncalc [7] for further simulations. The decay level *CP*-asymmetries will be defined as:

$$\mathcal{A}_{SM}^{\Gamma} = \frac{\Delta \Gamma_{t \to bW}}{\Gamma_{t \to bW}} \simeq \frac{\mathrm{Im}\left(|\mathcal{M}|_{t \to bW}^{2}\right)}{\mathrm{Re}\left(|\mathcal{M}|_{t \to bW}^{2}\right)}$$
(2)

where $|\mathcal{M}|_{t\to bW}^2$ is the matrix-element squared for the process of top (anti-top) decay into $b(\bar{b})$ -quark and $W^+(W^-)$ -boson. The expression for the relative decay width of the top-quark with anomalous coupling to the SM decay width is:

$$R^{\Gamma} = \frac{\Gamma_{t \to bW}}{\Gamma_{t \to bW}^{SM}} = 1 - \frac{M_W}{(1 + 2\eta^2)} [6\eta C_R - M_W (\eta^2 + 2)(C_L^2 + C_R^2)]$$
(3)

where $\eta = \frac{M_W}{m_t}$, $C_L = |C_L|e^{i\theta}$ and $C_R = |C_R|e^{i\phi}$.

In Fig. 1, we show the dependence of the relative change in decay width and cross-section, $\frac{\Delta\sigma}{\sigma}$ on moduli of the anomalous coupling at different values of phases θ and ϕ . We observe that the decay width as well as cross-section is more sensitive to coupling C_R and the contribution from the coupling C_L is negligible. In Table 1, we present the constraints on anomalous couplings C_L and C_R at 2.5 σ C.L. (when only one anomalous coupling is taken non zero at a time) obtained from the top-quark decay width measurements.

	$C_L (\times 10^{-3})$	$C_R \; (\times 10^{-3})$
$\left(\frac{\Delta\Gamma}{\Gamma}\right)_{t\to bW}$	$-5.86 \le C_L \le 5.86$	$-1.84 \le C_R \le 1.95$
$\left(\frac{\Delta\sigma}{\sigma}\right)_{pp\to t\bar{t}}^{13TeV}$	$-2.62 \le C_L \le 2.62$	$-0.40 \le C_R \le 0.40$

Table 1: Bounds on anomalous couplings C_L (when $C_R = 0$) and C_R (when $C_L = 0$) at 2.5 σ C.L. obtained from measurements of top-quark decay width and top-pair production cross-section at the LHC with $\sqrt{s} = 13$ TeV.

In the same way as the decay width, the production asymmetries could be estimated using the formula,

$$\mathcal{A}_{SM}^{\sigma} = \frac{\Delta \sigma_{pp \longrightarrow t(\rightarrow bW^+)\bar{t}(\rightarrow \bar{b}W^-)}}{\sigma_{pp \longrightarrow t(\rightarrow bW^+)\bar{t}(\rightarrow \bar{b}W^-)}} \simeq \left(\frac{\mathrm{Im}\left(|\mathcal{M}|_{t \rightarrow bW}^2\right)}{\mathrm{Re}\left(|\mathcal{M}|_{t \rightarrow bW}^2\right)}\right)^2. \tag{4}$$

Figure 1: Dependence of decay width of top-quark and cross-section on the moduli of anomalous couplings for different values of θ and ϕ for the cases with $|C_R| = 0$ and $|C_L| = 0$.

Fig. 2 presents the 1σ , 2.5σ and 5σ regions in $Abs(C_L)$ -Arg (C_L) plane and $Abs(C_R)$ -Arg (C_R) plane allowed by the production asymmetries at LHC with $\sqrt{s} = 13$ TeV, HL-LHC with $\sqrt{s} = 14$ TeV, HE-LHC with $\sqrt{s} = 27$ TeV and FCC-hh with $\sqrt{s} = 100$ TeV. It should be noted that an approximate prediction of the constraints on the phase and moduli of the anomalous couplings C_L and C_R at 2.5σ C.L. can be given from Fig. 2, however an exact calculation has been carried out to obtain the limits and the values obtained are presented in Table 2.

