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A proof-of-concept application of a quantum algorithm to multiloop Feynman integrals in the
Loop-Tree Duality (LTD) framework is applied to a representative four-loop topology. Causality
obtained through the LTD formalism, is a suitable problem to address with quantum computers
given the straightforward possibility to encode the two on-shell states of a propagator on the two
states of a qubit. A modification of Grover’s quantum search algorithm is developed for querying
multiple solutions over the unstructured set of solutions generated after the application of the LTD.
The quantum algorithm is successfully implemented on IBM Quantum and QUTE simulators.
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1. Introduction

Computing high-precision theoretical predictions for current and future high-energy particle
colliders requires novel techniques to deal with the higher orders in perturbative theory of scattering
amplitudes. In this context, the loop-tree duality (LTD) [1–3] formalism exhibits interesting
mathematical properties capable of overcoming current limitations. A remarkable property of LTD
is the possibility of representing the causal nature of Feynman diagrams and scattering amplitudes,
leading to an intuitive understanding of the singular structure of loop integrals. This manifestly
causal representation allows to represent the original multiloop Feynman diagrams into a class of
multiloop topologies defined by collapsing propagators into edges where the two on-shell states
of these propagators can be naturally encoded by the two states of a qubit, leading to explore the
application of quantum algorithms, for instance, a Grover’s quantum search algorithm [4] and a
Variational Quantum Eigensolver [5] approach. In this work we focus on the former approach.

2. Loop-Tree Duality and Causality

The causal representation of scattering amplitudes in the LTD formalism is obtained through the
calculation of nested residues. In Refs. [3, 6] it is shown that scattering amplitudes can be written as

A (𝐿)
𝐷

=

∫
®ℓ1... ®ℓ𝐿

1
𝑥𝑛

∑︁
𝜎∈Σ

N𝜎

𝑛−𝐿∏
𝑖=1

1

𝜆
ℎ𝜎 (𝑖)
𝜎 (𝑖)

+ (𝜆+ ↔ 𝜆−) , (1)

with 𝑥𝑛 =
∏

𝑖 2𝑞 (+)
𝑖,0 , ℎ𝜎 (𝑖) = ±1, N𝜎 a numerator determined by the interaction vertices of a specific

theory and
∫
®ℓ𝑠
= −𝜇4−𝑑 (2𝜋)1−𝑑

∫
d𝑑−1ℓ𝑠, the integration measure in the loop three-momentum

space. Eq. (1) only involves denominators with positive on-shell energies 𝑞 (+)
𝑖,0 = ( ®𝑞 2

𝑖
+ 𝑚2

𝑖
− 𝚤0)1/2,

added together in same-sign combinations in the so-called causal propagators defined as

𝜆±
𝜎 (𝑖) ≡ 𝜆±𝑝 =

∑︁
𝑖∈𝑝

𝑞
(+)
𝑖,0 ± 𝑘 𝑝,0 , (2)

where 𝜎(𝑖) stands for the partition 𝑝 of the set of on-shell energies and the orientation of the energy
components of the external momenta, 𝑘 𝑝,0. The causal structure of 𝜆±𝑝 is defined by the sign of 𝑘 𝑝,0

when the propagators in 𝑝 are set on-shell. Each causal propagator is in a one-to-one correspondence
with any possible threshold singularity of the amplitude, which contains overlapped thresholds
that are known as causal entangled thresholds. The combinations of entangled causal propagators
represent causal thresholds that can occur simultaneously, which are collected in the set Σ.

3. Causal query of multiloop Feynman integrals: the four-eloop case

We develop a modified version [4] of Grover’s algorithm [7] for querying the so-called causal
configurations from the LTD framework. We take as example the four-eloop topology, which consists
in four loops made of edges (eloops) with a central four-interaction vertex and we implement it on
IBM Quantum∗. The implementation of this quantum algorithm requires four registers, namely,