Figure 2: 1 σ , 2.5 σ and 5 σ C.L. regions in the Abs(C_L)-Arg(C_L) plane and Abs(C_R)-Arg(C_R) plane allowed by the production asymmetry at LHC with $\sqrt{s} = 13$ TeV, HL-LHC with $\sqrt{s} = 14$ TeV, HE-LHC with $\sqrt{s} = 27$ TeV and FCC-hh with $\sqrt{s} = 100$ TeV.

Apurba Tiwari

3. Conclusions

In this study, we have explored the *CP*-violating effects of the anomalous *Wtb* vertex in the context of top-quark via its decay into a b-quark and a W-boson. An estimate of the constraints on the anomalous couplings C_L and C_R have been presented using top-quark decay width and cross-section measurements as well as production asymmetries. The values of the limits obtained on the couplings C_L and C_R are presented in Tables 1 and 2.

Collider	$\sqrt{s}, \int L dt$	$ C_L $ (×10 ⁻⁴)	$ C_R $ (×10 ⁻⁴)
LHC	13 TeV, 139 fb ⁻¹	1.82	0.03
HL-LHC	14 TeV, 3.0 ab ⁻¹	0.81	0.006
HE-LHC	27 TeV, 12.0 ab ⁻¹	0.44	0.0017
FCC-hh	100 TeV, 30.0 ab ⁻¹	0.21	0.0004

Table 2: Bounds on the moduli of the anomalous couplings C_L (when $C_R = 0$) and C_R (when $C_L = 0$) for CP-violating phase, $\theta = \phi = \frac{\pi}{4}$ at 2.5 σ C.L. obtained from production asymmetries at LHC, HL-LHC, HE-LHC and FCC-hh.

References

- J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Phys. Rev. Lett. 13, 138-140 (1964) doi:10.1103/PhysRevLett.13.138
- [2] P. Krawczyk, D. London, R. D. Peccei and H. Steger, Nucl. Phys. B 307, 19-33 (1988) doi:10.1016/0550-3213(88)90520-2
- [3] L. Canetti, M. Drewes and M. Shaposhnikov, New J. Phys. 14, 095012 (2012) doi:10.1088/1367-2630/14/9/095012 [arXiv:1204.4186 [hep-ph]].
- [4] O. Antipin and G. Valencia, Phys. Rev. D 79, 013013 (2009) doi:10.1103/PhysRevD.79.013013 [arXiv:0807.1295 [hep-ph]]; S. Dawson, S. K. Gupta and G. Valencia, Phys. Rev. D 88, no.3, 035008 (2013) doi:10.1103/PhysRevD.88.035008 [arXiv:1304.3514 [hep-ph]]; A. Hayreter and G. Valencia, Phys. Rev. D 88, 034033 (2013) doi:10.1103/PhysRevD.88.034033 [arXiv:1304.6976 [hep-ph]]. A. Tiwari and S. K. Gupta, [arXiv:2211.04783 [hep-ph]]; V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Phys. Rev. D 94, no.3, 034031 (2016) doi:10.1103/PhysRevD.94.034031 [arXiv:1605.04311 [hep-ph]]; A. Tiwari and S. K. Gupta, [arXiv:2208.14051 [hep-ph]]; S. K. Gupta and G. Valencia, Phys. Rev. D 81, 034013 (2010) doi:10.1103/PhysRevD.81.034013 [arXiv:0912.0707 [hep-ph]]; J. A. Aguilar-Saavedra, J. Carvalho, N. F. Castro, F. Veloso and A. Onofre, Eur. Phys. J. C 50, 519-533 (2007) doi:10.1140/epjc/s10052-007-0289-4 [arXiv:hep-ph/0605190 [hep-ph]]. A. Tiwari and S. K. Gupta, Adv. High Energy Phys. 2021, 6676930 (2021) doi:10.1155/2021/6676930 [arXiv:1903.05365 [hep-ph]].
- [5] A. Tiwari and S. K. Gupta, Nucl. Phys. B 982, 115898 (2022) doi:10.1016/j.nuclphysb.2022.115898
 [arXiv:2204.12800 [hep-ph]];
- [6] N. D. Christensen and C. Duhr, Comput. Phys. Commun. 180, 1614-1641 (2009) doi:10.1016/j.cpc.2009.02.018 [arXiv:0806.4194 [hep-ph]].
- [7] V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207, 432-444 (2016) doi:10.1016/j.cpc.2016.06.008 [arXiv:1601.01167 [hep-ph]].