∗https://quantum-computing.ibm.com/
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|𝑒⟩, |𝑐⟩, |𝑎⟩ and |out⟩. In the first register, |𝑒⟩, we encode the state of the 𝑁 = 2𝑛 edges of the
topology and initialise it with a uniform superposition by applying Hadamard gates, |𝑒⟩ = 𝐻⊗𝑛 |0⟩.
The second register, |𝑐⟩, encodes the comparison between two adjacent edges 𝑒𝑖 and 𝑒 𝑗 in binary
Boolean clauses defined by

𝑐𝑖 𝑗 ≡ (𝑒𝑖 = 𝑒 𝑗) and 𝑐𝑖 𝑗 ≡ (𝑒𝑖 ≠ 𝑒 𝑗) . (3)

These clauses compare the state of the adjacent edjes 𝑒𝑖 and 𝑒 𝑗 ; 𝑐𝑖 𝑗 is required when the edjes are in
the same state and 𝑐𝑖 𝑗 otherwise. Each clause 𝑐𝑖 𝑗 is implemented through two CNOT gates, each
taking as control the corresponding qubits 𝑒𝑖 and 𝑒 𝑗 respectively, and both taking as target the same
qubit in the register |𝑐⟩. The clause 𝑐𝑖 𝑗 requires an extra NOT gate on the target qubit on the register
|𝑐⟩. The third register, |𝑎⟩, stores the eloop clauses that probe the adjacent edges that compose a
cyclic circuit within the diagram. Specifically for the four-eloop topology, taking the conventional
orientation of the edges in Fig. (1), the clauses are given by

𝑎
(4)
0 = ¬(𝑐01 ∧ 𝑐12 ∧ 𝑐23) , 𝑎

(4)
1 = ¬(𝑐05 ∧ 𝑐45) , 𝑎

(4)
2 = ¬(𝑐16 ∧ 𝑐56) , (4)

𝑎
(4)
3 = ¬(𝑐27 ∧ 𝑐67) , 𝑎

(4)
4 = ¬(𝑐34 ∧ 𝑐47) . (5)

Each 𝑎
(4)
𝑖

requires a multicontrolled Toffoli gate that takes as control its specific qubits |𝑐𝑖 𝑗⟩ and as
target a qubit in the register |𝑎⟩ followed by a NOT gate. The last register, |out⟩, requires a single
qubit initialised in the |−⟩ = 𝑋 |0⟩ and is used as the Grover’s marker. It stores the output of the
quantum algorithm and is implemented through a multicontrolled Toffoli gate taking as control all
the qubits from the register |𝑎⟩ and, if required, a qubit from the register |𝑒⟩. The oracle is defined as

𝑈𝑤 |𝑒⟩|𝑐⟩|𝑎⟩|out⟩ = (−1) 𝑓 (𝑎,𝑒) |𝑒⟩|𝑐⟩|𝑎⟩|out⟩ . (6)

When the causal conditions are satisfied, 𝑓 (𝑎, 𝑒) = 1, and marks the corresponding states; otherwise,
if 𝑓 (𝑎, 𝑒) = 0, they are left unchanged. For the four-eloop, the required Boolean marker is given by

𝑓 (4) (𝑎, 𝑒) =
( 4∧

𝑖=0
𝑎
(4)
𝑖

)
∧ 𝑒0 . (7)

After storing the marked states in |out⟩, the registers |𝑎⟩ and |𝑐⟩ are rotated back to the state |0⟩ by
applying the oracle operations in inverse order. The last step in the algorithm is the amplification of
the marked states by applying the diffuser opertator on the register |𝑒⟩. We use the diffuser defined
on IBM Quantum†.

4. Conclusions

The quantum algorithm developed in this work allowed us to successfully identify the causal
singular configurations of the four-eloop topology in the LTD framework. The algorithm was
successfully implemented in IBM Quantum and QUTE simulators‡. The result of the quantum
algorithm is used to bootstrap the causal representation in LTD of representative multiloop topologies,
allowing us a better understanding of this approach and enabling us to explore other techniques, such
as a Variation Quantum approach, as well as finding that beyond particle physics, the identification
of directed acyclic graphs is a challenging problem.

†https://qiskit.org
‡https://qute.ctic.es
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Figure 1: Left: Four-eloop topology with a fixed conventional orientation. Right: corresponding quantum
circuit for the four-eloop topology.
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